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Abstract 

In this work, we attempt to detect sentence-

level subjectivity by means of two supervised 

machine learning approaches: a Fuzzy Control 

System and Adaptive Neuro-Fuzzy Inference 

System. Even though these methods are popu-

lar in pattern recognition, they have not been 

thoroughly investigated for subjectivity analy-

sis. We present a novel “Pruned ICF 

Weighting Coefficient,” which improves the 

accuracy for subjectivity detection. Our fea-

ture extraction algorithm calculates a feature 

vector based on the statistical occurrences of 

words in a corpus without any lexical 

knowledge. For this reason, these machine 

learning models can be applied to any lan-

guage; i.e., there is no lexical, grammatical, 

syntactical analysis used in the classification 

process. 

1 Introduction 

There has been a growing interest, in recent years, 

in identifying and extracting subjective infor-

mation from Web documents that contain opinions. 

Opinions are usually subjective expressions that 

describe people's sentiments, appraisals, or feel-

ings. Subjectivity detection seeks to identify 

whether the given text expresses opinions (subjec-

tive) or reports facts (objective) (Lin et al., 2011). 

Automatic subjectivity analysis methods have been 

used in a wide variety of text processing and natu-

ral language  applications. In many natural lan-

guage processing tasks, subjectivity detection has 

been used as a first phase of filtering to generate 

more informative data.  

The goal of our research is to develop learning 

methods to create classifiers that can distinguish 

subjective from objective sentences. In this paper, 

we achieve sentence-level subjectivity classifica-

tion using language independent feature weighting. 

As a test problem, we employed a subjectivity da-

tabase from the "Rotten Tomatoes" movie reviews 

(see http://www.cs.cornell.edu/people/pabo/movie-

review-data). 

We present two supervised machine learning 

approaches in our development of sentence-level 

subjectivity detection: Fuzzy Control System 

(FCS), and Adaptive Neuro-Fuzzy Inference Sys-

tem (ANFIS). Even though these methods are pop-

ular in pattern recognition, they have not been 

thoroughly investigated for subjectivity analysis. 

We present a novel “Pruned ICF Weighting Coef-

ficient,” which improves the accuracy for subjec-

tivity detection. Our feature extraction algorithm 

calculates a feature vector based on statistical oc-

currences of words in the corpus without any lexi-

cal knowledge. For this reason, the machine 

learning models can be applied to any language; 

i.e., there is no lexical, grammatical, syntactical 

analysis used in the classification process.  

2 Related work 

In recent years, several different supervised and 

unsupervised learning algorithms were investigated 

for defining subjective information in text or 

speech.  

Riloff and Wiebe (2003) presented a bootstrap-

ping method to learn subjectivity classifiers from a 

collection of non-annotated texts.  Wiebe and 

Riloff (2005) used a similar method, but they also 

learned objective expressions apart from subjective 

expressions.  

Pang and Lee (2004) proposed a MinCut based 

algorithm to classify each sentence as being sub-

jective or objective. The goal of this research was 

to remove objective sentences from each review to 

improve document-level sentiment classification 

(82.8% improved to 86.4%).   
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Grefenstette et al. (2004) presented a Web min-

ing method for identifying subjective adjectives.  

Wilson et al. (2004) and Kim et al. (2005) pre-

sented methods of classifying the strength of opin-

ion being expressed in individual clauses (or 

sentences). 

Riloff et al. (2006) defined subsumption rela-

tionships among unigrams, n -grams, and lexico-

syntactic patterns. They found that if a feature is 

subsumed by another, the subsumed feature is not 

needed.  The subsumption hierarchy reduces a fea-

ture set and reduced feature sets can improve clas-

sification performance. 

Raaijmakers et al (2008) investigated the use of 

prosodic features, word n -grams, character n -

grams, and phoneme n -grams for subjectivity 

recognition and polarity classification of dialog 

acts in multiparty conversation. They found that 

for subjectivity recognition, a combination of pro-

sodic, word-level, character-level, and phoneme-

level information yields the best performance and 

for polarity classification, the best performance is 

achieved with a combination of words, characters 

and phonemes.   

