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Abstract

In this paper, we describe our approach to na-

tive language identification and discuss the re-

sults we submitted as participants to the First

NLI Shared Task. By resorting to a wide set of

general–purpose features qualifying the lexi-

cal and grammatical structure of a text, rather

than to ad hoc features specifically selected

for the NLI task, we achieved encouraging re-

sults, which show that the proposed approach

is general–purpose and portable across differ-

ent tasks, domains and languages.

1 Introduction

Since the seminal work by Koppel et al. (2005),

within the Computational Linguistics community

there has been a growing interest in the NLP–based

Native Language Identification (henceforth, NLI)

task. However, so far, due to the unavailability

of balanced and wide–coverage benchmark corpora

and the lack of evaluation standards it has been dif-

ficult to compare the results achieved for this task

with different methods and techniques (Tetreault et

al., 2013). The First Shared Task on Native Lan-

guage Identification (Tetreault et al., 2013) can be

seen as an answer to the above mentioned problems.

In this paper, we describe our approach to na-

tive language identification and discuss the results

we submitted as participants to the First NLI Shared

Task. Following the guidelines by the Shared Task

Organizers based on the previous literature on this

topic, Native Language Identification is tackled as

a text classification task combining NLP–enabled

feature extraction and machine learning: see e.g.

Tetreault et al. (2013) and Brooke and Hirst (2012).

Interestingly, the same methodological paradigm is

shared by other tasks like e.g. author recognition and

verification (see e.g. van Halteren (2004), author-

ship attribution (see Juola (2008) for a survey), genre

identification (Mehler et al., 2011) as well as read-

ability assessment (see Dell’Orletta et al. (2011a) for

an updated survey), all relying on feature extraction

from automatically parsed texts and state–of–the–art

machine learning algorithms. Besides obvious dif-

ferences at the level of the typology of selected lin-

guistic features and of learning techniques, these dif-

ferent tasks share a common approach to the prob-

lems they tackle: i.e. they succeed in determining

the language variety, the author, the text genre or the

level of readability of a text by exploiting the distri-

bution of different types of linguistic features auto-

matically extracted from texts.

Our approach to NLI relies on multi–level lin-

guistic analysis, covering morpho–syntactic tagging

and dependency parsing. In the NLI literature, the

range of features used is wide and includes char-

acteristics of the linguistic structure underlying the

L2 text, encoded in terms of sequences of charac-

ters, words, grammatical categories or of syntac-

tic constructions, as well as of the document struc-

ture: note however that, in most part of the cases,

the exploited features are task–specific. In our ap-

proach, we decided to resort to a wide set of fea-

tures ranging across different levels of linguistic de-

scription (i.e. lexical, morpho–syntactic and syntac-

tic) without any a priori selection: the same set of

features was successfully exploited in NLI–related

tasks, i.e. focusing on the linguistic form rather than
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the content of texts, such as readability assessment

(Dell’Orletta et al., 2011a) or the classification of

textual genres (Dell’Orletta et al., 2012).

The exploitation of general features qualifying the

lexical and grammatical structure of a text, rather

than ad hoc features specifically selected for the task

at hand, is not the only peculiarity of our approach

to NLI. Following Biber (1993), we start from the

assumption that “linguistic features from all levels

function together as underlying dimensions of vari-

ation”. This choice stems from studies on linguis-

tic variation, in particular from Biber and Conrad

(2009) who claim that linguistic varieties – called

“registers” from a functional perspective – differ “in

their characteristic distributions of pervasive linguis-

tic features, not the single occurrence of an indi-

vidual feature”. This is to say that by carrying out

the linguistic analysis of collections of essays each

written by different L1 native speakers, we need to

quantify the extent to which a given feature occurs

in each collection, in order to reconstruct the lin-

guistic profile underlying each L1 collection: dif-

ferences lie at the level of the distribution of linguis-

tic features, which can be common and pervasive in

some L1 collections but comparatively rare in oth-

ers. This approach is the basis of so–called “linguis-

tic profiling” of texts, within which “the occurrences

of a large number of linguistic features in a text, ei-

ther individual items or combinations of items, are

counted” (van Halteren, 2004) with the final aim of

reconstructing the profile of a text.

