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Abstract

Selecting a set of nonterminals for the syn-
chronous CFGs underlying the hierarchical
phrase-based models is usually done on the
basis of a monolingual resource (like a syntac-
tic parser). However, a standard bilingual re-
source like word alignments is itself rich with
reordering patterns that, if clustered some-
how, might provide labels of different (pos-
sibly complementary) nature to monolingual
labels. In this paper we explore a first ver-
sion of this idea based on a hierarchical de-
composition of word alignments into recursive
tree representations. We identify five clus-
ters of alignment patterns in which the chil-
dren of a node in a decomposition tree are
found and employ these five as nonterminal la-
bels for the Hiero productions. Although this
is our first non-optimized instantiation of the
idea, our experiments show competitive per-
formance with the Hiero baseline, exemplify-
ing certain merits of this novel approach.

1 Introduction

The Hiero model (Chiang, 2007; Chiang, 2005)
formulates phrase-based translation in terms of a
synchronous context-free grammar (SCFG) limited
to the inversion transduction grammar (ITG) (Wu,
1997) family. While the original Hiero approach
works with a single nonterminal label (X) (besides
the start nonterminal S ), more recent work is dedi-
cated to devising methods for extracting more elab-
orate labels for the phrase-pairs and their abstrac-
tions into SCFG productions, e.g., (Zollmann and
Venugopal, 2006; Li et al., 2012; Almaghout et al.,
2011). All labeling approaches exploit monolin-
gual parsers of some kind, e.g., syntactic, seman-

tic or sense-oriented. The rationale behind mono-
lingual labeling is often to make the probability dis-
tributions over alternative synchronous derivations
of the Hiero model more sensitive to linguistically
justified monolingual phrase context. For example,
syntactic target-language labels in many approaches
are aimed at improved target language modeling
(fluency, cf. Hassan et al. (2007); Zollmann and
Venugopal (2006)), whereas source-language labels
provide suitable context for reordering (see Mylon-
akis and Sima’an (2011)). It is usually believed
that the monolingual labels tend to stand for clus-
ters of phrase pairs that are expected to be inter-
substitutable, either syntactically or semantically
(see Marton et al. (2012) for an illuminating discus-
sion).

While we believe that monolingual labeling
strategies are sound, in this paper we explore the
complementary idea that the nonterminal labels
could also signify bilingual properties of the phrase
pair, particularly its characteristic word alignment
patterns. Intuitively, an SCFG with nonterminal la-
bels standing for alignment patterns should put more
preference on synchronous derivations that mimic
the word alignment patterns found in the training
corpus, and thus, possibly allow for better reorder-
ing. It is important to stress the fact that these word
alignment patterns are complementary to the mono-
lingual linguistic patterns and it is conceivable that
the two can be combined effectively, but this remains
beyond the scope of this article.

The question addressed in this paper is how to se-
lect word alignment patterns and cluster them into
bilingual nonterminal labels? In this paper we ex-
plore a first instantiation of this idea starting out
from the following simplifying assumptions:
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• The labels come from the word alignments
only,
• The labels are coarse-grained, pre-defined clus-

ters and not optimized for performance,
• The labels extend the binary set of ITG oper-

ators (monotone and inverted) into five such
labels in order to cover non-binarizable align-
ment patterns.

Our labels are based on our own tree decomposi-
tions of word alignments (Sima’an and Maillette de
Buy Wenniger, 2011), akin to Normalized Decom-
position Trees (NDTs) (Zhang et al., 2008). In this
first attempt we explore a set of five nonterminal la-
bels that characterize alignment patterns found di-
rectly under nodes in the NDT projected for every
word alignment in the parallel corpus during train-
ing. There is a range of work that exploits the mono-
tone and inverted orientations of binary ITG within
hierarchical phrase-based models, either as feature
functions of lexicalized Hiero productions (Chiang,
2007; Zollmann and Venugopal, 2006), or as labels
on non-lexicalized ITG productions, e.g., (Mylon-
akis and Sima’an, 2011). As far as we are aware,
this is the first attempt at exploring a larger set of
such word alignment derived labels in hierarchical
SMT. Therefore, we expect that there are many vari-
ants that could improve substantially on our strong
set of assumptions.

