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Abstract

Human ratings are an important source for
evaluating computational models that predict
compositionality, but like many data sets of
human semantic judgements, are often fraught
with uncertainty and noise. However, despite
their importance, to our knowledge there has
been no extensive look at the effects of cleans-
ing methods on human rating data. This paper
assesses two standard cleansing approaches on
two sets of compositionality ratings for Ger-
man noun-noun compounds, in their ability
to produce compositionality ratings of higher
consistency, while reducing data quantity. We
find (i) that our ratings are highly robust
against aggressive filtering; (ii) Z-score filter-
ing fails to detect unreliable item ratings; and
(iii) Minimum Subject Agreement is highly
effective at detecting unreliable subjects.

1 Introduction

Compounds have long been a reoccurring focus of
attention within theoretical, cognitive, and compu-
tational linguistics. Recent manifestations of inter-
est in compounds include the Handbook of Com-
pounding (Lieber and Stekauer, 2009) on theoretical
perspectives, and a series of workshops' and spe-
cial journal issues with respect to the computational
perspective (Journal of Computer Speech and Lan-
guage, 2005; Language Resources and Evaluation,
2010; ACM Transactions on Speech and Language
Processing, to appear). Some work has focused
on modeling meaning and compositionality for spe-
cific classes, such as particle verbs (McCarthy et al.,

1 .
www.multiword.sourceforge.net

32

Sabine Schulte im Walde *

Silke Scheible f

Hnstitut fiir Maschinelle Sprachverarbeitung

Universitit Stuttgart

{schulte, scheible}@ims.uni-stuttgart.de

2003; Bannard, 2005; Cook and Stevenson, 2006);
adjective-noun combinations (Baroni and Zampar-
elli, 2010; Boleda et al., 2013); and noun-noun com-
pounds (Reddy et al., 2011b; Reddy et al., 2011a).
Others have aimed at predicting the compositional-
ity of phrases and sentences of arbitrary type and
length, either by focusing on the learning approach
(Socher et al., 2011); by integrating symbolic mod-
els into distributional models (Coecke et al., 2011;
Grefenstette et al., 2013); or by exploring the arith-
metic operations to predict compositionality by the
meaning of the parts (Widdows, 2008; Mitchell and
Lapata, 2010).

An important resource in evaluating composition-
ality has been human compositionality ratings, in
which human subjects are asked to rate the degree to
which a compound is transparent or opaque. Trans-
parent compounds, such as raincoat, have a meaning
which is an obvious combination of its constituents,
e.g., a raincoat is a coat against the rain. Opaque
compounds, such as hot dog, have little or no rela-
tion to one or more of their constituents: a hot dog
need not be hot, nor is it (hopefully) made of dog.
Other words, such as ladybug, are transparent with
respect to just one constituent. As many words do
not fall clearly into one category or the other, sub-
jects are typically asked to rate the compositionality
of words or phrases on a scale, and the mean of sev-
eral judgements is taken as the gold standard.

Like many data sets of human judgements, com-
positionality ratings can be fraught with large quan-
tities of uncertainty and noise. For example, partici-
pants typically agree on items that are clearly trans-
parent or opaque, but will often disagree about the
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gray areas in between. Such uncertainty represents
an inherent part of the semantic task and is the major
reason for using the mean ratings of many subjects.

Other types of noise, however, are undesirable,
and should be eliminated. In particular, we wish
to examine two types of potential noise in our data.
The first type of noise (Type I noise: uncertainty),
comes from when a subject is unfamiliar or un-
certain about particular words, resulting in sporad-
ically poor judgements. The second type of noise
(Type II noise: unreliability), occurs when a sub-
ject is consistently unreliable or uncooperative. This
may happen if the subject misunderstands the task,
or if a subject simply wishes to complete the task
as quickly as possible. Judgements collected via
crowdsourcing are especially prone to this second
kind of noise, when compared to traditional pen-
and-paper experiments, since participants aim to
maximize their hourly wage.?