We carried out native language identification in

two steps. The first step consisted of the identifi-

cation of the set of linguistic features characteriz-

ing the essays written by different L1 native speak-

ers, i.e. the linguistic profiling of the different sec-

tions of TOEFL11 corpus (Blanchard et al., 2013)

distributed as training and development data. In

the second step, the features which turned out to

have highly discriminative power were used for the

classification of essays written by different L1 na-

tive speakers. Essay classification has been carried

out by experimenting with different approaches: i.e.

a single–classifier method and two different multi–

model ensemble approaches.

The paper is organised as follows: after introduc-

ing the set of used linguistic features (Section 2),

Section 3 illustrates a selection of the linguistic

profiling results obtained with respect to the train-

ing section of the TOEFL11 corpus; Section 4 de-

scribes the different classification approaches we

followed and the feature selection process; in Sec-

tion 5 achieved results are reported and discussed.

2 Features

In this study, we focused on a wide set of features

ranging across different levels of linguistic descrip-

tion. Differing from previous work on NLI, no a

priori selection of features was carried out. Instead

of focusing on particular classes of errors or on dif-

ferent types of stylistic idiosyncrasies, we took into

account a wide range of features which are typically

used in studies focusing on the “form” of a text,

e.g. on issues of genre, style, authorship or read-

ability. As previously pointed out, this represents a

peculiarity of our approach. This choice makes the

selected features language–independent, domain–

independent and reusable across different types of

tasks, as empirically demonstrated in Dell’Orletta

et al. (2011a) where the same set of features has

been successfully exploited for readability assess-

ment, and in Dell’Orletta et al. (2012) where the fea-

tures have been used for the classification of differ-

ent types of textual genre. Note that in both cases the

language dealt with was Italian: for the NLI Shared

Task we had to specialize the feature extraction pro-

cess with respect to the English language as well as

to the annotation scheme used to represent the un-

derlying linguistic structure.

The whole set of features we started with is de-

scribed below, organised into four main categories:

namely, raw text and lexical features as well as

morpho-syntactic and syntactic features. This pro-

posed four–fold partition closely follows the differ-

ent levels of linguistic analysis automatically car-

ried out on the text being evaluated, i.e. tokeniza-

tion, lemmatization, morpho-syntactic tagging and

dependency parsing.

2.1 Raw and Lexical Text Features

Sentence Length, calculated as the average number

of words per sentence.

Word Length, calculated as the average number of

characters per word.

Document Length, calculated as the total number
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of words per document.

Character bigrams.

Word n-grams, including both unigrams and bi-

grams.

Type/Token Ratio: the Type/Token Ratio (TTR) is

a measure of vocabulary variation which has shown

to be a helpful measure of lexical variety within

a text as well as style marker in an authorship at-

tribution scenario: a text characterized by a low

type/token ratio will contain a great deal of repeti-

tion whereas a high type/token ratio reflects vocabu-

lary richness and variation. Due to its sensitivity to

sample size, TTR has been computed for text sam-

ples of equivalent length (the first 50 tokens).

2.2 Morpho–syntactic Features

Coarse grained Part-Of-Speech n-grams: distri-

bution of unigrams and bigrams of coarse–grained

PoS, corresponding to the main grammatical cate-

gories (e.g. noun, verb, adjective, etc.).

Fine grained Part-Of-Speech n-grams: distribu-

tion of unigrams and bigrams of fine–grained PoS,

which represent subdivisions of the coarse–grained

tags (e.g. the class of nouns is subdivided into proper

vs common nouns, verbs into main verbs, gerund

forms, past particles, etc.).

Verbal chunks: distribution of sequences of verbal

PoS (also including adverbs). This feature can be

seen as a proxy to capture different aspects of verbal

predication, with particular attention to idiosyncratic

usages of verbal mood, tense, person and adverbial

modification.

Lexical density: ratio of content words (verbs,

nouns, adjectives and adverbs) to the total number

of lexical tokens in a text.

2.3 Syntactic Features

Dependency types n-grams: distribution of uni-

grams and bigrams of dependency types calculated

with respect to i) the hierarchical parse tree structure

and ii) the surface linear ordering of words.