2 Hierarchical SMT models

Hierarchical SMT usually works with weighted in-
stantiations of Synchronous Context-Free Gram-
mars (SCFGs) (Aho and Ullman, 1969). SCFGs
are defined over a finite set of nonterminals (start
included), a finite set of terminals and a finite set
of synchronous productions. A synchronous pro-
duction in an SCFG consists of two context-free
productions (source and target) containing the same
number of nonterminals on the right-hand side, with
a bijective (1-to-1 and onto) function between the
source and target nonterminals. Like the standard
Hiero model (Chiang, 2007), we constrain our work
to SCFGs which involve at most two nonterminals
in every lexicalized production.

Given an SCFG G, a source sentence s is trans-
lated into a target sentence t by synchronous deriva-
tions d, each is a finite sequence of well-formed

substitutions of synchronous productions from G,
see (Chiang, 2006). Standardly, for complexity rea-
sons, most models used make the assumption that
the probability P(t | s) can be optimized through as
single best derivation as follows:

arg max
t

P(t | s) = arg max
t

∑
d∈G

P(t,d | s) (1)

≈ arg max
d∈G

P(t,d | s) (2)

This approximation can be notoriously problematic
for labelled Hiero models because the labels tend
to lead to many more derivations than in the orig-
inal model, thereby aggravating the effects of this
assumption. This problem is relevant for our work
and approaches to deal with it are Minimum Bayes-
Risk decoding (Kumar and Byrne, 2004; Tromble et
al., 2008), Variational Decoding (Li et al., 2009) and
soft labeling (Venugopal et al., 2009; Marton et al.,
2012; Chiang, 2010).

Given a derivation d, most existing phrase-
based models approximate the derivation probabil-
ity through a linear interpolation of a finite set of
feature functions (Φ(d)) of the derivation d, mostly
working with local feature functions φi of individ-
ual productions, the target side yield string t of d
(target language model features) and other heuristic
features discussed in the experimental section:

arg max
d∈G

P(t,d | s) ≈ arg max
d∈G

|Φ(d)|∑
i=1

λi × φi (3)

Where λi is the weight of feature φi optimized over
a held-out parallel corpus by some direct error-
minimization procedure like MERT (Och, 2003).

3 Baseline: Hiero Grammars (single label)

Hiero Grammars (Chiang, 2005; Chiang, 2007) are
a particular form of SCFGs that generalize phrase-
based translation models to hierarchical phrase-
based Translation models. They allow only up to
two (pairs of) nonterminals on the right-hand-side of
rules. Hierarchical rules are formed from fully lex-
icalized base rules (i.e. phrase pairs) by replacing a
sub-span of the phrase pair that corresponds itself to
a valid phrase pair with variable X called “gap”. Two
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gaps may be maximally introduced in this way1, la-
beled as X1 and X2 respectively for distinction. The
types of permissible Hiero rules are:

X → 〈α, γ〉 (4a)

X → 〈α X1 β, δ X1 ζ〉 (4b)

X → 〈α X1 β X2 γ , δ X1 ζ X2 η 〉 (4c)

X → 〈α X1 β X2 γ , δ X2 ζ X1 η 〉 (4d)

Here α, β, γ, δ, ζ, η are terminal sequences, pos-
sibly empty. Equation 4a corresponds to a normal
phrase pair, 4b to a rule with one gap and 4c and 4d
to the monotone- and inverting rules respectively.

An important extra constraint used in the original
Hiero model is that rules must have at least one pair
of aligned words, so that translation decisions are al-
ways based on some lexical evidence. Furthermore
the sum of terminals and nonterminals on the source
side may not be greater than five, and nonterminals
are not allowed to be adjacent on the source side.

4 Alignment Labeled Grammars

Labeling the Hiero grammar productions makes
rules with gaps more restricted about what broad
categories of rules are allowed to substitute for the
gaps. In the best case this prevents overgeneraliza-
tion, and makes the translation distributions more
accurate. In the worst case, however, it can also lead
to too restrictive rules, as well as sparse translation
distributions. Despite these inherent risks, a number
of approaches based on syntactically inspired labels
has succeeded to improve the state of the art by
using monolingual labels, e.g., (Zollmann and
Venugopal, 2006; Zollmann, 2011; Almaghout et
al., 2011; Chiang, 2010; Li et al., 2012).

