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Abstract

Our submission for this NLI shared task used
for the most part standard features found in re-
cent work. Our focus was instead on two other
aspects of our system: at a high level, on pos-
sible ways of constructing ensembles of multi-
ple classifiers; and at a low level, on the gran-
ularity of part-of-speech tags used as features.
We found that the choice of ensemble com-
bination method did not lead to much differ-
ence in results, although exploiting the vary-
ing behaviours of linear versus logistic regres-
sion SVM classifiers could be promising in fu-
ture work; but part-of-speech tagsets showed
noticeable differences.

We also note that the overall architecture, with
its feature set and ensemble approach, had an
accuracy of 83.1% on the test set when trained
on both the training data and development data
supplied, close to the best result of the task.
This suggests that basically throwing together
all the features of previous work will achieve
roughly the state of the art.

1 Introduction

Among the efflorescence of work on Native Lan-
guage Identification (NLI) noted by the shared task
organisers, there are two trends in recent work in
particular that we considered in building our sub-
mission. The first is the proposal and use of new
features that might have relevance to NLI: for exam-
ple, Wong and Dras (2011), motivated by the Con-
trastive Analysis Hypothesis (Lado, 1957) from the
field of Second Language Acquisition, introduced
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syntactic structure as a feature; Swanson and Char-
niak (2012) introduced more complex Tree Substi-
tution (TSG) structures, learned by Bayesian infer-
ence; and Bykh and Meurers (2012) used recurring
n-grams, inspired by the variation n-gram approach
to corpus error annotation detection (Dickinson and
Meurers, 2003). Starting from the features intro-
duced in these papers and others, then, other recent
papers have compiled a comprehensive collection of
features based on the earlier work — Tetreault et
al. (2012) is an example, combining and analysing
most of the features used in previous work. Given
the timeframe of the shared task, there seemed to be
not much mileage in trying new features that were
likely to be more peripheral to the task.

A second trend, most apparent in 2012, was the
examination of other corpora besides the Interna-
tional Corpus of Learner English used in earlier
work, and in particular the use of cross-corpus evalu-
ation (Brooke and Hirst, 2012; Tetreault et al., 2012)
to avoid topic bias in determining native language.
Possible topic bias had been a reason for avoiding
a full range of n-grams, in particular those contain-
ing content words (Koppel et al., 2009); the devel-
opment of new corpora and the analysis of the effect
of topic bias mitigated this. The consequent use of a
full range of n-grams further reinforced the view that
novel features were unlikely to be a major source of
interesting results.

We therefore concentrated on two areas: the use
of classifier ensembles, and the choice of part-of-
speech tags. With classifier ensembles, Tetreault
et al. (2012) noted that these were highly useful in
their system; but while that paper had extensive fea-
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ture descriptions, it did not discuss in detail the ap-
proach to its ensembles. We therefore decided to
examine a range of possible ensemble architectures.
With part-of-speech tags, most work has used the
Penn Treebank tagset, including those based on syn-
tactic structure. Kochmar (2011) on the other hand
used the CLAWS tagset,! which is much richer and
more oriented to linguistic analysis than the Penn
Treebank one. Given the much larger size of the
TOEFLI11 corpus used for this shared task than the
corpora used for much earlier work, data sparsity
could be less of an issue, and the tagset a viable one
for future work.

The description of our submission is therefore in
three parts. In §2 we present the system description,
with a focus on the ensemble architectures we inves-
tigated; in §3 we list the features we used, which are
basically those of much of the previous work; in §4
we present results of some of the variants we tried,
particularly with respect to ensembles and tagsets;
and in §5 we discuss some of the interesting charac-
teristics of the data we noted during the shared task.

2 System Design

Our overall approach in terms of features and clas-
sifiers used is a fairly standard one. One difference
from most approaches, but inspired by Tetreault et
al. (2012), is that we train multiple classifiers over
subsets of the features, over different feature rep-
resentations, and over different regularisation ap-
proaches; we then combine them in ensembles (Di-
etterich, 2000).

2.1 SVM Ensemble Construction

To construct our ensemble, we train individual clas-
sifiers on a single feature type (e.g. PoS n-grams),
using a specific feature value representation and
classifier. We utilise a parallel ensemble structure
where the classifiers are run on the input texts in-
dependently and their results are then fused into the
final output using a combiner.

Additionally, we also experiment with bagging
(bootstrap aggregating), a commonly used method
for ensemble generation (Breiman, 1996) to gener-
ate multiple ensembles per feature type.