Murray and Carenini (2009) proposed to learn 

subjective patterns from both labeled and unla-

beled data using n -gram word sequences with 

varying level of lexical instantiation. They showed 

that learning subjective trigrams with varying in-

stantiation levels from both annotated and raw data 

can improve subjectivity detection and polarity 

labeling for meeting speech and email threads. 

Martineau and Finin (2009) presented Delta 

TFIDF, an intuitive general purpose technique, to 

efficiently weight word scores before 

classification. They compared SVM Difference of 

TFIDFs and SVM Term Count Baseline results for 

subjectivity classification. As a result, they showed 

that SVM based on Delta TFIDF gives high 

accuracy and low variance.  

Barbosa and Feng (2010) classified the subjec-

tivity of tweets (postings on Twitter) based on two 

kind of features: meta-information about the words 

on tweets and characteristics of how tweets are 

written.  

Yulan He (2010) proposed subjLDA for sen-

tence-level subjectivity detection by modifying the 

latent Dirichlet allocation (LDA) model through 

adding an additional layer to model sentence-level 

subjectivity labels. 

Benamara et al. (2011) proposed subjectivity 

classification at the segment level for discourse-

based sentiment analysis. They classified each 

segment into four classes, S, OO, O and SN, where 

S segments are segments that contain explicitly 

lexicalized subjective and evaluative expressions, 

OO segments are positive or negative opinion im-

plied in an objective segment, O segments contain 

neither a lexicalized subjective term nor an implied 

opinion, SN segments are subjective, though non-

evaluative, segments that are used to introduce 

opinions.  

Remus (2011) showed that by using readability 

formulae and their combinations as features in 

addition to already well-known subjectivity clues 

leads to significant accuracy improvements in 

sentence-level subjectivity classification. 

Lin et al, (2011) presented a hierarchical Bayes-

ian model based on latent Dirichlet allocation, 

called subjLDA, for sentence-level subjectivity 

detection, which automatically identifies whether a 

given sentence expresses opinion or states facts. 

All the aforementioned work focused on English 

data and most of them used an English subjectivity 

dictionary. Recently, there has been some work on 

subjectivity classification of sentences in Japanese 

(Kanayama et al., 2006), Chinese (Zagibalov et al., 

2008; Zhang et al., 2009), Romanian (Banea et al., 

2008; Mihalcea et al., 2007), Urdu (Mukund and 

Srihari, 2010), Arabic (Abdul-Mageed et al., 2011) 

and others based on different machine learning 

algorithms using general and language specific 

features.  

Mihalcea et al., (2007) and Banea et al., (2008) 

investigated methods to automatically generate 

resources for subjectivity analysis for a new target 

language by leveraging the resources and tools 

available for English. Another approach (Banea et 

al., 2010) used a multilingual space with meta clas-

sifiers to build high precision classifiers for subjec-

tivity classification. 

Recently, there has been some work focused on 

finding features that can be applied to any lan-

guage. For example, Mogadala and Varma (2012) 

presented sentence-level subjectivity classification 

using language independent feature weighting and 

performed experiments on 5 different languages 

including English and a South Asian language 

(Hindi).  
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Rustamov et. al., (2013) applied hybrid Neuro-

Fuzzy and HMMs to document level sentiment 

analysis of movie reviews.  

In the current work, our main goal is to apply 

supervised methods based on language independ-

ent features for classification of subjective and ob-

jective sentences.  

3 Feature Extraction 

Most language independent feature extraction al-

gorithms are based on the presence or occurrence 

statistics within the corpus. We describe such an 

algorithm which is intuitive, computationally effi-

cient, and does not require either additional human 

annotation or lexical knowledge.  

We use a subjectivity dataset 1v.0: 5000 subjec-

tive and 5000 objective processed sentences in 

movie reviews [Pang/Lee ACL 2004].  