Unlabeled Hiero derivations can be seen as recur-
sive compositions of phrase pairs. A single transla-
tion may be generated by different derivations (see
equation 1), each standing for a choice of com-
position rules over a choice of a segmentation of
the source-target sentence pair into a bag of phrase
pairs. However, a synchronous derivation also in-
duces an alignment between the different segments

1The motivation for this restriction to two gaps is mainly a
practical computational one, as it can be shown that translation
complexity grows exponentially with the number of gaps.

that it composes together. Our goal here is to la-
bel the Hiero rules in order to exploit aspects of the
alignment that a synchronous derivation induces.

We exploit the idea that phrase pairs can be ef-
ficiently grouped into maximally decomposed trees
(normalized decomposition trees – NDTs) (Zhang
et al., 2008). In an NDT every phrase pair is re-
cursively decomposed at every level into the mini-
mum number of its phrase constituents, so that the
resulting structure is maximal in that it contains the
largest number of nodes. In Figure 1 left we show
an example alignment and in Figure 1 right its as-
sociated NDT. The NDT shows pairs of source and
target spans of (sub-) phrase pairs, governed at dif-
ferent levels of the tree by their parent node. In
our example the root node splits into three phrase
pairs, but these three phrase pairs together do not
manage to cover the entire phrase pair of the par-
ent because of the discontinuous translation struc-
ture 〈owe, sind ... schuldig〉. Consequently, a par-
tially lexicalized structure with three children corre-
sponding to phrase pairs and lexical items covering
the words left by these phrase pairs is required.

During grammar extraction we determine an
Alignment Label for every left-hand-side and gap of
every rule we extract. This is done by looking at the
NDT that decomposes their corresponding phrase
pairs, and determining the complexity of the rela-
tion with their direct children in this tree. Complex-
ity cases are ordered by preference, where the more
simple label corresponding to the choice of maximal
decomposition is preferred. We distinguish the fol-
lowing five cases, ordered by increasing complexity:

1. Monotonic: If the alignment can be split into
two monotonically ordered parts.

2. Inverted: If the alignment can be split into two
inverted parts.

3. Permutation: If the alignment can be factored
as a permutation of more than 3 parts.2

4. Complex: If the alignment cannot be factored
as a permutation of parts, but the phrase does
contain at least one smaller phrase pair (i.e., it
is composite).

5. Atomic: If the alignment does not allow the ex-
istence of smaller (child) phrase pairs.

2Permutations of just 3 parts never occur in a NDT, as they
can always be further decomposed as a sequence of two binary
nodes.
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1
we

2
owe

3
this

4
to

5
our

6
citizens

das
1

sind
2

wir
3

unsern
4

burgern
5

schuldig
6

([1, 6], [1, 6])

([5, 6], [4, 5])

([6, 6], [5, 5])([5, 5], [4, 4])

([3, 3], [1, 1])([1, 1], [3, 3])

Figure 1: Example of complex word alignment, taken from Europarl data English-German (left) and its associated
Normalized Decomposition Tree (Zhang et al., 2008) (right).

We show examples of each of these cases in Figure
2. Furthermore, in Figure 3 we show an example
of an alignment labeled Hiero rule based on one of
these alignment examples.

Our kind of labels has a completely different fla-
vor from monolingual labels in that they cannot be
seen as identifying linguistically meaningful clus-
ters of phrase pairs. These labels are mere latent
bilingual clusters and the translation model must
marginalize over them (equation 1) or use Minimum
Bayes-Risk decoding.

4.1 Features : Relations over labels
In this section we describe the features we use in
our experiments. To be unambiguous we first need
to introduce some terminology. Let r be a transla-
tion rule. We use p̂ to denote probabilities estimated
using simple relative frequency estimation from the
word aligned sentence pairs of the training corpus.
Then src(r) is the source side of the rule, includ-
ing the source side of the left-hand-side label. Simi-
larly tgt(r) is the target side of the rule, including the
target side of the left-hand-side label. Furthermore
un(src(r)) is the source side without any nontermi-
nal labels, and analogous for un(tgt(r)).