'http://ucrel.lancs.ac.uk/claws/
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For our classifier, we use SVMs, specifically the
LIBLINEAR SVM software package (Fan et al.,
2008),2 which is well-suited to text classification
tasks with large numbers of features and large num-
bers of documents. LIBLINEAR provides both lo-
gistic regression and linear SVMs; we experiment
with both. In general, the linear classifier performs
better, but it only provides the decision output. The
logistic regression classifier on the other hand gives
probability estimates, which are required by most
of our combination methods (§2.3). We therefore
mostly use the logistic regression classifiers.

2.2 L1- and L2-regularized SVM Classifiers

In our preliminary experiments we noted that
some feature types performed better with L1-
regularization and others with L2. In this work we
generate classifiers using both methods and evaluate
their individual and combined performance.

2.3 Classifier Combination Methods

We experiment with the following decision combi-
nation methods, which have been discussed in the
machine learning literature. Polikar (2006) provides
an exposition of these rules and methods.

Plurality vote: Each classifier votes for a single
class label, the label with the highest number of
votes wins. Ties are broken arbitrarily.

Sum: All probability estimates are added together
and the label with the highest sum is picked.

Average: The mean of all scores for each class
is calculated and the label with the highest average
probability is chosen.

Median: Each label’s estimates are sorted and the
median value is selected as the final score for that
label. The label with the highest value is picked.

Product: For each class label, all of the probabil-
ity estimates are multiplied together to create the la-
bel’s final estimate. The label with the highest esti-
mate is selected. A single low score can have a big
effect on the outcome.

Highest Confidence: In this simple method, the
class label that receives the vote with the largest de-
gree of confidence is selected as the final output.

ZAvailable at http://www.csie.ntu.edu.tw/
~cjlin/liblinear/



Borda Count: The confidence estimates are con-
verted to ranks and the final label selected using the
Borda count algorithm (Ho et al., 1994). In this
combination approach, broadly speaking points are
assigned to ranks, and these tallied for the overall
weight.

With the exception of the plurality vote, all of
these can be weighted. In our ensembles we also ex-
periment with weighting the output of each classifier
using its individual accuracy on the training data as
an indication of our degree of confidence in it.

2.4 Feature Representation

Most NLI studies have used two types of feature rep-
resentations: binary (presence or absence of a fea-
ture in a text) and normalized frequencies. Although
binary feature values have been used in some stud-
ies (e.g. Wong and Dras (2011)), most have used
frequency-based values.

In the course of our experiments we have ob-
served that the effect of the feature representation
varies with the feature type, size of the feature space
and the learning algorithm itself. In our current sys-
tem, then, we generate two classifiers for each fea-
ture type, one trained with frequency-based values
(raw counts scaled using the L.2-norm) and the other
with binary. Our experiments assess both their indi-
vidual and joint performance.

2.5 Proficiency-level Based Classification

To utilise the proficiency level information provided
in the TOEFL11 corpus (texts are marked as either
low, medium or high proficiency), we also investi-
gate classifiers that are trained using only texts from
specific proficiencies.

Tetreault et al. (2012) established that the classi-
fication accuracy of their system varied across pro-
ficiency levels, with high proficiency texts being the
hardest to classify. This is most likely due to the fact
that writers at differing skill levels commit distinct
types of errors at different rates (Ortega, 2009, for
example). If learners of different backgrounds com-
mit these errors with different distributions, these
patterns could be used by a learner to further im-
prove classification accuracy. We will use these fea-
tures in one of our experiments to investigate the
effectiveness of such proficiency-level based classi-
fiers for NLIL
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3 Features

We roughly divide out feature types into lexical,
part-of-speech and syntactic. In all of the feature
types below, we perform no feature selection.

3.1 Lexical Features

As all previous work, we use function words as fea-
tures. In addition, given the attempts to control for
topic bias in the TOEFL11 corpus, we also make
use of various lexical features which have been pre-
viously avoided by researchers due to the reported
topic bias (Brooke and Hirst, 2011) in other NLI cor-
pora such as the ICLE corpus.

Function Words In contrast to content words,
function words do not have any meaning themselves,
but rather can be seen as indicating the grammat-
ical relations between other words. Examples in-
clude articles, determiners, conjunctions and auxil-
iary verbs. They have been widely used in studies of
authorship attribution as well as NLI and established
to be informative for these tasks. We use the list
of 398 common English function words from Wong
and Dras (2011). We also tested smaller sets, but ob-
served that the larger sets achieve higher accuracy.

