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Abstract

A metaphor is a figure of speech that refers
to one concept in terms of another, as in “He
is such a sweet person”. Metaphors are ubiq-
uitous and they present NLP with a range
of challenges for WSD, IE, etc. Identifying
metaphors is thus an important step in lan-
guage understanding. However, since almost
any word can serve as a metaphor, they are
impossible to list. To identify metaphorical
use, we assume that it results in unusual se-
mantic patterns between the metaphor and its
dependencies. To identify these cases, we use
SVMs with tree-kernels on a balanced corpus
of 3872 instances, created by bootstrapping
from available metaphor lists.1 We outper-
form two baselines, a sequential and a vector-
based approach, and achieve an F1-score of
0.75.

1 Introduction

A metaphor is a figure of speech used to transfer
qualities of one concept to another, as in “He is
such a sweet person”. Here, the qualities of “sweet”
(the source) are transferred to a person (the target).
Traditionally, linguistics has modeled metaphors as
a mapping from one domain to another (Lakoff and
Johnson, 1980).

Metaphors are ubiquitous in normal language and
present NLP with a range of challenges. First, due to
their very nature, they cannot be interpreted at face
value, with consequences for WSD, IE, etc. Second,
metaphors are very productive constructions, and
almost any word can be used metaphorically (e.g.,

1Available at http://www.edvisees.cs.cmu.edu/
metaphordata.tar.gz

“This is the Donald Trump of sandwiches.”). This
property makes them impossible to pre-define or
list. Third, repeated use of a metaphor eventu-
ally solidifies it into a fixed expression with the
metaphorical meaning now accepted as just another
sense, no longer recognized as metaphorical at all.
This gradient makes it hard to determine a boundary
between literal and metaphorical use of some ex-
pressions. Identifying metaphors is thus a difficult
but important step in language understanding.2

Since many words can be productively used as
new metaphors, approaches that try to identify
them based on lexical features alone are bound to
be unsuccessful. Some approaches have therefore
suggested considering distributional properties
and “abstractness” of the phrase (Turney et al.,
2011). This nicely captures the contextual nature
of metaphors, but their ubiquity makes it impossible
to find truly “clean” data to learn the separate
distributions of metaphorical and literal use for
each word. Other approaches have used pre-defined
mappings from a source to a target domain, as in
“X is like Y”, e.g., “emotions are like temperature”
(Mason, 2004). These approaches tend to do well
on the defined mappings, but they do not generalize
to new, creative metaphors. It is doubtful that it
is feasible to list all possible mappings, so these
approaches remain brittle.

In contrast, we do not assume any predefined
mappings. We hypothesize instead that if we inter-
preted every word literally, metaphors will manifest
themselves as unusual semantic compositions.
Since these compositions most frequently occur

2Shutova (2010) distinguishes between metaphor identifica-
tion (which she calls recognition) and interpretation. We are
solely concerned with the former.
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in certain syntactic relations, they are usually con-
sidered semantic preference violations; e.g., in the
metaphorical “You will have to eat your words”, the
food-related verb heads a noun of communication.
In contrast, with the literal sense of “eat” in “You
will have to eat your peas”, it heads a food noun.
This intuition is the basis of the approaches in
(Iverson and Helmreich, 1991; Krishnakumaran
and Zhu, 2007; Baumer et al., 2010; Turney et
al., 2011).3 We generalize this intuition beyond
preference selections of verbs and relational nouns.

Given enough labeled examples of a word, we
expect to find distinctive differences in the compo-
sitional behavior of its literal and metaphorical uses
in certain preferred syntactic relationships. If we
can learn to detect such differences/anomalies, we
can reliably identify metaphors. Since we expect
these patterns in levels other than the lexical level,
the approach expands well to creative metaphors.

The observation that the anomaly tends to occur
between syntactically related words makes depen-
dency tree kernels a natural fit for the problem. Tree
kernels have been successfully applied to a wide
range of NLP tasks that involve (syntactic) relations
(Culotta and Sorensen, 2004; Moschitti, 2006; Qian
et al., 2008; Giuliano et al., 2009; Mirroshandel et
al., 2011).

Our contributions in this paper are:

• we annotate and release a corpus of 3872 in-
stances for supervised metaphor classification

• we are the first to use tree kernels for metaphor
identification

• our approach achieves an F1-score of 0.75, the
best score of of all systems tested.

2 Data

2.1 Annotation

We downloaded a list of 329 metaphor examples
from the web4. For each expression, we extracted
sentences from the Brown corpus that contained
the seed (see Figure 1 for an example). To decide

3A similar assumption can be used to detect the literal/non-
literal uses of idioms (Fazly et al., 2009).

4http://www.metaphorlist.com and http://
www.macmillandictionaryblog.com

whether a particular instance is used metaphorically,
we set up an annotation task on Amazon Mechanical
Turk (AMT).

Annotators were asked to decide whether a
highlighted expression in a sentence was used
metaphorically or not (see Figure 2 for a screen-
shot). They were prompted to think about whether
the expression was used in its original meaning.5

In some cases, it is not clear whether an expression
is used metaphorically or not (usually in short
sentences such as “That’s sweet”), so annotators
could state that it was not possible to decide. We
paid $0.09 for each set of 10 instances.