4.1.1 Basic Features
We use the following phrase probability features:
• p̂(tgt(r)|src(r)): Phrase probability target side

given source side
• p̂(src(r)|tgt(r)): Phrase probability source side

given target side
We reinforce those by the following phrase prob-

ability smoothing features:
• p̂(tgt(r)|un(src(r)))
• p̂(un(src(r))|tgt(r))
• p̂(un(tgt(r))|src(r))
• p̂(src(r)|un(tgt(r)))
• p̂(un(tgt(r))|un(src(r)))
• p̂(un(src(r))|un(tgt(r)))
We also add the following features:

• p̂w(tgt(r)|src(r)), p̂w(src(r)|tgt(r)): Lexical
weights based on terminal symbols as for
phrase-based and hierarchical phrase-based
MT.
• p̂(r|lhs(r)) : Generative probability of a rule

given its left-hand-side label
We use the following set of basic binary features,

with 1 values by default, and a value exp(1) if the
corresponding condition holds:
• ϕGlue(r): exp(1) if rule is a glue rule
• ϕlex(r): exp(1) if rule has only terminals on

right-hand side
• ϕabs(r): exp(1) if rule has only nonterminals on

right-hand side
• ϕst w tt(r): exp(1) if rule has terminals on the

source side but not on the target side
• ϕtt w st(r): exp(1) if rule has terminals on the

target side but not on the source side
• ϕmono(r): exp(1) if rule has no inverted pair of

nonterminals
Furthermore we use the :
• ϕra(r): Phrase penalty, exp(1) for all rules.
• exp(ϕwp(r)): Word penalty, exponent of the

number of terminals on the target side
• ϕrare(r): exp( 1

#(
∑

r′∈C δrr′ )
) : Rarity penalty, with

#(
∑

r′∈C δrr′) being the count of rule r in the cor-
pus.

4.1.2 Binary Reordering Features
Besides the basic features we want to use extra
sets of binary features that are specially designed
to directly learn the desirability of certain broad
classes of reordering patterns, beyond the way this
is already implicitly learned for particular lexical-
ized rules by the introduction of reordering labels.3

These features can be seen as generalizations of the
most simple feature that penalizes/rewards mono-

3We did some initial experiments with such features in
Joshua, but haven’t managed yet to get them working in Moses
with MBR. Since these experiments are inconclusive without
MBR we leave them out here.
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this is an important matter

das ist ein wichtige angelegenheit

1

1

2

2

Monotone

we all agree on this

das sehen wir alle

1

1

2

2

Inversion

i want to stress two points

auf zwei punkte möchte ich hinweisen

1

1

2

2

3

3

4

4

Permutation

we owe this to our citizens

das sind wir unsern burgern schuldig

1

1

2

2

3

3

Complex

it would be possible

kann mann

1

1

Atomic

Figure 2: Different types of Alignment Labels

tone order ϕmono(r) from our basic feature set. The
new features we want to introduce “fire” for a spe-
cific combination of reordering labels on the left
hand side and one or both gaps, plus optionally the
information whether the rule itself invert its gaps and
whether or not it is abstract.

5 Experiments

We evaluate our method on one language pair using
German as source and English as target. The data is
derived from parliament proceedings sourced from
the Europarl corpus (Koehn, 2005), with WMT-07
development and test data. We used a maximum
sentence length of 40 for filtering. We employ ei-
ther 200K or (approximately) 1000K sentence pairs
for training, 1K for development and 2K for test-
ing (single reference per source sentence). Both the
baseline and our method decode with a 3-gram lan-
guage model smoothed with modified Knesser-Ney
discounting (Chen and Goodman, 1998), trained on
the target side of the full original training set (ap-
proximately 1000K sentences).

We compare against state-of-the-art hierarchi-
cal translation (Chiang, 2005) baselines, based on
the Joshua (Ganitkevitch et al., 2012) and Moses
(Hoang et al., 2007) translation systems with default
decoding settings. We use our own grammar extrac-

we owe this to our citizens

das sind wir unsern burgern schuldig

X Complex

X Atomic1

X Atomic1

X Monotone2

X Monotone2

X Complex

Figure 3: Example of a labeled Hiero rule
X Complex→ 〈we owe X Atomic1 to X Monotone2 ,
X Atomic1 sind wir X Monotone2 schuldig 〉
extracted from the Complex example in Figure 2 by re-
placing the phrase pairs 〈this, das〉 and 〈our citizens , un-
sern burgern〉 with (labeled) variables.

tor for the generation of all grammars, including the
baseline Hiero grammars. This enables us to use the
same features (as far as applicable given the gram-
mar formalism) and assure true comparability of the
grammars under comparison.