In this paper, we apply two standard cleans-
ing methods (Ben-Gal, 2005; Maletic and Marcus,
2010), that have been used on similar rating data be-
fore (Reddy et al., 2011b), on two data sets of com-
positionality ratings of German noun-noun com-
pounds. We aim to address two main points. The
first is to assess the cleansing approaches in their
ability to produce compositionality ratings of higher
quality and consistency, while facing a reduction of
data mass in the cleansing process. In particular, we
look at the effects of removing outlier judgements
resulting from uncertainty (Type I noise) and drop-
ping unreliable subjects (Type II noise). The second
issue is to assess the overall reliability of our two
rating data sets: Are they clean enough to be used
as gold standard models in computational linguistics
approaches?

2 Compositionality Ratings

Our focus of interest is on German noun-noun com-
pounds (see Fleischer and Barz (2012) for a detailed
overview), such as Ahornblatt ‘maple leaf’ and
Feuerwerk ‘fireworks’, and Obstkuchen ‘fruit cake’
where both the head and the modifier are nouns.
We rely on a subset of 244 noun-noun compounds

2See Callison-Burch and Dredze (2010) for a collection of
papers on data collected with AMT. While the individual ap-

proaches deal with noise in individual ways, there is no general
approach to clean crowdsourcing data.
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collected by von der Heide and Borgwaldt (2009),
who created a set of 450 concrete, depictable Ger-
man noun compounds according to four composi-
tionality classes (transparent+transparent, transpar-
ent+opaque, opaque-+transparent, opaque+opaque).

We are interested in the degrees of composition-
ality of the German noun-noun compounds, i.e., the
relation between the meaning of the whole com-
pound (e.g., Feuerwerk) and the meaning of its con-
stituents (e.g., Feuer ‘fire’ and Werk ‘opus’). We
work with two data sets of compositionality rat-
ings for the compounds. The first data set, the
individual compositionality ratings, consists of
participants rating the compositionality of a com-
pound with respect to each of the individual con-
stituents. These judgements were collected within
a traditional controlled, pen-and-paper setting. For
each compound-constituent pair, 30 native German
speakers rated the compositionality of the com-
pound with respect to its constituent on a scale
from 1 (opaque/non-compositional) to 7 (transpar-
ent/compositional). The subjects were allowed to
omit ratings for unfamiliar words, but very few did;
of the 14,640 possible ratings judgements, only 111
were left blank. Table 1 gives several examples of
such ratings. We can see that Fliegenpilz ‘toadstool’
is an example of a very opaque (non-compositional)
word with respect to Fliege ‘housefly/bow tie’; it has
little to do with either houseflies or bow ties. On
the other hand Teetasse ‘teacup’ is highly composi-
tional: it is a Tasse ‘cup’ intended for Tee ‘tea’.

The second data set, the whole compositional-
ity ratings consists of participants giving a single
rating for the entire compound. These ratings, pre-
viously unpublished, reflect a very different view
of the same compounds. Rather than rating com-
pounds with respect to their constituents, subjects
were asked to give a single rating for the entire com-
pound using the same 1-7 scale as before. The rat-
ings were collected via Amazon Mechanical Turk
(AMT). The data was controlled for spammers by
removing subjects who failed to identify a number
of fake words. Subjects who rated less than 10 com-
pounds or had a low AMT reputation were also re-
moved. The resulting data represents 150 differ-
ent subjects with roughly 30 ratings per compound.
Most participants rated only a few dozen items. We
can see examples of these ratings in Table 2.