Each instance was annotated by 7 annotators.
Instances where the annotators agreed that it was
impossible to tell whether it is a metaphor or not
were discarded. Inter-annotator agreement was
0.57, indicating a difficult task. In order to get the
label for each instance, we weighted the annotator’s
answers using MACE (Hovy et al., 2013), an
implementation of an unsupervised item-response
model. This weighted voting produces more reliable
estimates than simple majority voting, since it is
capable of sorting out unreliable annotators. The
final corpus consisted of 3872 instances, 1749 of
them labeled as metaphors.

Figure 2: Screenshot of the annotation interface on Ama-
zon’s Mechanical Turk

We divided the data into training, dev, and test
sets, using a 80-10-10 split. All results reported
here were obtained on the test set. Tuning and
development was only carried out on the dev set.

2.2 Vector Representation of Words

The same word may occur in a literal and a
metaphorical usage. Lexical information alone is

5While this is somewhat imprecise and not always easy to
decide, it proved to be a viable strategy for untrained annotators.
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A bright idea.

“ Peter is the bright , sympathetic guy when you ’re doing a deal , ” says one agent . yes
Below he could see the bright torches lighting the riverbank . no
Her bright eyes were twinkling . yes
Washed , they came out surprisingly clear and bright . no

Figure 1: Examples of a metaphor seed, the matching Brown sentences, and their annotations

thus probably not very helpful. However, we would
like to capture semantic aspects of the word and
represent it in an expressive way. We use the exist-
ing vector representation SENNA (Collobert et al.,
2011) which is derived from contextual similarity.
In it, semantically similar words are represented
by similar vectors, without us having to define
similarity or looking at the word itself. In initial
tests, these vectors performed better than binary
vectors straightforwardly derived from features of
the word in context.

2.3 Constructing Trees

a) b) c)like

I people

the sweet in

Boston

NNS

DT JJ IN

n.group

O adj.all O

NNP n.location

VB

PRP

v.emotion

O

Figure 3: Graphic demonstration of our approach. a) de-
pendency tree over words, with node of interest labeled.
b) as POS representation. c) as supersense representation

The intuition behind our approach is that
metaphorical use differs from literal use in certain
syntactic relations. For example, the only difference
between the two sentences “I like the sweet people
in Boston” and “I like the sweet pies in Boston” is
the head of “sweet”. Our assumption is that—given
enough examples—certain patterns emerge (e.g.,
that “sweet” in combination with food nouns is
literal, but is metaphorical if governed by a noun
denoting people).

We assume that these patterns occur on different
levels, and mainly between syntactically related
words. We thus need a data representation to
capture these patterns. We borrow its structure from

dependency trees, and the different levels from
various annotations. We parse the input sentence
with the FANSE parser (Tratz and Hovy, 2011)6. It
provides the dependency structure, POS tags, and
other information.

To construct the different tree representations,
we replace each node in the tree with its word,
lemma, POS tag, dependency label, or supersense
(the WordNet lexicographer name of the word’s
first sense (Fellbaum, 1998)), and mark the word
in question with a special node. See Figure 3 for
a graphical representation. These trees are used in
addition to the vectors.

This approach is similar to the ones described in
(Moschitti et al., 2006; Qian et al., 2008; Hovy et
al., 2012).

2.4 Classification Models
A tree kernel is simply a similarity matrix over tree
instances. It computes the similarity between two
trees T1, T2 based on the number of shared subtrees.

We want to make use of the information en-
coded in the different tree representations during
classification, i.e., a forest of tree kernels. We thus
combine the contributions of the individual tree
representation kernels via addition. We use kernels
over the lemma, POS tag, and supersense tree
representations, the combination which performed
best on the dev set in terms of accuracy.

We use the SVMlight TK implementation by
Moschitti (2006).7 We left most parameters set
to default values, but tuned the weight of the
contribution of the trees and the cost factor on the
dev set. We set the multiplicative constant for the
trees to 2.0, and the cost factor for errors on positive
examples to 1.7.

6http://www.isi.edu/publications/
licensed-sw/fanseparser/index.html

7http://disi.unitn.it/moschitti/
Tree-Kernel.htm
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If we assume any word can be used metaphori-
cally, we ultimately want to label every word in a
sentence, so we also evaluate a sequential model, in
this case a CRF. We use CRFsuite (Okazaki, 2007)8

to implement the CRF, and run it with averaged
perceptron. While the CRF produces labels for
every word, we only evaluate on the words that
were annotated in our corpus (to make it maximally
comparable), and use the same representations
(lemma, POS and SST) of the word and its parent
as features as we did for the SVM. Training method
and feature selection were again tuned on the dev
set to maximize accuracy.