As our target does not use lexical knowledge, 

we consider every word as one code word. In our 

algorithm we do not combine verbs in different 

tenses, such as present and past  ("decide" vs "de-

cided") nor nouns as singular or plural ("fact" vs 

"facts"). Instead, we consider them as the different 

code words. 
Below, we describe some of the parameters: 

 N  is the number of classes ( in our problem 
N=2: i.e. subjective and objective classes); 

 M is the number of different words (terms) 
in the corpus; 

 R is the number of observed sequences in 
the training process; 

  r

T

rrr

r
oooO ,...,,

21
   are the sentences in the 

training dataset, where 
r

T  is the length of r-

th sentence, Rr ,...,2,1 ; 

 
ji ,

  describes the association between i-th 

term (word) and the j-th class 

 NjMi ,...,2,1;,...,1  ;  

 
ji

c
,

 is the number of times i-th term oc-

curred in the j-th class; 

 
j

jii
ct

,
 denotes the occurrence times of 

the i-th term in the corpus; 

 frequency of the i -th term in the j -th class 

i

ji

ji
t

c
c

,

,  ; 

We present a new weighting coefficient, which 

affects the accuracy of the system, so that instead 

of the number of documents we take the number of 

classes in the well-known IDF (Inverse-Document 

Frequency) formula. Similar to IDF, we call it 

Pruned ICF (Inverse-Class Frequency) 



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where i  is a term, 
i

dN  is the number of classes 

containing the term i , which qc ji , , where  

N
q





1
. 

The value of    is found empirically with 

4.1  being best for the corpus investigated.  

The membership degree of the terms ( ji, ) for 

appropriate classes can be estimated by experts or 

can be calculated by analytical formulas. Since a 

main goal is to avoid using human annotation or 

lexical knowledge, we calculated the membership 

degree of each term by an analytical formula as 

follows  NjMi ,...,2,1;,...,1  : 

TF:   





N

v

vi

ji

ji

c

c

1

,

,

,
 ;   (1) 

ICFTF  :   









N

v
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jji

ji

ICFc

ICFc

1

,

,

, ;  (2) 

4 Subjectivity detection using Fuzzy Con-

trol System  

We use a statistical approach for estimation of the 

membership function, instead of expert knowledge, 

at the first stage. Then we apply fuzzy operations 

and modify parameters by the back-propagation 

algorithm.  

We now introduce our algorithm ( Rr ,...,2,1 ).  

1. The membership degree of terms ( r

ji ,
 ) of the 

r -th sentence are calculated from formulas (1)-(2).  

2. Maximum membership degree is found with 

respect to the  classes for every term of the r-th 

sentence  
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3. Means of maxima are calculated for all clas-

ses: 
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We use the Center of Gravity Defuzzification 

(CoGD) method for the defuzzification operation.  

Objective and subjective sentences selected ac-

cording to classes are trained by a fuzzy control 

model. The objective function is defined as follows 

(Aida-zade et. al, 2012): 
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 Nyyyy ,...,, 21 ,  Ndr ,...,2,1 desired output. 

The partial derivatives of this function are 

calculated in following form:   
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Function (5) is minimized by the conjugate 

gradient method with the defined optimal values of 
*y .  

Rounding of y  shows the index of the classes 

obtained in the result: 










N

j

j

N

j

jj y

y

1

1

*





.        (6) 

Acceptance strategy (s): 
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where si  is the index of the appropriate class, 

 NI ,...,2,1 . Here  5.0;0
1
  is the main quan-

tity, which influences the reliability of the system. 

It is straightforward to check which feature vec-

tor gives the best results for FCS. Table 1. shows 

average accuracy over 10 fold cross validation of 

FCS based on (1)-(2) features in the  non-restricted 

case. Note that these results depend on the classifi-

cation method these results might be different for 

different classifiers. 

 

Features Accuracy (%) 

 TF 89.87 

ICFTF   91.3 

Table 1. Results of  FCS based on TF and 
ICFTF  features. 

 

We also checked FCS based on Delta TFIDF 

features (Martineau and Finin, 2009). As DeltaIDF 

weighting coefficients of both classes are the same, 

application of DeltaIDF weighting does not change 

the accuracy of the FCS. As we see from Table 1., 

the accuracy of the method increases after applica-

tion of Pruned ICF weighting.  

We show results of subjectivity detection by 

FCS with different values of 1  based on ICFTF   

in Table 2. It can be seen that the rejection per-

centage is 0.01 for 5.0
1
 . In the testing process 

0.01% of the sentences have such words, which 

after pruned ICF weighting, becomes 0 and the 

system rejects such sentences. 
 