Function Word n-grams We devised and tested a
new feature that attempts to capture patterns of func-
tion word use at the sentence level. We define func-
tion word n-grams as a type of word n-gram where
content words are skipped: they are thus a specific
subtype of skip-gram discussed by Guthrie et al.
(2006). For example, the sentence We should all
start taking the bus would be reduced to we should
all the, from which we would extract the n-grams.

Character n-grams Tsur and Rappoport (2007)
demonstrated that character n-grams are a useful
feature for NLI. These n-grams can be considered
as a sub-word feature and their effectiveness is hy-
pothesized to be a result of phoneme transfer from
the writer’s L1. They can also capture orthographic
conventions of a language. Accordingly, we limit
our n-grams to a maximum size of 3 as longer se-
quences would correspond to short words and not
phonemes or syllables.

Word n-grams There has been a shift towards the
use of word-based features in several recent studies
(Brooke and Hirst, 2012; Bykh and Meurers, 2012;



Tetreault et al., 2012), with new corpora come into
use for NLI and researchers exploring and address-
ing the issues relating to topic bias that previously
prevented their use. Lexical choice is considered to
be a prime feature for studying language transfer ef-
fects, and researchers have found word n-grams to
be one of the strongest features for NLI. Tetreault
et al. (2012) expanded on this by integrating 5-gram
language models into their system. While we did not
replicate this, we made use of word trigrams.

3.2 POS n-grams

Most studies have found that POS tag n-grams are
a very useful feature for NLI (Koppel et al., 2005;
Bykh and Meurers, 2012, for example). The tagset
provided by the Penn TreeBank is the most widely
used in these experiments, with tagging performed
by the Stanford Tagger (Toutanova et al., 2003).

We investigate the effect of tagset granularity
on classification accuracy by comparing the clas-
sification accuracy of texts tagged with the PTB
tagset against those annotated by the RASP Tagger
(Briscoe et al., 2006). The PTB POS tagset contains
36 unique tags, while the RASP system uses a subset
of the CLAWS?2 tagset, consisting of 150 tags.

This is a significant size difference and we hy-
pothesize that a larger tagset could provide richer
levels of syntactically meaningful info which is
more fine-grained in distinction between syntactic
categories and contains more morpho-syntactic in-
formation such as gender, number, person, case
and tense. For example, while the PTB tagset
has four tags for pronouns (PRP, PRPS$, WP,
WP $), the CLAWS tagset provides over 20 pronoun
tags (PPHO1, PPIS1, PPX2, PPY, etc.) dis-
tinguishing between person, number and grammati-
cal role. Consequently, these tags could help better
capture error patterns to be used for classification.

3.3 Syntactic Features

Adaptor grammar collocations Drawing on
Wong et al. (2012), we also utilise an adaptor gram-
mar to discover arbitrary lengths of n-gram collo-
cations for the TOEFL11 corpus. We explore both
the pure part-of-speech (POS) n-grams as well as
the more promising mixtures of POS and function
words. Following a similar experimental setup as
per Wong et al. (2012), we derive two adaptor gram-
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mars where each is associated with a different set of
vocabulary: either pure POS or the mixture of POS
and function words. We use the grammar proposed
by Johnson (2010) for capturing topical collocations
as presented below:

Sentence — Doc; jel....m
Docj — _j jel....om
Doc; — Doc; Topic; 1€1,...,1;
jel,....m
Topic; — Words 1€1,...,t
Words — Word
Words — Words Word
Word — w w € Vpos;
w e V}oos—&-fw

As per Wong et al. (2012), V.5 contains 119
distinct POS tags based on the Brown tagset and
Vpos+fw 18 extended with 398 function words used
in Wong and Dras (2011). The number of topics ¢
is set to 50 (instead of 25 as per Wong et al. (2012))
given that the TOEFL corpus is larger than the ICLE
corpus. The inference algorithm for the adaptor
grammars are based on the Markov Chain Monte
Carlo technique made available by Johnson (2010).