Compound WR.T. H Subject 1 | Subject2 | Subject3 | Subject 4 H Mean ‘ Comb.
Fliegenpilz ‘toadstool’ Fliege ‘housefly/bow tie’ 3 1 1 2 1.75 337
Fliegenpilz ‘toadstool’ Pilz ‘mushroom’ 5 7 7 7 6.50 ’
Sonnenblume ‘sunflower’ | Sonne ‘sun’ 4 3 1 2 2.50 411
Sonnenblume ‘sunflower’ | Blume ‘flower’ 7 7 7 6 6.75 ’
Teetasse ‘teacup’ Tee ‘tea’ 6 6 4 2 4.50 450
Teetasse ‘teacup’ Tasse ‘cup’ 7 6 4 1 4.50 ’

Table 1: Sample compositionality ratings for three compounds with respect to their constituents. We list the mean rat-
ing for only these 4 subjects to facilitate examples. The Combined column is the geometric mean of both constituents.

l Compound

| Subject 1 | Subject2 [ Subject3 | Subject4 [ Mean |

Fliegenpilz ‘toadstool’
Sonnenblume ‘sunflower’ 3
Teetasse ‘teacup’ 7

2 1 2 2.67
3 1 2 2.75
7 7 6 6.75

Table 2: Example whole compositionality ratings for three compounds. Note that Subject 1 chose not to rate Fliegen-
pilz, so the mean is computed using only the three available judgements.

3 Methodology

In order to check on the reliability of composition-
ality judgements in general terms as well as with re-
gard to our two specific collections, we applied two
standard cleansing approaches? to our rating data: Z-
score filtering is a method for filtering Type I noise,
such as random guesses made by individuals when a
word is unfamiliar. Minimum Subject Agreement is
a method for filtering out Type II noise, such as sub-
jects who seem to misunderstand the rating task or
rarely agree with the rest of the population. We then
evaluated the original vs. cleaned data by one intrin-
sic and one extrinsic task. Section 3.1 presents the
two evaluations and the unadulterated, baseline mea-
sures for our experiments. Sections 3.2.1 and 3.2.2
describe the cleansing experiments and results.

3.1 Evaluations and Baselines

For evaluating the cleansing methods, we propose
two metrics, an intrinsic and an extrinsic measure.

3.1.1 Intrinsic Evaluation:
Consistency between Rating Data Sets

The intrinsic evaluation measures the consistency
between our two ratings sets individual and whole.
Assuming that the compositionality ratings for a
compound depend heavily on both constituents, we
expect a strong correlation between the two data
sets. For a compound to be rated transparent as a

3See Ben-Gal (2005) or Maletic and Marcus (2010) for
overviews of standard cleansing approaches.
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whole, it should be transparent with respect to both
of its constituents. Compounds which are highly
transparent with respect to only one of their con-
stituents should be penalized appropriately.

In order to compute a correlation between the
whole ratings (which consist of one average rating
per compound) and the individual ratings (which
consist of two average ratings per compound, one for
each constituent), we need to combine the individual
ratings to arrive at a single value. We use the geo-
metric mean to combine the ratings, which is effec-
tively identical to the multiplicative methods in Wid-
dows (2008), Mitchell and Lapata (2010) and Reddy
etal. (2011b). * For example, using our means listed
in Table 1, we may compute the combined rating for
Sonnenblume as /6.75 * 2.50 ~ 4.11. These com-
bined ratings are computed for all compounds, as
listed in the “Comb.” column of Table 1. We then
compute our consistency measure as the Spearman’s
p rank correlation between these combined individ-
ual ratings with the whole ratings (“Mean” in Table
2). The original, unadulterated data sets have a con-
sistency measure of 0.786, indicating that, despite
the very different collection methodologies, the two
ratings sets largely agree.

3.1.2 Extrinsic Evaluation:
Correlation with Association Norms

The extrinsic evaluation compares the consistency

*We also tried the arithmetic mean, but the multiplicative
method always performs better.



