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Abstract – Because of privacy concerns and the expense involved in creating an annotated 

corpus, the existing small annotated corpora might not have sufficient number of examples for 

statistically learning to extract all the named-entities precisely. In this work, we evaluate what 

value may lie in automatically generated features based on distributional semantics when using 

machine-learning named entity recognition (NER). The features we generated and 

experimented with include n-nearest words, support vector machine (SVM)-regions, and term 

clustering, all of which are considered semantic (or distributional semantic) features. The 

addition of n-nearest words feature resulted in a greater increase in F-score than adding a 

manually constructed lexicon to a baseline system that extracts medical concepts from clinical 

notes. Although the need for relatively small annotated corpora for retraining is not obviated, 

lexicons empirically derived from unannotated text can not only supplement manually created 

lexicons, but replace them. This phenomenon is observed in extracting concepts both from 

biomedical literature and clinical notes.  

 

Background 

One of the most time-consuming tasks faced by a Natural Language Processing (NLP) researcher or 

practitioner trying to adapt a machine-learning–based NER system to a different domain is the 

creation, compilation, and customization of the needed lexicons. Lexical resources, such as lexicons 

of concept classes are considered necessary to improve the performance of NER. It is typical for 

medical informatics researchers to implement modularized systems that cannot be generalized 

(Stanfill et al. 2010). As the work of constructing or customizing lexical resources needed for these 

highly specific systems is human-intensive, automatic generation is a desirable alternative. It might be 

possible that empirically created lexical resources might incorporate domain knowledge into a 

machine-learning NER engine and increase its accuracy.  

Although many machine learning–based NER techniques require annotated data, semi-supervised and 

unsupervised techniques for NER have been long been explored due to their value in domain 

robustness and minimizing labor costs. Some attempts at automatic knowledgebase construction 

included automatic thesaurus discovery efforts (Grefenstette 1994), which sought to build lists of 

similar words without human intervention to aid in query expansion or automatic dictionary 

construction (Riloff 1996). More recently, the use of empirically derived semantics for NER is used 

by Finkel and Manning (Finkel and Manning 2009a), Turian et al. (Turian et al. 2010), and 

Jonnalagadda et al. (Siddhartha Jonnalagadda et al. 2010). Finkel’s NER tool uses clusters of terms 

built apriori from the British National corpus (Aston and Burnard 1998) and English gigaword corpus 

(Graff et al. 2003) for extracting concepts from newswire text and PubMed abstracts for extracting 

gene mentions from biomedical literature. Turian et al. (Turian et al. 2010) also showed that 

statistically created word clusters (P. F. Brown et al. 1992; Clark 2000) could be used to improve 

named entity recognition. However, only a single feature (cluster membership) can be derived from 

the clusters. Semantic vector representations of terms had not been previously used for NER or 

sequential tagging classification tasks before (Turian et al. 2010). Although Jonnalagadda et al. 

(Siddhartha Jonnalagadda et al. 2010) use empirically derived vector representation for extracting 



concepts defined in the GENIA (Kim, Ohta, and Tsujii 2008) ontology from biomedical literature 

using rule-based methods, it was not clear whether such methods could be ported to extract other 

concepts or incrementally improve the performance of an existing system . This work not only 

demonstrates how such vector representation could improve state-of-the-art NER, but also that they 

are more useful than statistical clustering in this context. 

Methods 

We designed NER systems to identify treatment, tests, and medical problem entities in clinical notes 

and proteins in biomedical literature. Our systems are trained using 1) sentence-level features using 

training corpus; 2) a small lexicon created, compiled, and curated by humans for each domain; and 3) 

distributional semantics features derived from a large unannotated corpus of domain-relevant text. 

Different models are generated through different combinations of these features. After training for 

each concept class, a Conditional Random Field (CRF)-based machine-learning model is created to 

process input sentences using the same set of NLP features. The output is the set of sentences with the 

concepts tagged. We evaluated the performance of the different models in order to assess the degree 

to which human-curated lexicons can be substituted by the automatically created list of concepts.  

Figure 1: Overall Architecture of the System 

 

The design of the system to identify concepts using machine learning and distributional semantics. 

The top three components are related to distributional semantics. 

The architecture of the system is shown in Figure 1. We first use a state-of-the-art NER algorithm, 

CRF, as implemented by MALLET (McCallum 2002), that extracts concepts from both clinical notes 

and biomedical literature using several orthographic and linguistic features derived from respective 

training corpora. Then, we study the impact on the performance of the baseline after incorporating 

manual lexical resources and empirically generated lexical resources. The CRF algorithm classifies 

words according to IOB or IO -like notations (I=inside, O=outside, B=beginning) to determine 

whether they are part of a description of an entity of interest, such as a treatment or protein. We used 

four labels for clinical NER― “Iproblem,” “Itest,” and “Itreatment,” respectively, for tokens that were 

inside a problem, test, or treatment, and “O” if they were outside any clinical concept. For protein 

tagging, we used the IOB notation, i.e., there are three labels― “Iprotein,” “Bprotein,” and “O.” 