Tree Subtitution Grammar fragments In rela-
tion to the context-free grammar (CFG) rules ex-
plored in the previous NLI work of Wong and Dras
(2011), Tree Substitution Grammar (TSG) frag-
ments have been proposed by Swanson and Char-
niak (2012) as another form of syntactic features
for NLI classification tasks. Here, as an approxi-
mation to deploying the Bayesian approach to in-
duce a TSG (Post and Gildea, 2009; Swanson and
Charniak, 2012), we first parse each of the essays in
the TOEFL training corpus with the Stanford Parser
(version 2.0.4) (Klein and Manning, 2003) to obtain
the parse trees. We then extract the TSG fragments
from the parse trees using the TSG system made
available by Post and Gildea (2009).4

Stanford dependencies In Tetreault et al. (2012),
Stanford dependencies were investigated as yet an-
other form of syntactic features. We follow a
similar approach: for each essay in the train-
ing corpus, we extract all the basic (rather than

‘http://web.science.mg.edu.au/~mjohnson/
Software.htm
*https://github.com/mjpost/dptsg



the collapsed) dependencies returned by the Stan-
ford Parser (de Marneffe et al., 2006). Simi-
larly, we generate all the variations for each of
the dependencies (grammatical relations) by sub-
stituting each lemma with its corresponding PoS
tag.  For instance, a grammatical relation of
det (knowledge, the) yields the following
variations: det (NN, the), det (knowledge,
DT), and det (NN, DT).

4 Experiments and Results

We report our results using 10-fold cross-validation
on the combined training and development sets, as
well as by training a model using the training and
development data and running it on the test set.

We note that for our submission, we trained only
on the training data; the results here thus differ from
the official ones.

4.1 Individual Feature Results and Analysis

We ran the classifiers generated for each feature type
to assess their performance. The results are summa-
rized in Table 1: the Train + Dev Set results were for
the system when trained on the training and develop-
ment data with 10 fold cross-validation, and the Test
Set results for the system trained on the training and
development data combined.

Character n-grams are an informative feature and
our results are very similar to those reported by pre-
vious researchers (Tsur and Rappoport, 2007). In
particular, it should be noted that the use of punc-
tuation is a very powerful feature for distinguishing
languages. Romance language speakers were most
likely to use more punctuation symbols (colons,
semicolons, ellipsis, parenthesis, etc.) and at higher
rates. Chinese, Japanese and Korean speakers were
far less likely to use punctuation.

The performance for word n-grams, TSG frag-
ments and Stanford Dependencies is very strong and
comparable to previously reported research. For the
adaptor grammar n-grams, the mixed POS/function
word version yielded best results and was included
in the ensemble.

4.2 POS-based Classification and Tagset Size

To compare the tagsets we trained individual classi-
fiers for n-grams of size 1-4 using both tagsets and
tested them. The results are shown in Table 2 and
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Feature Train + | Test Set

Dev Set
Chance Baseline 9.1 9.1
Character unigram 33.99 34.70
Character bigram 51.64 49.80
Character trigram 66.43 66.70
RASP POS unigram 43.76 45.10
RASP POS bigram 58.93 61.60
RASP POS trigram 59.39 62.70
Function word unigram 51.38 54.00
Function word bigram 59.73 63.00
Word unigram 74.61 75.50
Word bigram 74.46 76.00
Word trigram 63.60 65.00
TSG Fragments 72.16 72.70
Stanford Dependencies 73.78 75.90
Adaptor Grammar 69.76 70.00
POS/FW n-grams

Table 1: Classification results for our individual features.

N | PTB | RASP
1 | 34.03 | 43.76
2 | 48.85 | 58.93
3 | 51.06 | 59.39
4 |49.85 | 52.81

Table 2: Classification accuracy results for POS n-grams
of size N using both the PTB and RASP tagset. The larger
RASP tagset performed significantly better for all N.

N | Accuracy
1 51.38
2 59.73
3 52.14

Table 3: Classification results for Function Word n-grams
of size N. Our proposed Function Word bigram and tri-
gram features outperform the commonly used unigrams.



Ensemble Train + | Test Set
Dev Set
Complete Ensemble 81.50 81.60
Only binary values 82.46 83.10
Only freq values 65.28 67.20
L1-regularized solver only 80.33 81.10
L2-regularized solver only 81.42 81.10
Bin, L1-regularized only 81.57 82.00
Bin, L2-regularized only 82.00 82.50

Table 4: Classification results for our ensembles, best re-
sult in column in bold (binary values with L1- and L2-
regularized solvers).

show that the RASP tagged data provided better per-
formance in all cases. While it is possible that these
differences could be attributed to other factors such
as tagging accuracy, we do not believe this to be the
case as the Stanford Tagger is known for its high ac-
curacy (97%). These differences are quite clear; this
finding also has implications for other syntactic fea-
tures that make use of POS tags, such as Adaptor
Grammars, Stanford Dependencies and Tree Substi-
tution Grammars.