Dependency triples: distribution of triplets repre-

senting a dependency relation consisting of a syn-

tactic head (h), the dependency relation type (t) and

the dependent (d). Two different variants of this fea-

ture are distinguished, based on the fact that either

the coarse–grained PoS or the word–form of h and d

is considered: we will refer to the former as Coarse

grained Part-Of-Speech dependency triples and to

the latter as Lexical dependency triples. In both

cases, the relative ordering of h and d, i.e. whether h

precedes or follows d at the level of the linear order-

ing of words within the sentence, is also considered.

Dependency Subtrees: distribution of dependency

subtrees consisting of a dependency relation (repre-

sented as the dependency triple {h, t, d}), the head

father and the dependency relation linking the two.

As in the previous case, two different variants of this

feature are distinguished, based on the fact that ei-

ther the coarse grained PoS or the word–forms of

the nodes in the dependency subtree are considered.

Parse tree depth features: this set of features is

meant to capture different aspects of the parse tree

depth and includes: a) the depth of the whole parse

tree, calculated in terms of the longest path from

the root of the dependency tree to some leaf; b)

the average depth of embedded complement ‘chains’

governed by a nominal head and including either

prepositional complements or nominal and adjecti-

val modifiers; c) the probability distribution of em-

bedded complement ‘chains’ by depth. These fea-

tures represent reliable indicators of sentence com-

plexity, as stated by, among others, Yngve (1960),

Frazier (1985) and Gibson (1998), and they can thus

allow capturing specific difficulties of L2 learners.

Coarse grained Part-Of-Speech of sentence root:

this feature refers to coarse grained POS of the syn-

tactic root of a sentence.

Arity of verbal predicates: this feature refers to

the number of dependencies (corresponding to either

subcategorized arguments or modifiers) governed by

the same verbal head. In the NLI context, it can al-

low capturing improper verbal usage by L2 learners

due to language transfer (e.g. with pro–drop lan-

guages as L1).

Subordination features: this set of features is

meant to capture different aspects of the use of sub-

ordination and includes: a) the distribution of sub-

ordinate vs main clauses; b) the average depth of

‘chains’ of embedded subordinate clauses and c)

the probability distribution of embedded subordinate

clauses ‘chains’ by depth. Similarly to parse tree

depth, this set of features can be taken to reflect the

structural complexity of sentences and can thus be

indicative of specific difficulties of L2 learners.

Length of dependency links: measured in terms
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of the words occurring between the syntactic head

and the dependent. This is another feature which

reflects the syntactic complexity of sentences (Lin,

1996; Gibson, 1998) and which can be successfully

exploited to capture syntactic idiosyncracies of L2

learners due to L1 interferences.

2.4 Other features

Two further features have been considered for NLI

purposes, which were included in the distributed

datasets. For each document, we have also consid-

ered i) the English language proficiency level (high,

medium, or low) based on human assessment by lan-

guage specialists, and ii) the topic of the essays.

3 Linguistic Profiling of TOEFL11 Corpus

In this section, we illustrate the results of linguis-

tic profiling carried out on the training and devel-

opment sets extracted from the TOEFL11 corpus.

This corpus, described in Blanchard et al. (2013),

contains 1,100 essays per 11 languages (for a to-

tal of 12,100 essays) sampled as evenly as possi-

ble from 8 prompts (i.e., topics) along with score

levels (low/medium/high) for each essay. The con-

sidered L1s are: Arabic, Chinese, French, German,

Hindi, Italian, Japanese, Korean, Spanish, Telugu,

and Turkish. For the specific purposes of the NLI

Shared Task, a total of 9,900 essays has been dis-

tributed as training data (900 essays per L1), 1,100

as development data (100 per L1) and the remaining

1,100 essays have been used as test data.

We started from the automatic linguistic annota-

tion of training and development data whose output

has been searched for with respect to the features il-

lustrated in Section 2.

3.1 Linguistic Pre–processing

Both training and development data were au-

tomatically morpho-syntactically tagged by the

POS tagger described in Dell’Orletta (2009) and

dependency–parsed by the DeSR parser using

Multi–Layer Perceptron as learning algorithm (At-

tardi et al., 2009), a state–of–the–art linear–time

Shift–Reduce dependency parser. Feature extraction

is carried out against the output of the multi–level

automatic linguistic analysis carried out during the

pre–processing stage: lexical and grammatical pat-

terns corresponding to the wide typology of selected

features are looked for within each annotation layer

and quantified.

