
Human Evaluation of Conceptual Route Graphs for 

Interpreting Spoken Route Descriptions 
 

Raveesh Meena, Gabriel Skantze and Joakim Gustafson 

Department of Speech, Music and Hearing, KTH, Stockholm, Sweden 

raveesh@csc.kth.se, {gabriel, jocke}@speech.kth.se 

 

Abstract. We present a human evaluation of the usefulness of conceptual route 

graphs (CRGs) when it comes to route following using spoken route descrip-

tions. We describe a method for data-driven semantic interpretation of route de-

scriptions into CRGs. The comparable performances of human participants in 

sketching a route using the manually transcribed CRGs and the CRGs produced 

on speech recognized route descriptions indicate the robustness of our method 

in preserving the vital conceptual information required for route following de-

spite speech recognition errors. 

1 Introduction 

It is desirable to endow urban robots with capabilities for engaging in spoken dia-

logue with passersby to seek route directions for autonomous navigation in unknown 

environments. Understanding spoken route descriptions mandates a robot’s dialogue 

system to have a spoken language understanding (SLU) component that (i) is robust 

in handling automatic speech recognition (ASR) errors, (ii) learns generalization to 

deal with unseen concepts in free speech, and (iii) preserve the highly structured rela-

tions among various spatial and linguistic concepts present in route descriptions. 

A SLU component in a dialogue system takes an ASR hypothesis as input and out-

puts a semantic representation that can be used by the dialogue manager to decide the 

next course of actions. A common way of representing navigational knowledge is the 

route graph. While varying level of details could be specified in a route graph (e.g. 

metric route graph), they are not representative of how humans structure information 

in route descriptions. Thus, a conceptual route graph (CRG) [1], is needed that can be 

used to represent human route descriptions semantically. In [2], we have presented a 

novel approach for data-driven semantic interpretation of manually transcribed route 

descriptions into CRGs. More recently, in [3] we applied this approach for semantic 

interpretation of spoken route descriptions. The results indicate that our approach is 

robust in handling ASR errors. The question as to whether the generated CRGs could 

actually be used by an agent in following the described route and arrive at the intend-

ed destination was left as future work.  

In this paper, we evaluate the usefulness of the automatically extracted CRGs by 

asking human participants to sketch the described route on a map. Such an objective 

evaluation offers an alternative approach to evaluate our method: comparable human 

performances using the manually transcribed CRGs and the CRGs produced from 

speech recognized results would confirm the robustness of our method in preserving 
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vital conceptual information for route following, despite speech recognition errors. In 

addition, a detailed analysis of human performances would help us (i) identify areas 

for further improvement in our method and the model, and also (ii) assess the useful-

ness of CRGs as a semantic representation for freely spoken route descriptions. 

2 Previous work 

It has been established in the literature that route descriptions contain a lot of re-

dundant information whereas only a limited set of details are actually necessary for 

route following. These include descriptions about: the landmarks on the route, the 

spatial relations, the controllers that ensure traversal along the intended route, and the 

actions for changing orientation. Both data-driven and grammar based parsing ap-

proaches for semantic interpretation of route descriptions have been presented and 

evaluated for route following through human participants and/or robots in real and/or 

virtual environments [4-8]. Most of these works have focused on interpreting manual-

ly transcribed or human written route descriptions. Understanding verbal route de-

scriptions has not received much attention. In [4] an ASR system has been used for 

recognizing verbal route descriptions, but the recognized text was translated to primi-

tive routines using a translation scheme. In the following section, we briefly describe 

our data-driven approach for semantic interpretation of spoken route descriptions into 

CRGs, which have been shown to be useful in robot navigation [5]. 

2.1 A chunking parser for semantic interpretation 

Our approach in [2] is a novel application of Abney’s chunking parser [9], in 

which we apply the Chunker and the Attacher stages to automatically extract CRGs 

from route descriptions. A CRG is similar to a route graph in that nodes represent 

places where a change in direction takes place and edges connect these places. A 

route graph (or a route) may be divided into route segments, where each segment 

consists of an edge and an ending node where an action to change direction takes 

place. Conceptually, a segment consists of (i) controllers – a set of descriptions that 

guide the traversal along the edge, e.g. “go straight down that road”, (ii) routers – a 

set of place descriptors that helps to identify the ending node, e.g. “turn left at the 

post-office”, and (iii) action – the action to take at the ending node in order to change 

direction. At least one of these three components is required in a route segment.  