4.3 Function Word n-grams

The classification results using our proposed Func-
tion Word n-gram feature are shown in Table 3.
They show that function word skip-grams are more
informative than the simple function word counts
that have been previously used.

4.4 Ensemble Results

Table 4 shows the results from our ensembles. The
feature types included in the ensemble are those
whose results are listed individually in Table 1. (So,
for example, we only use the RASP-tagged PoS n-
grams, not the Penn Treebank ones.) The complete
ensemble consists of four classifiers per feature type:
L1-/L2-regularized versions with both binary and
freq. values.

Bagging Our experiments with bagging did not
find any improvements in accuracy, even with larger
numbers of bootstrap samples (50 or more). Bag-
ging is said to be more suitable for unstable clas-
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sifiers which have greater variability in their perfor-
mance and are more susceptible to noise in the train-
ing data (Breiman, 1996). In our experiments with
individual feature types we have found the classi-
fiers to be quite stable in their performance, across
different folds and training set sizes. This is one po-
tential reason why bagging did not yield significant
improvements.

Combiner Methods Of the methods outlined in
§2.3 we found the sum and weighted sum combiners
to be the best performing, but the weighted results
did not improve accuracy in general over their un-
weighted counterparts. Our results are reported us-
ing the unweighted sum combiner. A detailed com-
parison of the results for the combiners has been
omitted here due to time constraints; the differences
across all combination methods was roughly 1-2%.
Any new approach to ensemble combination meth-
ods would consequently want to be radically differ-
ent to expect a notable improvement in performance.

As noted at the start of this section, results here
are for the system trained on training and develop-
ment data. The best result on the test set (83.1%)
is almost 4% higher than our submission result, and
close to the highest result achieved (83.6%).

Binary & Frequency-Based Feature Values Our
results are consistent with those of Brooke and Hirst
(2012), who conclude that there is a preference
for binary feature values instead of frequency-based
ones. Including both types in the ensemble did not
improve results.

However, in other experiments on the TOEFL11
corpus we have also observed that use of frequency
information often leads to significantly better results
when using a linear SVM classifier: in fact, the lin-
ear classifier is better on all frequency feature types,
and also on some of the binary feature types. We
present results in Table 5 comparing the two. An ap-
proach using the linear SVM that provides an asso-
ciated probability score — perhaps through bagging
— allowing it to be combined with the methods de-
scribed in §2.3 could then perhaps boost results. All
these results were from a system using the training
data with 10 fold cross-validation.

Combining Regularisation Approaches Results
show that combining the L1- and L2-regularized
classifiers in the ensemble provided a small in-



Feature L2-norm scaled counts Binary

linear | log. regr. linear | log. regr.
Char unigram 31.60 26.23 25.68 26.36
Char bigram 51.59 41.81 41.20 45.11
Char trigram 65.78 54.97 58.30 61.76
RASP POS bigram 60.38 54.00 50.31 54.56
RASP POS trigram 58.75 53.92 55.93 58.58
Function word unigram 51.38 45.09 46.67 47.13
Function word bigram 58.95 53.22 54.97 58.53
Word unigram 70.33 55.60 69.40 72.00
Word bigram 73.90 54.25 73.65 74.93
Word trigram 63.78 52.46 64.78 64.94

Table 5: Classification results for our individual features.

crease in accuracy. Ensembles with either the L1 or
L2-regularized solver have lower accuracy than the
combined methods (row 2).

4.5 Proficiency-level Based Classification

Table 6 shows our results for training models with
texts of a given proficiency level and the accuracy on
the test set. The numbers show that in general texts
should be classified with a learner trained with texts
of a similar proficiency. They also show that not all
texts in a proficiency level are of uniform quality as
some levels perform better with data from the clos-
est neighbouring levels (e.g. Medium texts perform
best with data from all proficiencies), suggesting
that the three levels form a larger proficiency con-
tinuum where users may fall in the higher or lower
ends of a level. A larger scale with more than three
levels could help address this.

5 Discussion

5.1 Unused Experimental Features

We also experimented with some other feature types
that were not included in the final system.