3.2 Linguistic Profiling

Generally speaking, linguistic profiling makes it

possible to identify (groups of) texts which are sim-

ilar, at least with respect to the “profiled” features

(van Halteren, 2004). In what follows we report

the results of linguistic profiling obtained with re-

spect to the 11 L1 sub–corpora considered in this

study. Figure 1 shows the results obtained with re-

spect to a selection of the features described in Sec-

tion 2. These results refer to the combined training

and development data sets: note, however, that we

also calculated the values of these features in the two

datasets separately and it turned out that they do not

vary significantly between the two sets. This fact

can be taken as a proof both of the reliability of our

approach to linguistic profiling and of the relevance

of these features for NLI purposes.

Starting from raw textual features (Figures 1(a)

and 1(b)), both average sentence length and aver-

age word length vary significantly across L1s. In

particular, if on the one hand the essays written by

Arabic and Spanish L1 speakers contain the shortest

words and the longest sentences, on the other hand

the Hindi and Telugu L1 essays are characterized by

the longest words; the L1 Japanese and Korean cor-

pora contain the shortest sentences.

Let us focus now on the distribution of unigrams

of coarse grained Parts–Of–Speech. If we consider

the distributions of determiners and nouns, two fea-

tures typically used for NLI purposes (Wong and

Dras, 2009) which also represent stylistic markers

associated with different linguistic varieties (Biber

and Conrad, 2009), it can be noticed (see Fig-

ures 1(c) and 1(d)) that for Japanese and Korean the

essays show the lowest percentage of determiners,

while for Hindi and Telugu they are characterized

by the highest percentage of nouns.

For what concerns syntactic features, we observe

that essays by Japanese and Korean speakers are

characterized by quite a different distribution with

respect to the other L1 corpora. In particular, they

show the shallowest parse trees, the shortest depen-

dency links as well as the shortest ‘chains’ of em-

bedded complements governed by a nominal head.

On the other hand, the essays by Spanish and Ara-
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(a) Average word length (b) Average sentence length

(c) Distribution of Determiners (d) Distribution of Nouns

(e) Average parse tree depth (f) Average depth of embedded complement ‘chains’

(g) Average length of the longest dependency link (h) Arity of verbal predicates

Figure 1: Results of linguistic profiling carried out on the combined training and development sections of the TOEFL11

corpus.
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bic speakers contain the deepest parse trees, for Ital-

ian and Spanish we observe the longest dependency

links and for Hindi and Telugu the longest sequences

of embedded complements. Moreover, while the

essays by Italians are characterised by the highest

value of arity of verbal predicates, for Hindi, Telugu

and Korean essays much lower values are recorded.

Interestingly, these linguistic profiling results

show similar trends across the 11 languages at dif-

ferent levels of linguistic analysis. For instance, it

can be noted that Japanese and Korean or Italian

and Spanish, which belong to two different language

families, show similar distributions of features. Sim-

ilarities have also been recorded in the sub–corpora

by Hindi and Telugu speakers, even if these lan-

guages do not belong to the same family; we can

hypothesize that this might originate from language

contact phenomena.

4 System Description

4.1 Machine Learning Classifier

Our approach to Native Language Identification has

been implemented in a software prototype, i.e. a

classifier operating on mopho–syntactically tagged

and dependency parsed texts which assigns to each

document a score expressing its probability of be-

longing to a given L1 class. The highest score rep-

resents to the most probable class. Given a set of

features and a training corpus, the classifier creates a

statistical model using the feature statistics extracted

from the training corpus. This model is used in the

classification of unseen documents. The set of fea-

tures and the machine learning algorithm can be pa-

rameterized through a configuration file.

For each feature, we have implemented three dif-

ferent variants, depending on whether the feature

value is encoded in terms of: i ) presence/absence

of the feature (binary variant), ii ) the normalized

frequency (normalized frequency variant), and iii )

the normalized tf*idf value (normalized tf*idf vari-

ant). Since the binary feature variant outperformed

the other two, in all the experiments carried out on

the development set reported in Section 5 we illus-

trate the results obtained using this variant only. This

is in line with the results obtained by Brooke and

Hirst (2012) and Tetreault et al. (2013). According

to (Brooke and Hirst, 2012), a possible explanation

is that “in these relatively short texts, there is high

variability in normalized frequencies, and a simpler

metric, by having less variability, is easier for the

classifier to leverage”. Support Vector Machines

(SVM) using LIBSVM (Chang and Lin, 2001) and

Maximum Entropy (ME) using MaxEnt1 have been

used as machine learning algorithms.