5.1 Training and Decoding Details
In this section we discuss the choices and settings
we used in our experiments. Our initial experiments

4We later discovered we needed to add the flag “–return-
best-dev” in Moses to actually get the weights from the best
development run, our initial experiments had not used this. This
explains the somewhat unfortunate drop in performance in our
Analysis Experiments.
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Decoding
Type

System
Name

200K

Lattice
MBR

Hiero 26.44
Hiero-RL 26.72

Viterbi
Hiero 26.23
Hiero-RL-PPL 26.16

Table 1: Initial Results. Lowercase BLEU results for
German-English trained on 200K sentence pairs.4

Top rows display results for our experiments using Moses
(Hoang et al., 2007) with Lattice Minimum Bayes-Risk
Decoding5 (Tromble et al., 2008) in combination with
Batch Mira (Cherry and Foster, 2012) for tuning. Below
are results for experiments with Joshua (Ganitkevitch et
al., 2012) using Viterbi decoding (i.e. no MBR) and PRO
(Hopkins and May, 2011) for tuning.

were done on Joshua (Ganitkevitch et al., 2012),
using the Viterbi best derivation. The second set
of experiments was done on Moses (Hoang et al.,
2007) using Lattice Minimum Bayes-Risk Decod-
ing5 (Tromble et al., 2008) to sum over derivations.

5.1.1 General Settings

To train our system we use the following settings.
We use the standard Hiero grammar extraction
constraints (Chiang, 2007) but for our reordering
labeled grammars we use them with some modifi-
cations. In particular, while for basic Hiero only
phrase pairs with source spans up to 10 are allowed,
and abstract rules are forbidden, we allow extraction
of fully abstract rules, without length constraints.
Furthermore we allow their application without
length constraints during decoding. Following
common practice, we use simple relative frequency
estimation to estimate the phrase probabilities,
lexical probabilities and generative rule probability
respectively.6

5After submission we were told by Moses support that in
fact neither normal Minimum Bayes-Risk (MBR) nor Lattice
MBR are operational in Moses Chart.

6Personal correspondence with Andreas Zollmann further
reinforced the authors appreciation of the importance of this
feature introduced in (Zollmann and Venugopal, 2006; Zoll-
mann, 2011). Strangely enough this feature seems to be un-
available in the standard Moses (Hoang et al., 2007) and Joshua
(Ganitkevitch et al., 2012) grammar extractors, that also imple-
ment SAMT grammar extraction

5.1.2 Specific choices and settings Joshua
Viterbi experiments

Based on experiments reported in (Mylonakis and
Sima’an, 2011; Mylonakis, 2012) we opted to not
label the (fully lexicalized) phrase pairs, but instead
label them with a generic PhrasePair label and use
a set of switch rules from all other labels to the
PhrasePair label to enable transition between Hiero
rules and phrase pairs.

We train our systems using PRO (Hopkins and
May, 2011) implemented in Joshua by Ganitkevitch
et al. (2012). We use the standard tuning, where all
features are treated as dense features.We allow up to
30 tuning iterations. We further follow the PRO set-
tings introduced in (Ganitkevitch et al., 2012) but
use 0.5 for the coefficient Ψ that interpolates the
weights learned at the current with those from the
previous iteration. We use the final learned weights
for decoding with the log-linear model and report
Lowercase BLEU scores for the tuned test set.