CCG SuperTag n-grams In order to introduce
additional rich syntactic information into our sys-
tem, we investigated the use CCG SuperTags as fea-
ture for NLI classification. We used the C&C CCG
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Train | Test | Acc. || Train | Test | Acc.
Low Low | 52.2 || All Med | 86.8
Med Low | 72.1 || M+H | Med | 85.3
High | Low | 403 || L+M | Med | 83.8
All Low | 75.2 || Low High | 16.1
L+M | Low | 76.0 || Med High | 68.1
Low Med | 40.7 || High High | 65.7
Med Med | 83.6 || M+ H | High | 74.7
High | Med | 62.1 || All High | 75.2

Table 6: Results for classifying the test set documents
using classifiers trained with a specific proficiency level.
Each level’s best result in bold.

Parser and SuperTagger (Curran et al., 2007) to ex-
tract SuperTag n-grams from the corpus, which were
then used as features to construct classifiers. The
best results were achieved by using n-grams of size
2-4, which achieved classification rates of around
44%. However, adding these features to our ensem-
ble did not improve the overall system accuracy. We
believe that this is because when coupled with the
other syntactic features in the system, the informa-
tion provided by the SuperTags is redundant, and
thus they were excluded from our final ensemble.

Hapax Legomena and Dis Legomena The spe-
cial word categories Hapax Legomena and Dis
legomena refer to words that appear only once and



twice, respectively, in a complete text. In practice,
these features are a subset of our Word Unigram
feature, where Hapax Legomena correspond to un-
igrams with an occurrence count of 1 and Hapax dis
legomena are unigrams with a count of 2.

In our experimental results we found that Ha-
pax Legomena alone provides an accuracy of 61%.
Combining the two features together yields an accu-
racy of 67%. This is an interesting finding as both
of these features alone provide an accuracy close to
the whole set of word unigrams.

5.2 Corpus Representativeness

We conducted a brief analysis of our extracted fea-
tures, looking at the most predictive ones according
to their Information Gain. Although we did not find
any obvious indicators of topic bias, we noted some
other issues of potential concern.

Chinese, Japanese and Korean speakers make ex-
cessive use of phrases such as However, First of all
and Secondly. At first glance, the usage rate of these
phrases seems unnaturally high (more than 50% of
Korean texts had a sentence beginning with How-
ever). This could perhaps be a cohort effect relat-
ing to those individually attempting this particular
TOEFL exam, rather than an L1 effect: it would
be useful to know how much variability there is in
terms of where candidates come from.

It was also noticed that many writers mention the
name of their country in their texts, and this could
potentially create a high correlation between those
words and the language class label, leading perhaps
to an artificial boosting of results. For example, the
words India, Turkey, Japan, Korea and Germany ap-
pear with high frequency in the texts of their corre-
sponding L1 speakers — hundreds of times, in fact,
in contrast to frequencies in the single figures for
speakers of other L1s. These might also be an arte-
fact of the type of text, rather than related to the L1
as such.

5.3 Hindi vs. Telugu

We single out here this language pair because of
the high level of confusion between the two classes.
Looking at the results obtained by other teams, we
observe that this language pair provided the worst
classification accuracy for almost all teams. No
system was able to achieve an accuracy of 80%
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for Hindi (something many achieved for other lan-
guages). In analysing the actual and predicted
classes for all documents classified as Hindi and
Telugu by our system, we find that generally all
of the actual Hindi and Telugu texts (96% and
99%, respectively) are within the set. Our classifier
is clearly having difficulty discriminating between
these two specific classes.

Given this, we posit that the confounding influ-
ence may have more to do with the particular style
of English that is spoken and taught within the
country, rather than the specific L1 itself. Consult-
ing other research about SLA differences in multi-
lingual countries could shed further light on this.

Analysing highly informative features provides
some clues about the influence of a common cul-
ture or national identity: in our classifier, the words
India, Indian and Hindu were highly predictive of
both Hindi and Telugu texts, but no other lan-
guages. In addition, there were terms that were
not geographically- or culturally-specific that were
strongly associated with both Hindi and Telugu:
these included hence, thus, and efc, and a much
higher rate of use of male pronouns. It has been
observed in a number of places (Sanyal, 2007, for
example) that the English spoken across India still
retains characteristics of the English that was spo-
ken during the time of the Raj and the East India
Company that have disappeared from other varities
of English, so that it can sound more formal to other
speakers, or retain traces of an archaic business cor-
respondence style; the features just noted would fit
that pattern. The effect is likely to occur regardless
of the L1.

Looking at individual language pairs in this way
could lead to incremental improvement in the overall
classification accuracy of NLI systems.
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