We experimented two classification approaches: a

single classifier method and two ensemble systems,

combining the output of several classifiers.

The single classifier uses the set of features re-

sulting from the feature selection process described

in Section 4.2 and the SVM using linear kernel as

machine learning algorithm. This choice is due to

the fact that in all the experiments the linear SVM

outperformed the SVM using polynomial kernel.

There are two possible explanations for this fact,

namely: a) the number of features is much higher

than the number of training instances, accordingly

it might not be necessary to map data to a higher

dimensional space, therefore the nonlinear mapping

does not improve the performance; b) Weston et al.

(2000) showed that SVMs can indeed suffer in high

dimensional spaces where many features are irrele-

vant. Note that in Section 5, we report the results of

this classifier using different sets of features corre-

sponding to the lexical, morpho–syntactic and syn-

tactic levels of linguistic analysis.

The two ensemble systems combine the outputs

of the component classifiers following two different

strategies. The first one is based on the majority vot-

ing method (henceforth, VoteComb ): the combina-

tion strategy is seen as a classical voting problem

where for each essay is assigned the L1 class that

has been selected from the majority of classifiers. In

case of ties, the L1 class predicted from the best indi-

vidual model (as resulting from the experiments car-

ried out on the development set) is selected. The sec-

ond strategy combines the outputs of the component

classifiers via another classifier (henceforth referred

to as meta–classifier): we will refer to this second

strategy as ClassComb. The meta–classifier uses as

a feature the probability score predicted from each

component classifier for each L1 class. Differently

from the component classifiers, the meta–classifier

is based on polynomial kernel SVM. In both en-

1https://github.com/lzhang10/maxent#readme
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semble systems, the component classifiers use linear

SVM and ME as machine learning algorithms and

exploit different sets of features among the ones re-

sulting from the feature selection process described

below.

4.2 Features Selection Process

Since our approach to NLI relies on a wide num-

ber of general–purpose features, a feature selection

process was necessary in order to prune irrelevant

and redundant features which could negatively af-

fect the classification results. The selection process

starts taking into account all the n features described

in Section 2. In each iteration, for each feature fi we

generate a configuration ci such that fi is disabled

and all the other features are enabled. When an it-

eration finishes, we obtain for each ci a correspond-

ing accuracy score score(ci) which is computed as

the average of the accuracy obtained by the classi-

fier on the development set (ad) and on an internal

development set (ai), corresponding to the 10% of

the training set, used in order to reduce the overfit-

ting risk. Being cb the best configuration among all

the ci configurations, if score(cb) ≤ of the accuracy

scores resulting from the previous iterations the pro-

cess stops. Otherwise:

1. store in F the pair 〈fb, disabled〉 ;

2. for each configuration ci, if score(ci) ≤ of the

accuracy scores resulting from the previous it-

erations, we store in F the pair 〈fi, enabled〉;

3. set C = 〈cb, score(cb)〉

where F is a map containing elements

feature → {disabled, enabled} and C is a

pair that contains the current best configuration cb
and the corresponding score score(cb). In each

iteration, we consider only the features which do

not occur in F . At the initialization step F is empty

and C contains the configuration where all the

considered features are enabled.

In spite of the fact that the described selection

process does not guarantee to obtain the global opti-

mum, it however permitted us to obtain an improve-

ment of about 8% with respect to the starting model

indiscriminately using all features.

Table 1 lists the features resulting from the fea-

ture selection process. It can be noted that some

Lexical features:

Word n-grams

Morpho–syntactic features:

Coarse grained Part-Of-Speech unigrams

Fine grained Part-Of-Speech bigrams

Syntactic features:

Dependency types unigrams

Lexical dependency triples

Parse tree depth features

Coarse grained Part-Of-Speech of sentence root

Arity of verbal predicates

Subordination features

Length of dependency links

Table 1: Features resulting from the feature selection pro-

cess.

of them coincide with those typically used for NLI

purposes: this is the case of n–grams of words,

Parts-Of-Speech and syntactic dependencies. Inter-

estingly, to our knowledge, other features such as ar-

ity of verbal predicates, length of dependency links

as well as subordination and parse tree depth fea-

tures have not been used for NLI so far, in spite of

their being widely exploited in the syntactic com-

plexity literature (as discussed in Section 2).