Word

‘ Example Associations

Fliegenpilz ‘toadstool’
Fliege ‘housefly/bow tie’
Pilz ‘mushroom’

giftig ‘poisonous’, rot ‘red’, Wald ‘forest’
nervig ‘annoying’, summen ‘to buzz’, Insekt ‘insect’
Wald “forest’, giftig ‘poisonous’, sammeln ‘to gather’

Sonnenblume ‘sunflower’
Sonne ‘sun’
Blume ‘flower’

gelb ‘yellow’, Sommer ‘summer’, Kerne ‘seeds’
Sommer ‘summer’, warm ‘warm’, hell ‘bright’
Wiese ‘meadow’, Duft ‘smell’, Rose ‘rose’

Table 3: Example association norms for two German compounds and their constituents.

between our two rating sets individual and whole
with evidence from a large collection of associa-
tion norms. Association norms have a long tradition
in psycholinguistic research to investigate semantic
memory, making use of the implicit notion that asso-
ciates reflect meaning components of words (Deese,
1965; Miller, 1969; Clark, 1971; Nelson et al., 1998;
Nelson et al., 2000; McNamara, 2005; de Deyne and
Storms, 2008). They are collected by presenting a
stimulus word to a subject and collecting the first
words that come to mind.

We rely on association norms that were collected
for our compounds and constituents via both a large
scale web experiment and Amazon Mechanical Turk
(Schulte im Walde et al., 2012) (unpublished). The
resulting combined data set contains 85,049/34,560
stimulus-association tokens/types for the compound
and constituent stimuli. Table 3 gives examples of
associations from the data set for some stimuli.

The guiding intuition behind comparing our rat-
ing data sets with association norms is that a com-
pound which is compositional with respect to a con-
stituent should have similar associations as its con-
stituent (Schulte im Walde et al., 2012).

To measure the correlation of the rating data with
the association norms, we first compute the Jac-
card similarity that measures the overlap in two sets,
ranging from O (perfectly dissimilar) to 1 (perfectly
similar). The Jaccard is defined for two sets, A and
B, as
_]AnB|
- |AuB|

For example, we can use Table 3 to compute the
Jaccard similarity between Sonnenblume and Sonne:

J(A, B)

|{Sommer}|
|{gelb, Sommer, Kerne, warm, hell}|

= 0.20.

After computing the Jaccard similarity between
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all compounds and constituents across the associ-
ation norms, we correlate this association overlap
with the average individual ratings (i.e., column
“Mean” in Table 1) using Spearman’s p. This cor-
relation “Assoc Norm (Indiv)” reaches p = 0.638
for our original data. We also compute a combined
Jaccard similarity using the geometric mean, e.g.

V/J(Fliegenpilz, Fliege) x J(Fliegenpilz, Pilz),

and calculate Spearman’s p with the whole ratings
(i.e., column “Mean” in Table 2). This correlation
“Assoc Norm (Whole)” reaches p = 0.469 for our
original data.

3.2 Data Cleansing

We applied the two standard cleansing approaches,
Z-score Filtering and Minimum Subject Agreement,
to our rating data, and evaluated the results.

3.2.1 Z-score Filtering

Z-score filtering is a method to filter out Type I
noise, such as random guesses made by individu-
als when a word is unfamiliar. It makes the sim-
ple assumption that each item’s ratings should be
roughly normally distributed around the “true” rat-
ing of the item, and throws out all outliers which
are more than z* standard deviations from the item’s
mean. With regard to our compositionality ratings,
for each item ¢ (i.e., a compound in the whole data,
or a compound—constituent pair in the individual
data) we compute the mean z; and standard devia-
tion o; of the ratings for the given item. We then
remove all values from x; where

|1’i — i‘l’ > O'iz*,

with the parameter z* indicating the maximum al-
lowed Z-score of the item’s ratings. For example, if
a particular item has ratings of z; = (1,2,1,6,1,1),
then the mean z; = 2 and the standard deviation
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Figure 1: Intrinsic and Extrinsic evaluation of Z-score fil-
tering. We see that Z-score filtering makes a minimal dif-
ference when filtering is strict, and is slightly detrimental
with more aggressive filtering.

o; = 2. If we use a z* of 1, then we would filter rat-
ings outside of the range [2 — 1% 2,2+ 1 % 2]. Thus,
the resulting new x; would be (1,2,1,1,1) and the
new mean z; would be 1.2.