5.1.3 Specific choices and settings Moses
Lattice MBR experiments

As mentioned before we use Moses (Hoang et
al., 2007) for our second experiment, in combina-
tion with Lattice Minimum Bayes-Risk Decoding5

(Tromble et al., 2008). Furthermore we use Batch
Mira (Cherry and Foster, 2012) for tuning with max-
imum 10 tuning iterations of the 200K training set,
and 30 for the 1000K training set.7

For our Moses experiments we mainly worked
with a uniform labeling policy, labeling phrase pairs
in the same way with alignment labels as normal
rules. This is motivated by the fact that since we are
using Minimum Bayes-Risk decoding, the risks of
sparsity from labeling are much reduced. And label-
ing everything does have the advantage that reorder-

7We are mostly interested in the relative performance of our
system in comparison to the baseline for the same settings. Nev-
ertheless, it might be that the labeled systems, which have more
smoothing features, are relatively suffering more from too lit-
tle tuning iterations than the baseline which does not have these
extra features and thus may be easier to tune. This was one of
the reasons to increase the number of tuning iterations from 10
to 30 in our later experiments on 1000K. Usage of Minimum
Bayes-Risk decoding or not is crucial as we have explained be-
fore in section 1. The main reason we opted for Batch Mira over
PRO is that it is more commonly used in Moses systems, and in
any case at least superior to MERT (Och, 2003) in most cases.
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ing information can be fully propagated in deriva-
tions starting from the lowest (phrase) level. We also
ran experiments with the generic phrase pair label-
ing, since there were reasons to believe this could
decrease sparsity and potentially lead to better re-
sults.8

5.2 Initial Results
We report Lowercase BLEU scores for experi-
ments with and without Lattice Minimum Bayes-
Risk (MBR) decoding (Tromble et al., 2008). Ta-
ble 1 bottom shows the results of our first experi-
ments with Joshua, using the Viterbi derivation and
no MBR decoding to sum over derivations. We
display scores for the Hiero baseline (Hiero) and
the (partially) alignment labeled system (Hiero-AL-
PPL) which uses alignment labels for Hiero rules
and PhrasePair to label all phrase pairs. Scores are
around 26.25 BLEU for both systems, with only
marginal differences. In summary our labeled sys-
tems are at best comparable to the Hiero baseline.

Table 1 top shows the results of our second ex-
periments with Moses and Lattice MBR5. Here
our (fully) alignment labeled system (Hiero-AL)
achieves a score of 26.72 BLEU, in comparison to
26.44 BLEU for the Hiero baseline (Hiero). A small
improvement of 0.28 BLEU point.

5.3 Advanced experiments
We now report Lowercase BLEU scores for more
detailed analysis experiments with and without Lat-
tice Minimum Bayes-Risk5 (MBR) decoding, where
we varied other training and decoding parameters in
the Moses environment. Particularly, in this set of
experiments we choose the best tuning parameter
settings over 30 Batch Mira iterations (as opposed
to the weights returned by default – used in the pre-
vious experiments). We also explore varieties in tun-
ing with a decoder that works with Viterbi/MBR,
and final testing with Viterbi/MBR.

In Table 2, the top rows show the results of our ex-
periments using MBR decoding. We display scores

8We discovered that the Moses chart decoder does not allow
fully abstract unary rules in the current implementation, which
makes direct usage of unary (switch) rules not possible. Switch
rules and other unaries can still be emulated though, by adapt-
ing the grammar, using multiple copies of rules with different
labels. This blows up the grammar a bit, but at least works in
practice.

Decoding
Type

System
Name

200K 1000K

Lattice
MBR

Hiero 27.19 28.39
Hiero-AL 26.61 28.32
Hiero-AL-PPL 26.89 28.41

Viterbi
Hiero 26.80 28.57
Hiero-AL 28.36

Table 2: Analysis Results. Lowercase BLEU results for
German-English trained on 200K and 1000K sentence
pairs using Moses (Hoang et al., 2007) in combination
with Batch Mira (Cherry and Foster, 2012) for tuning.
Top rows display results for our experiments with Lattice
Minimum Bayes-Risk Decoding5 (Tromble et al., 2008).
Below are results for experiments using Viterbi decoding
(i.e. no MBR) for tuning. Results on 200K were run with
10 tuning iterations, results on 1000K with 30 tuning it-
erations.

for the Hiero baseline (Hiero) and the fully/partially
alignment labeled systems Hiero-AL and Hiero-AL-
PPL. In the preceding set of experiments MBR de-
coding clearly showed improved performance over
Viterbi, particularly for our labelled system.