Fig. 1 illustrates an example CRG in which the nodes represent the semantic 

concepts and the edges their attributes. The concepts, their attributes and argument 

types are defined in the type hierarchy of the domain model using the specification in 

the JINDIGO dialogue framework [10].  

To automatically extract CRGs, we first apply the Chunker stage of the Chunk-

ing parser for finding base concepts in a given sequence of words. Another chunk 

learner, namely the Segmenter, is then applied to automatically learn route segments 

in a sequence of base concepts. The Attacher takes a route segment as input and per-

forms two tasks for each base concept present in it: First, it may assign a more specif-



ic concept class (like POSTOFFICE). To allow it to generalize, the Attacher also as-

signs all ancestor classes, based on the domain model (i.e. BUILDING for 

POSTOFFICE). The second task for the Attacher is to assign attributes, e.g. direction, 

and assign them values, e.g. →, which means that the interpreter should look for a 

matching argument in the right context. Table 1 illustrates these three stages for pars-

ing the route description “turn left at eh the post-office and then take…”  

 
Table 1. The three stages of the Chunking parser for interpreting route descriptions. 

Chunker 
[ACTION turn] [DIRECTION left] [ROUTER at] [FP eh] [LANDMARK the post-office] 

[SCONT and then] [ACTION take] 

Segmenter 
[ SEGMENT [ACTION turn] [DIRECTION left] [ROUTER at] [FP eh] [LANDMARK the post-

office] ] [ SEGMENT [SCONT and then] [ACTION take] ] 

Attacher 
[SEGMENT [TURN (direction: →) turn] [LEFT left] [AT (landmark: →) at] [DM eh] 

[POSTOFFICE the post-office ] ] [SEGMENT [DM and then] [TAKE take] ] A 

 
Fig. 1. An example Conceptual Route Graph. 

     
Fig. 2. The IBL map.  

To measure the performance of our method we used the notion of Concept Error 

Rate (CER) – the weighted sum of the edits required in the manually transcribed CRG 

to obtain the extracted CRG. To evaluate our method we used the IBL corpora, which 

contain audio recordings and manual transcriptions of 144 spoken route instructions 

given in English [11]. Thirty five IBL transcriptions were manually annotated and 

used as the cross-validation set. Using the Linear Threshold Unit algorithms and best 

feature combinations discussed in [3], a baseline CER of 18.04 was obtained for com-

paring the Chunking parser’s performance on speech recognized results. 

Next, we trained an off-the-shelf ASR system with the remaining 108 route de-

scriptions. For the best speech recognized hypothesis (mean WER = 27.59) for the 

route descriptions in the cross-validation set we obtained a CER of 28.15, i.e., a rela-

tive increase of mere 10.11 in CER. The relative increase in CER (R-CER) remains 

rather steady (SD = 2.80) with increase in WER. This illustrates the robustness of our 

method in dealing with speech recognition errors. 

3 Method 

Material: Six IBL route descriptions from the set of 35 were used for human 

evaluation. Care was taken in selecting routes to ensure that subjects could not guess 

the destination. For each route we obtained four instruction types: (1) the IBL manual 



transcription (ManTsc), (2) the manually annotated CRG (crgMAN), (3) the CRG 

extracted from the IBL manual transcription (crgCMT), and (4) the CRG extracted 

from the speech recognized route description (crgASR). The 24 items resulting from 

this combination were rearranged into four sets, each comprising of the six routes, but 

differing in the instruction type for the routes. 

Subjects: A total of 16 humans (13 male and 3 female) participated in the evalu-

ation. Participants ranged in the age from 16 to 46 (mean = 30.87, SD = 7.74). All, but 

one were researchers or graduate students in computer science. 

Procedure: Participants were asked to sketch the route, on the IBL map (cf. Fig. 

2, the star indicates the starting place), corresponding to the provided instruction. 

Each participant was individually introduced to the basic concept types in CRGs and 

shown how a route could be planned using the various nodes and sub-graphs in a 

CRG. Participants were asked to also mark concepts that they thought were absolutely 

necessary and strike-out what was redundant for the task at hand. Each of the four sets 

was evaluated by four different participants. 