Filtering Outliers Figure 1a shows the results for
the intrinsic evaluation of Z-score filtering. The
solid black line represents the consistency of the fil-
tered individual ratings with the unadulterated whole
ratings. The dotted orange line shows the consis-
tency of the filtered whole ratings with the unadul-
terated individual ratings, and the dashed purple line
shows the consistency between the data sets when
both are filtered. In comparison, the consistency be-
tween the unadulterated data sets is provided by the
horizontal gray line. We see that Z-score filtering
overall has a minimal effect on the consistency of
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Data Retention with Z-score Filtering
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Figure 2: The data retention rate of Z-score filtering. Data
retention drops rapidly with aggressive filtering.

the two data sets. It provides very small improve-
ments with high Z-scores, but is slightly detrimental
at more aggressive levels.

Figure 1b shows the effects of Z-score filtering
with our extrinsic evaluation of correlation with as-
sociation norms. At all levels of filtering, we see that
correlation with association norms remains mostly
independent of the level of filtering.

An important factor to consider when evaluating
these results is the amount of data dropped at each
of the filtering levels. Figure 2 shows the data re-
tention rate for the different data sets and levels. As
expected, more aggressive filtering results in a sub-
stantially lower data retention rate. Comparing this
curve to the consistency ratings gives a clear picture:
the decrease in consistency is probably mostly due to
the decrease in available data but not due to filtering
outliers. As such, we believe that Z-score filtering
does not substantially improve data quality, but may
be safely applied with a conservative maximum al-
lowed Z-score.

Filtering Artificial Noise Z-score filtering has lit-
tle impact on the consistency of the data, but we
would like to determine whether this is due because
our data being very clean, so the filtering does not
apply, or Z-score filtering not being able to detect the
Type I noise. To test these two possibilities, we arti-
ficially introduce noise into our data sets: we create
100 variations of the original ratings matrices, where
with 0.25 probability, each entry in the matrix was
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replaced with a uniform random integer between 1
and 7. That is, roughly 1 in 4 of the entries in the
original matrix were replaced with random, uniform
noise. We then apply Z-score filtering on each of
these noisy matrices and report their average con-
sistency with its companion, unadulterated matrix.
That is, we add noise to the individual ratings ma-
trix, and then compare its consistency with the orig-
inal whole ratings matrix, and vice versa. Thus if we
are able to detect and remove the artificial noise, we
should see higher consistencies in the filtered matrix
over the noisy matrix.

Figure 3 shows the results of adding noise to the
original data sets. The lines indicate the averages
over all 100 matrix variations, while the shaded ar-
eas represent the 95% confidence intervals. Surpris-
ingly, even though 1/4 entries in the matrix were re-
placed with random values, the decrease in consis-
tency is relatively low in both settings. This likely
indicates our data already has high variance. Fur-
thermore, in both settings, we do not see any in-
crease in consistency from Z-score filtering. We
must conclude that Z-score appears ineffective at re-
moving Type I noise in compositionality ratings.

We also tried introducing artificial noise in a sec-
ond way, where judgements were not replaced with a
uniformly random value, but a fixed offset of either
+3 or -3, e.g., 4’s became either 1’s or 7’s. Again,
the values were changed with probability of 0.25.
The results were remarkably similar, so we do not
include them here.

3.2.2 Minimum Subject Agreement

Minimum Subject Agreement is a method for fil-
tering out subjects who seem to misunderstand the
rating task or rarely agree with the rest of the pop-
ulation. For each subject in our data, we compute
the average ratings for each item excluding the sub-
ject. The subject’s rank agreement with the exclu-
sive averages is computed using Spearman’s p. We
can then remove subjects whose rank agreement is
below a threshold, or remove the n subjects with the
lowest rank agreement.