On the small training set of 200K we observe
that the Hiero baseline achieves 27.19 BLEU and
thus beats the labeled systems Hiero-AL with 26.61
BLEU and 26.89 BLEU by a good margin. On the
bigger dataset of 1000K and with more tuning iter-
ations (3), all systems perform better. When using
Lattice MBR Hiero achieving 28.39 BLEU, Hiero-
AL 28.32 BLEU and finally Hiero-AL-PPL achieves
28.41. These are insignificant differences in perfor-
mance between the labelled and unlabeled systems.

Table 1 bottom also shows the results of our
second set of experiments with Viterbi decoding.
Here, the baseline Hiero system for 200K training
set achieves a score of 26.80 BLEU on the small
training set. We also conducted another set of
experiments on the larger training set of 1000K, this
time with Viterbi decoding. The Hiero baseline with
Viterbi scores 28.57 BLEU while Hiero-AL scores
28.36 BLEU under the same conditions.

It is puzzling that Hiero Viterbi (for 1000k) per-
forms better than the same system with MBR decod-
ing systems. But after submission we were told by
Moses support that neither normal MBR nor Lattice
MBR are operational in Moses Chart. This means
that in fact the effect of MBR on our labels remains
still undecided, and more work is still needed in this
direction. The small decrease in performance for the
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labelled system relative to Hiero (in Viterbi) is possi-
bly the result of the labelled system being more brit-
tle and harder to tune than the Hiero system. This
hypothesis needs further exploration.

While a whole set of experimental questions re-
mains open, we think that based on this preliminary
but nevertheless considerable set of experiments, it
seems that our labels do not always improve perfor-
mance compared with the Hiero baseline. It is possi-
ble that these labels, under a more advanced imple-
mentation via soft constraints (as opposed to hard la-
beling), could provide the empirical evidence to our
theoretical choices. A further concern regarding the
labels is that our current choice (5 labels) is heuristic
and not optimized for the training data. It remains to
be seen in the future if proper learning of these labels
as latent variables optimized for the training data or
the use of soft constraints can shed more light on the
use of alignment labels in hierarchical SMT.

5.4 Analysis

While we did not have time to do a deep compara-
tive analysis of the properties of the grammars, a few
things can be said based on the results. First of all
we have seen that alignment labels do not always im-
prove over the Hiero baseline. In earlier experiments
we observed some improvement when the labelled
grammar was used in combination with Minimum
Bayes-Risk Decoding but not without it. In later ex-
periments with different tuning settings (Mira), the
improvements evaporated and in fact, the Viterbi Hi-
ero baseline turned out, surprisingly, the best of all
systems.

Our use of MBR is theoretically justified by the
importance of aggregating over the derivations of the
output translations when labeling Hiero variables:
statistically speaking, if the labels split the occur-
rences of the phrase pairs, they will lead to multiple
derivations per Hiero derivation with fractions of the
scores. This is in line with earlier work on the ef-
fect of spurious ambiguity, e.g. Variational Decod-
ing (Li et al., 2009). Yet, in the case of our model,
there is also a conceptual explanation for the need to
aggregate over different derivations of the same sen-
tence pair. The decomposition of a word alignment
into hierarchical decomposition trees has a interest-
ing property: the simpler (less reordering) a word
alignment, the more (binary) decomposition trees –

and in our model derivations – it will have. Hence,
aggregating over the derivations is a way to gather
evidence for the complexity of alignment patterns
that our model can fit in between a given source-
target sentence pair. However, in the current exper-
imental setting, where final tuning with Mira is cru-
cial, and where the use of MBR within Moses is still
not standard, we cannot reap full benefit of our the-
oretical analysis concerning the fit of MBR for our
models’ alignment labels.

6 Conclusion

We presented a novel method for labeling Hiero
variables with nonterminals derived from the hierar-
chical patterns found in recursive decompositions of
word alignments into tree representations. Our ex-
periments based on a first instantiation of this idea
with a fixed set of labels, not optimized to the train-
ing data, show promising performance. Our early
experiments suggested that these labels have merit,
whereas later experiments with more varied training
and decoder settings showed these results to be un-
stable.

Empirical results aside, our approach opens up a
whole new line of research to improve the state of
the art of hierarchical SMT by learning these la-
tent alignment labels directly from standard word
alignments without special use of syntactic or other
parsers. The fact that such labels are in principle
complementary with monolingual information is an
exciting perspective which we might explore in fu-
ture work.
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