5 Results

Table 2 reports the overall Accuracy achieved with

the different classifier models in the NLI classifi-

cation task on the official test set as well as the

F-measure score recorded for each L1 class. The

first two lines show the accuracies of the two com-

bination models, while the last three report the re-

sults obtained by the single classifier using i) the set

of features resulting by the features selection pro-

cess (Best Single), ii) the selected lexical features

only (see Table 1) (Lexical ) and iii) the lexical and

morpho–syntactic features (Lex+Morph ).

The two combination models outperform all

the single model classifiers: note that ClassComb

achieved much better results with respect to Vote-

Comb. By comparing these results with the F-

measure scores obtained on the distributed develop-

ment data (see Table 3), it can be seen that the rank-

ing of the scores achieved by the different classifiers

remains the same even if on the test data we obtained

a performance of -2,2% with respect to the develop-
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Accuracy ARA CHI FRE GER HIN ITA JAP KOR SPA TEL TUR

ClassComb 77,9 73,8 77,5 83,2 87,3 71,1 86,0 78,8 74,2 70,8 76,2 78,0

VoteComb 77,2 74,3 77,0 80,0 87,0 72,8 81,6 79,6 73,8 67,7 77,6 77,6

Best Single 76,6 71,9 77,6 75,8 85,7 73,2 82,0 80,0 74,0 69,0 76,9 76,5

Lex+Morph 76,4 77,2 76,2 78,6 85,9 72,1 80,4 76,8 71,9 68,0 76,4 76,4

Lexical 76,2 71,1 76,5 79,0 87,6 74,5 80,8 77,7 70,8 66,7 79,2 73,4

Table 2: Classification results of different classifiers on official test data.

ment test set.

Let us consider now the results obtained by the

single model classifiers. In all cases the Best Single

outperforms the other two models demonstrating the

reliability of the features selection process and that

a combination of lexical, morpho–syntactic and syn-

tactic features leads to better results.

Although the best performing model is the Class-

Comb, this is not true for all the 11 languages. In

Table 2, the best results for each L1 are bolded. In-

terestingly, even though Lexical is the worst model,

it is the best performing one for three L1s while the

best model, i.e. ClassComb, for five only.

It can be noted that with respect to the devel-

opment data set the syntactic features used by the

Best Single model allow an increment of +1% as

opposed to the Lexical model: this represents a

much higher increase if compared with the result

obtained on the test data, which is +0,4%. This is

an unexpected result since the feature selection de-

scribed in Section 4.2 was carried out on an internal

development set in order to prevent the risk of over-

fitting on the distributed development data.

Classifier Accuracy

ClassComb 80,1

VoteComb 79,3

Best Single 78,8

Lex+Morph 78,2

Lexical 77,8

Table 3: Classification results of different classifiers on

distributed development data.

6 Conclusion

In this paper, we reported our participation results

to the First Native Language Identification Shared

Task. By resorting to a wide set of general–

purpose features qualifying the lexical and grammat-

ical structure of a text, rather than to ad hoc fea-

tures specifically selected for the task at hand, we

achieved encouraging results. After a feature se-

lection process, new features which to our knowl-

edge have never been exploited so far for NLI pur-

poses turned out to contribute significantly to the

task. Interestingly, the same set of features we

started from has been previously successfully ex-

ploited in other related tasks, such as readability

assessment and genre classification, operating on

the Italian language. The obtained results suggest

that our approach is general–purpose and portable

across different domains and languages. Further di-

rections of research currently include: i) comparison

of results obtained with general purpose features and

with NLI–specific features (e.g. typical errors or dif-

ferent types of stylistic idiosyncrasies specific to L2

learners), with a view to combining them to achieve

better results; ii) design and development of new en-

semble classification methods as well as new fea-

ture selection methods considering not only classes

of features but also individual features; iii) testing

our approach to NLI on different L2s (e.g. Italian) .
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