Filtering Unreliable Subjects Figure 4 shows the
effect of subject filtering on our intrinsic and extrin-
sic evaluations. We can see that mandating mini-
mum subject agreement has a strong, negative im-
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Figure 5: Ability of subject filtering at detecting highly
deviant subjects. We see that artificial noise strongly
hurts the quality of the individual judgements, while hav-
ing a much weaker effect on the whole judgements. The
process is effective at identifying deviants in both set-
tings.

pact on the individual ratings after a certain thresh-
old is reached, but virtually no effect on the whole
ratings. When we consider the corresponding data
retention curve in Figure 6, the result is not surpris-
ing: the dip in performance for the individual ratings
comes with a data retention rate of roughly 25%. In
this way, it’s actually surprising that it does so well:
with only 25% of the original data, consistency is
only 5 points lower. The effects are more dramatic
in the extrinsic evaluation.

On the other hand, subject filtering has almost no
effect on the whole ratings. This is not surprising, as
most subjects have only rated at most a few dozen
items, so removing subjects corresponds to a smaller
reduction in data, as seen in Figure 6. Furthermore,
the subjects with the highest deviations tend to be
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Figure 6: Data retention rates for various levels of mini-
mum subject agreement. The whole ratings remain rela-
tively untouched by mandating high levels of agreement,
but individual ratings are aggressively filtered after a sin-
gle breaking point.

the subjects who rated the fewest items since their
agreement is more sensitive to small changes. As
such, the subjects removed tend to be the subjects
with the least influence on the data set.

Removing Artificial Subject-level Noise To test
the hypothesis that minimum subject agreement fil-
tering is effective at removing Type II noise, we in-
troduce artificial noise at the subject level. For these
experiments, we create 100 variations of our ma-
trices where n subjects have all of their ratings re-
placed with random, uniform ratings. We then apply
subject-level filtering where we remove the n sub-
jects who agree least with the overall averages.

Figure 5a shows the ability of detecting Type II
noise in the individual ratings. The results are un-
surprising, but encouraging. We see that increasing
the number of randomized subjects rapidly lowers
the consistency with the whole ratings. However, the
cleaned whole ratings matrix maintains a fairly high
consistency, indicating that we are doing a nearly
perfect job at identifying the noisy individuals.

Figure 5b shows the ability of detecting Type II
noise in the whole ratings. Again, we see that the
cleaned noisy ratings have a higher consistency than
the noisy ratings, indicating the efficacy of subject
agreement filtering at detecting unreliable subjects.
The effect is less pronounced in the whole ratings
than the individual ratings due to the lower propor-
tion of subjects being randomized.
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Identification of Spammers Removing subjects
with the least agreement lends itself to another sort
of evaluation: predicting subjects rejected during
data collection. As discussed in Section 2, subjects
who failed to identify the fake words or had an over-
all low reputability were filtered from the data before
any analysis. To test the quality of minimum sub-
ject agreement, we reconstructed the data set where
these previously rejected users were included, rather
than removed. Subjects who rated fewer than 10
items were still excluded.

The resulting data set had a total of 242 users: 150
(62.0%) which were included in the original data,
and 92 (38.0%) which were originally rejected. Af-
ter constructing the modified data set, we sorted the
subjects by their agreement. Of the 92 subjects with
the lowest agreement, 75 of them were rejected in
the original data set (81.5%). Of the 150 subjects
with the highest agreement, only 17 of them were
rejected from the original data set (11.3%). The typ-
ical precision-recall tradeoff obviously applies.

Curiously, we note that the minimum subject
agreement at this 92nd subject was 0.457. Compar-
ing with the curves for the individual ratings in Fig-
ures 4a and 6, we see this is the point where intrinsic
consistency and data retention both begin dropping
rapidly. While this may be a happy coincidence, it
does seem to suggest that the ideal minimum sub-
ject agreement is roughly where the data retention
rate starts rapidly turning.