 Correct 

(%) 

Rejection 

(%) 

Error 

(%) 
3.0

1
  76.41 20.86 2.73 

4.0
1
  85.11 10.14 4.75 

5.0
1
  91.3 0.01 8.69 

 

Table 2. Average results of 10 folds cross vali-

dation accuracy of FCS based on ICFTF  feature 

with different value of 
1

 . 

5 Subjectivity detection using Adaptive 

Neuro Fuzzy Inference System  

Fig. 1 illustrates the general structure of Adap-

tive Neuro Fuzzy Inference System. In response to 

linguistic statements, the fuzzy interface block 

provides an input vector to a Multilayer Artificial 

Neural Network (MANN) (Fuller, 1995).  

We used statistical estimation of membership 

degree of terms by (2) instead of linguistic state-

ments at the first stage. Then we applied fuzzy op-

erations (3) and (4).  
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Fig. 1. The structure of ANFIS. 

MANN was applied to the output of the fuzzyfi-

cation operation. The input vector of neural net-

work is taken from the output vector of the 

fuzzyfication operation (fig. 2). Outputs of MANN 

are taken as indexes of classes appropriate to the 

sentences. MANN is trained by the back-

propagation algorithm. 

 

 

 
Fig. 2. The structure of MANN in ANFIS. 

 

We set two boundary conditions for the  ac-

ceptance decision: 

1) 2ky , 

2) 3
~  pk yy , 

where y  is the output vector of MANN,  ky and 

py~  are two successive maximum elements of the 

vector y , i.e. 

i
Ni

k yy



1
max , i

Ni
yk




1
maxarg , 

i
Nikki

p yy



1;11

max~ . 

There is shown results of subjectivity detection 

in  movie reviews by ANFIS with different values 

of 2  and 3 in Table 3. 

 

 Correct 

(%) 

Rejection 

(%) 

Error 

(%) 
5.0;8.0

32
  78.66 18.84 2.5 

5.0;5.0
32
  85.77 8.62 5.61 

No restriction 91.66 0.01 8.33 

Table 3. Average results of 10 folds cross valida-

tion accuracy ANFIS based on ICFTF   for sub-

jectivity detection in movie reviews. 

 

The accuracy of the ANFIS (91.66%) is higher 

than that of FCS (91.3%) at the cost of additional 

variables being required in the middle layer of the 

neural network.  
 

6 Conclusion  

We have described two different classification sys-

tem structures, FCS, ANFIS, and applied them to 

sentence-level subjectivity detection in a movie 

review data base. We have specifically shown how 

to train and test these methods  for classification of 

sentences as being either objective or subjective. A 

goal of the research was to formulate methods that 

did not depend on linguistic knowledge and there-

fore would be applicable to any language. An im-

portant component of these  methods is the feature 

extraction process. We focused on analysis of  in-

formative features that improve the accuracy of the 

systems with no language-specific constraints. As 

a result,  a novel  "Pruned ICF Weighting Func-

tion" was devised with a parameter specifically 

estimated for the subjectivity data set. 

When comparing the current system with others, 

it is necessary to emphasize that the use of linguis-

tic knowledge does improve accuracy. Since we do 

not use such  knowledge, our results should only 

be compared with other methods having similar 

constraints, such as those which use features based 

on bags of words that are tested on the same data 

set. Examples include studies by  Pang and Lee 

(2004) and Martineau and Finin (2009). Pang and 

Lee report 92% accuracy on sentence-level subjec-

tivity classification using Naıve Bayes classifiers 

and 90% accuracy using SVMs on the same data 

set. Martineau and Finin (2009) reported 91.26% 

accuracy using SVM Difference of TFIDFs. The 

currently reported results: FCS (91.3%), ANFIS 

(91.7%) are similar. However, our presented meth-

ods have some advantages. Because the function 

(5) is minimized only with respect to 

 
N

yyyy ,...,,
21

  (in the defined problem N=2), 

FCS is the fastest algorithm among supervised ma-

chine learning methods. At the cost of additional 

variables added within the middle layer of the neu-

ral network, ANFIS is able to improve accuracy a 
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small amount. It is anticipated that when IF-THEN 

rules and expert knowledge are inserted into 

ANFIS and FCS, accuracy will improve to a level 

commensurate with human judgment.  
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