3.1 Results and analysis 

We classified the 96 human performances under three categories: (1) FOUND: the 

participant arrived at the target building following the intended path, (2) 

ALM_THERE: the participant has almost arrived at the target building following the 

intended path, but did not correctly identify it among the others, (3) NOT_FOUND: 

the participant lost her way and did not arrive at the target building. Fig. 3 provides an 

overview of these performances across the four instruction types. One-way ANOVA 

test indicates a significant difference between only the human performances across 

crgASR and ManTsc instructions (p < 0.05). This is not surprising given that the 

crgASR instructions were produced from speech recognized results with WER of 

47.64 (SD = 7.98) and have a R-CER of 27.35. However, there is no significant dif-

ference in performances across the crgMAN, crgCMT and crgASR instructions. This 

suggests that the conceptual information, required for human route following, present 

in Chunker parser produced CRGs is comparable with the information present in 

manually annotated CRGs, despite the CER of 20.29 and R-CER of 27.35 for 

crgCMT and crgASR instructions respectively.  

These results confirm the robust performance of Chunking parser in dealing with 

speech recognition errors and preserving the vital conceptual information. Moreover, 

the results also suggest that improving the model (i.e. the CRG representation) to 

reduce the gap between human performances for ManTsc and crgMAN instructions 

will further enhance the human performances for Chunking parser extracted CRGs.  

A closer analysis of the ALM_THERE (13) and NOT_FOUND (20) performances 

(a total of 33) suggest five general problem categories: (1) SpatialR: spatial relations, 

(2) Controller, (3) Action, (4) Landmark, and (5) Other: human errors. Across these 

five problem categories five sources were identified: (1) Annotation: an incorrect or 

underspecified manual annotation, (2) ASR: concepts insertion or deletion during 

speech recognition, (3) ChunkingP: Chunking parser errors, (4) Model: a limitation of 



the current model, and (5) Human: human judgments about the relevance or redun-

dancy of a concept and executing actions.  

The distribution of these error sources across the problem categories, as illustrated 

in Fig. 4, indicates that majority of the problems pertain to spatial relations (51.51%) 

and Controllers (24.24%). While some of the problems with the spatial relations are a 

result of incorrect and underspecified annotations (9.09%), which may have contrib-

uted to Chunking parser errors (9.09%) and to an extent to human judgments 

(21.21%), manual observations suggest that the overall human performance could 

have been better with the inclusion of additional spatial relation and Controller types 

in the model. We have refrained from elaborate annotations in the current model due 

to limited amount of training data. Human judgments were the source of half of the 

errors (51.51%). This indicates that it wasn’t always easy to make the right decision 

about discarding or using concepts in the CRGs for route planning. 

   Fig. 3. Human performances across the 

instructions types. 

 Fig.  4.  Distribution of error sources across 

the problem categories.  

4 Discussion and conclusion 

From this human evaluation exercise we note that: 

 Controllers with travel distance argument are vital for representing the extent of 

movement in a particular direction in route descriptions, such as “follow the road 

to its end on the right is the treasure” or “a few buildings down from Pizza-Hut”. 

 A requisite for proper grounding of the spatial relations in CRGs is resolving their 

direction or landmark arguments, or even both. The Attacher’s role in attaching the 

concept RIGHT in CRG “[BUILDING Tescos] [AT (landmark: ←) is on] [RIGHT right]”, as the 

direction argument for spatial relation AT is essential for locating the landmark.  

 The CRG representations for spoken route description contain redundant concepts 

that arise from speech phenomena, such as pronominal references, anaphoric de-

scriptions, self-repair and repetitions, about landmarks and actions. The CRG rep-

resentation for “you will take the third exit off…the third exit will be for Plymouth 

university…take this third exit”, contains two actions and four landmarks. Ground-

ing this to a simple “take the third exit” would require additional approaches. 

 ASR errors pose another challenge for an agent in route planning using the CRGs. 

Without access to the topological view of the environment a robot could not possi-

bly infer erroneous concept insertions. To deal with this, we believe clarification or 
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reprise of route segments would be a prudent strategy, provided that the clarifica-

tion sub-dialogue itself doesn’t lead to further errors. 

 

We have presented a human evaluation of the usefulness of conceptual route 

graphs – extracted from spoken route descriptions using our data-driven method – for 

route following. The comparable human performances on sketching the route using 

the manually transcribed and automatically extracted CRGs suggest no significant 

loss of conceptual information, required for route following, during the semantic in-

terpretation of verbal route descriptions. This illustrates the robustness of our method 

in preserving vital conceptual information despite ASR errors. We observe that, ex-

tracting CRGs from spoken route descriptions mandates integration of approaches to 

counter speech phenomena, such as anaphoric descriptions and self-repairs, and using 

clarification strategies to recover from erroneous concept insertions during ASR. 
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