Regardless, we can definitely say that minimum
subject agreement is a highly effective way of root-
ing out spammers and unreliable participants.

4 Conclusion

In this paper, we have performed a thorough anal-
ysis of two sets of compositionality ratings to Ger-
man noun-noun compounds, and assessed their reli-
ability from several perspectives. We conclude that
asking for ratings of compositionality of compound
words is reasonable and that such judgements are
notably reliable and robust. Even when composi-
tionality ratings are collected in two very different
settings (laboratory vs. AMT) and with different dy-
namics, the produced ratings are highly consistent.
This is shown by the high initial correlation of the
two sets of compositionality ratings. We believe this



provides strong evidence that human judgements of
compositionality, or at least these particular data
sets, are reasonable as gold standards for other com-
putational linguistic tasks.

We also find that such ratings can be highly ro-
bust against large amounts of data loss, as in the
case of aggressive Z-score and minimum subject
agreement filtering: despite data retention rates of
10-70%, consistency between our data sets never
dropped more than 6 points. In addition, we find that
the correlation between compositionality ratings and
association norms is substantial, but generally much
lower and less sensitive than internal consistency.

We generally find Type I noise to be very diffi-
cult to detect, and Z-score filtering is mostly inef-
fective at eliminating unreliable item ratings. This
is confirmed by both our natural and artificial exper-
iments. At the same time, Z-score filtering seems
fairly harmless at conservative levels, and probably
can be safely applied in moderation with discretion.

On the other hand, we have confirmed that mini-
mum subject agreement is highly effective at filter-
ing out incompetent and unreliable subjects, as evi-
denced by both our artificial and spammer detection
experiments. We conclude that, as we have defined
it, Type Il noise is easily detected, and removing this
noise produces much higher quality data. We recom-
mend using subject agreement as a first-pass identi-
fier of likely unreliable subjects in need of manual
review.

We would also like to explore other types of
compounds, such as adjective-noun compounds (e.g.
Grofleltern ‘grandparents’), and compounds with
more than two constituents (e.g. Bleistiftspitzma-
chine ‘automatic pencil sharpener’).

Acknowledgments

We thank the SemRel group, Alexander Fraser, and
the reviewers for helpful comments and feedback.
The authors acknowledge the Texas Advanced Com-
puting Center (TACC) for providing grid resources
that have contributed to these results.’

‘http://www.tacc.utexas.edu

40

References

Collin Bannard. 2005. Learning about the Meaning of
Verb—Particle Constructions from Corpora. Computer
Speech and Language, 19:467-478.

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of the 2010 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1183-1193, Cambridge, MA, October.

Irad Ben-Gal. 2005. Outlier detection. In O. Maimon
and L. Rockach, editors, Data Mining and Knowledge
Discobery Handbook: A Complete Guide for Practi-
tioners and Researchers. Kluwer Academic Publish-
ers.

Gemma Boleda, Marco Baroni, Nghia The Pham, and
Louise McNally. 2013. On adjective-noun compo-
sition in distributional semantics. In Proceedings of
the 10th International Conference on Computational
Semantics, Potsdam, Germany.

Chris Callison-Burch and Mark Dredze, editors. 2010.
Proceedings of the NAACL/HLT Workshop on Creat-
ing Speech and Language Data with Amazon’s Me-
chanical Turk, Los Angeles, California.

Herbert H. Clark. 1971. Word Associations and Lin-
guistic Theory. In John Lyons, editor, New Horizon in
Linguistics, chapter 15, pages 271-286. Penguin.

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark.
2011. Mathematical foundations for a compositional
distributional model of meaning. Linguistic Analysis,
36(1-4):345-384.

Paul Cook and Suzanne Stevenson. 2006. Classifying
Particle Semantics in English Verb-Particle Construc-
tions. In Proceedings of the ACL/COLING Workshop
on Multiword Expressions: Identifying and Exploiting
Underlying Properties, Sydney, Australia.