3 Experiments

system acc P R F1
BLall 0.49 0.49 1.0 0.66
BLmost freq. class 0.70 0.66 0.65 0.65
CRF 0.69∗ 0.74∗ 0.50 0.59
SVMvector−only 0.70∗ 0.63∗ 0.80 0.71
SVM+tree 0.75∗ 0.70∗ 0.80 0.75∗

Table 1: Accuracy, precision, recall, and F1 for various
systems on the held-out test set. Values significantly bet-
ter than baseline at p < .02 are marked ∗ (two-tailed t-
test).

We compare the performance of two baselines,
the CRF model, vanilla SVM, and SVM with tree
kernels and report accuracy, precision, recall, and
F1 (Table 1).

The first baseline (BLall) labels every instance
as metaphor. Its accuracy and precision reflect the
metaphor ratio in the data, and it naturally achieves
perfect recall. This is a rather indiscriminate
approach and not very viable in practice, so we
also apply a more realistic baseline, labeling each
word with the class it received most often in the
training data (BLmost freq. class ). This is essentially
like assuming that every word has a default class.
Accuracy and precision for this baseline are much
better, although recall naturally suffers.

The CRF improves in terms of accuracy and
precision, but lacks the high recall the baseline
has, resulting in a lower F1-score. It does yield

8http://www.chokkan.org/software/
crfsuite/

the highest precision of all models, though. So
while not capturing every metaphor in the data, it is
usually correct if it does label a word as metaphor.

SVMlight allows us to evaluate the performance
of a classification using only the vector representa-
tion (SVMvector−only). This model achieves better
accuracy and recall than the CRF, but is less precise.
Accuracy is the same as for the most-frequent-
class baseline, indicating that the vector-based
SVM learns to associate a class with each lexical
item. Once we add the tree kernels to the vector
(SVM+tree), we see considerable gains in accuracy
and precision. This confirms our hypothesis that
metaphors are not only a lexical phenomenon, but
also a product of the context a word is used in. The
contextual interplay with their dependencies creates
patterns that can be exploited with tree kernels.
We note that the SVM with tree kernels is the only
system whose F1 significantly improves over the
baseline (at p < .02).

Testing with one tree representation at a time,
we found the various representations differ in terms
of informativeness. Lemma, POS, and supersense
performed better than lexemes or dependency labels
(when evaluated on the dev set) and were thus used
in the reported system. Combining more than one
representation in the same tree to form compound
leaves (e.g. lemma+POS, such as “man-NN”)
performed worse in all combinations tested. We
omit further details here, since the combinatorics of
these tests are large and yield only little insight.

Overall, our results are similar to comparable
methods on balanced corpora, and we encourage
the evaluation of other methods on our data set.

4 Related Work

There is plenty of research into metaphors. While
many are mainly interested in their general proper-
ties (Shutova, 2010; Nayak, 2011), we focus on the
ones that evaluate their results empirically.

Gedigian et al. (2006) use a similar approach
to identify metaphors, but focus on frames. Their
corpus is with about 900 instances relatively small.
They improve over the majority baseline, but only
report accuracy. Both their result and the baseline
are in the 90s, which might be due to the high
number of metaphors (about 90%). We use a larger,
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more balanced data set. Since accuracy can be
uninformative in cases of unbalanced data sets, we
also report precision, recall, and F1.

Krishnakumaran and Zhu (2007) also use se-
mantic relations between syntactic dependencies
as basis for their classification. They do not aim to
distinguish literal and metaphorical use, but try to
differentiate various types of metaphors. They use a
corpus of about 1700 sentences containing different
metaphors, and report a precision of 0.70, recall of
0.61 (F1 = 0.65), and accuracy of 0.58.

Birke and Sarkar (2006) and Birke and Sarkar
(2007) present unsupervised and active learning
approaches to classifying metaphorical and literal
expressions, reporting F1 scores of 0.54 and 0.65,
outperforming baseline approaches. Unfortunately,
as they note themselves, their data set is “not large
enough to [...] support learning using a supervised
learning method” (Birke and Sarkar, 2007, 22),
which prevents a direct comparison.

Similarly to our corpus construction, (Shutova et
al., 2010) use bootstrapping from a small seed set.
They use an unsupervised clustering approach to
identify metaphors and report a precision of 0.79,
beating the baseline system by a wide margin. Due
to the focus on corpus construction, they cannot
provide recall or F1. Their approach considers only
pairs of a single verbs and nouns, while we allow
for any syntactic combination.

Tree kernels have been applied to a wide va-
riety of NLP tasks (Culotta and Sorensen, 2004;
Moschitti et al., 2006; Qian et al., 2008; Hovy et
al., 2012). They are specifically adept in capturing
long-range syntactic relationships. In our case, we
use them to detect anomalies in syntactic relations.

5 Conclusion

Under the hypothesis that the metaphorical use of a
word creates unusual patterns with its dependencies,
we presented the first tree-kernel based approach
to metaphor identification. Syntactic dependencies
allow us to capture those patterns at different
levels of representations and identify metaphorical
use more reliably than non-kernel methods. We
outperform two baselines, a sequential model, and
purely vector-based SVM approaches, and reach an
F1 of 0.75. Our corpus is available for download

at http://www.edvisees.cs.cmu.edu/
metaphordata.tar.gz and we encourage the
research community to evaluate other methods on it.
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