Simon de Deyne and Gert Storms. 2008. Word associ-
ations: Norms for 1,424 dutch words in a continuous
task. Behavior Research Methods, 40(1):198-205.

James Deese. 1965. The Structure of Associations in
Language and Thought. The John Hopkins Press, Bal-
timore, MD.

Wolfgang Fleischer and Irmhild Barz. 2012. Wortbil-
dung der deutschen Gegenwartssprache. de Gruyter.

Edward Grefenstette, G. Dinu, Y. Zhang, Meernoosh
Sadrzadeh, and Marco Baroni. 2013. Multi-step re-
gression learning for compositional distributional se-
mantics. In Proceedings of the 10th International
Conference on Computational Semantics, Potsdam,
Germany.

Rochelle Lieber and Pavol Stekauer, editors. 2009. The
Oxford Handbook of Compounding. Oxford Univer-
sity Press.



Jonathan I. Maletic and Adrian Marcus. 2010. Data
cleansing: A prelude to knowledge discovery. In
O. Maimon and L. Rokach, editors, Data Mining
and Knowledge Discovery Handbook. Springer Sci-
ence and Business Media, 2 edition.

Diana McCarthy, Bill Keller, and John Carroll. 2003.
Detecting a Continuum of Compositionality in Phrasal
Verbs. In Proceedings of the ACL-SIGLEX Workshop
on Multiword Expressions: Analysis, Acquisition and
Treatment, Sapporo, Japan.

Timothy P. McNamara. 2005. Semantic Priming: Per-
spectives from Memory and Word Recognition. Psy-
chology Press, New York.

George Miller. 1969. The Organization of Lexical Mem-
ory: Are Word Associations sufficient? In George A.
Talland and Nancy C. Waugh, editors, The Pathol-
ogy of Memory, pages 223-237. Academic Press, New
York.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in Distributional Models of Semantics. Cognitive Sci-
ence, 34:1388-1429.

Douglas L. Nelson, Cathy L. McEvoy, and Thomas A.

Schreiber. 1998. The University of South Florida
Word Association, Rhyme, and Word Fragment
Norms.

Douglas L. Nelson, Cathy L. McEvoy, and Simon Den-
nis. 2000. What is Free Association and What does it
Measure? Memory and Cognition, 28:887-899.

Siva Reddy, Ioannis P. Klapaftis, Diana McCarthy, and
Suresh Manandhar. 2011a. Dynamic and Static Pro-
totype Vectors for Semantic Composition. In Pro-
ceedings of the 5th International Joint Conference on
Natural Language Processing, pages 705-713, Chiang
Mai, Thailand.

Siva Reddy, Diana McCarthy, and Suresh Manandhar.
2011b. An Empirical Study on Compositionality in
Compound Nouns. In Proceedings of the 5th Interna-
tional Joint Conference on Natural Language Process-
ing, pages 210-218, Chiang Mai, Thailand.

Sabine Schulte im Walde, Susanne Borgwaldt, and
Ronny Jauch. 2012. Association Norms of German
Noun Compounds. In Proceedings of the 8th Interna-
tional Conference on Language Resources and Evalu-
ation, pages 632—639, Istanbul, Turkey.

Richard Socher, Eric H. Huang, Jeffrey Pennington, An-
drew Y. Ng, and Christopher D. Manning. 2011. Dy-
namic Pooling and Unfolding Recursive Autoencoders
for Paraphrase Detection. In Advances in Neural In-
formation Processing Systems 24.

Claudia von der Heide and Susanne Borgwaldt. 2009.
Assoziationen zu Unter-, Basis- und Oberbegriffen.
Eine explorative Studie. In Proceedings of the 9th
Norddeutsches Linguistisches Kolloquium, pages 51—
74.

41

Dominic Widdows. 2008. Semantic Vector Products:
Some Initial Investigations. In Proceedings of the 2nd
Conference on Quantum Interaction, Oxford, UK.