Several sentence-level orthographic and linguistic features such as lower-case tokens, lemmas, 

prefixes, suffixes, n-grams, patterns such as “beginning with a capital letter” and parts of speech are 

used by the systems to build the NER model and tag the entities in input sentences.  This 



configuration is referred to as MED_noDict for clinical NER and BANNER_noDict for protein 

tagging. 

The UMLS (Humphreys and Lindberg 1993), DrugBank (Wishart et al. 2006), Drugs@FDA (Food 

2009), and MedDRA (E. G. Brown, Wood, and Wood 1999) are used to create dictionaries for 

medical problems, treatments and tests. The guidelines of the i2b2/VA NLP entity extraction task 

(i2b2 2010) are followed to identify the corresponding UMLS semantic types for each of the three 

concepts. The other three resources are used to add more terms to our manual lexicon. In an 

exhaustive evaluation on the nature of the resources by Gurulingappa et al. (Gurulingappa et al. 

2010), UMLS and MedDRA were found to be the best resources for extracting information about 

medical problems among several other resources. For protein tagging, BANNER, one of the best 

protein-tagging systems (Kabiljo, Clegg, and Shepherd 2009), uses the 344,000 single-word lexicon 

constructed using the BioCreative II gene normalization training set (Morgan et al. 2008).  This 

configuration is referred to as MED_Dict for clinical NER and as BANNER_Dict for protein tagging. 

Distributional Semantic Feature Generation 

Here, we implemented automatically generated distributional semantic features based on a semantic 

vector space model trained from unannotated corpora. This model, referred to as the directional 

model, uses a sliding window that is moved through the text corpus to generate a reduced-dimensional 

approximation of a token-token matrix, such that two terms that occur in the context of similar sets of 

surrounding terms will have similar vector representations after training. As the name suggests, the 

directional model takes into account the direction in which a word occurs with respect to another by 

generating a reduced-dimensional approximation of a matrix with two columns for each word, with 

one column representing the number of occurrences to the left and the other column representing the 

number of occurrences to the right. The directional model is therefore a form of sliding-window based 

Random Indexing (Kanerva, Kristoferson, and Holst 2000), and is related to the Hyperspace Analog 

to Language (Lund and Burgess 1996). Sliding-window Random Indexing models achieve dimension 

reduction by assigning a reduced-dimensional index vector to each term in a corpus. Index vectors are 

high dimensional (e.g. dimensionality on the order of 1,000), and are generated by randomly 

distributing a small number (e.g. on the order of 10) of +1’s and -1’s across this dimensionality. As 

the rest of the elements of the index vectors are 0, there is a high probability of index vectors being 

orthogonal, or close-to-orthogonal to one another. These index vectors are combined to generate 

context vectors representing the terms within a sliding window that is moved through the corpus. The 

semantic vector for a token is obtained by adding the contextual vectors gained at each occurrence of 

the token, which are derived from the index vectors for the other terms it occurs with in the sliding 

window. The model was built using the open source Semantic Vectors package (Widdows and Cohen 

2010).  

The performance of distributional models depends on the availability of an appropriate corpus of 

domain-relevant text.  For clinical NER, 447,000 Medline abstracts that are indexed as pertaining to 

clinical trials are used as the unlabeled corpus. In addition, we have also used clinical notes from 

Mayo Clinic and University of Texas Health Science Center to understand the impact of the source of 

unlabeled corpus. For protein NER, 8,955,530 Medline citations in the 2008 baseline release that 

include an abstract (2010) are used as the large unlabeled corpus. Previous experiments (Siddhartha 

Jonnalagadda et al. 2012) revealed that using 2000-dimensional vectors, five seeds (number of +1s 

and –1s in the vector), and a window radius of six is better suited for the task of NER. While a stop-

word list is not employed, we have rejected tokens that appear only once in the unlabeled corpus or 

have more than three nonalphabetical characters. 

Quasi-Lexicons of Concept Classes Using SVM 

SVM (Cortes and Vapnik 1995) is designed to draw hyper-planes separating two class regions such 

that they have a maximum margin of separation. Creating the quasi-lexicons (automatically generated 

word lists) is equivalent to obtaining samples of regions in the distributional hyperspace that contain 

tokens from the desired (problem, treatment, test and none) semantic types. In clinical NER, each 

token in training set can belong to either one or more of the classes: problem, treatment, test, or none 

of these. Each token is labeled as “Iproblem,” “Itest,” “Itreatment” or “Inone.” To remove ambiguity, 



tokens that belong to more than one category are discarded. Each token has a representation in the 

distributional hyperspace of 2,000 dimensions. Six (C[4, 2] = 4!/[2!*2!]) binary SVM classifiers are 

generated for predicting the class of any token among the four possible categories. During the 

execution of the training and testing phase of the CRF machine-learning algorithm, the class predicted 

by the SVM classifiers for each token is used as a feature for that token. 

Clusters of Distributionally Similar Words Over K-Means 

The K-means clustering algorithm (MacQueen 1967) is used to group the tokens in the training corpus 

into 200 clusters using distributional semantic vectors. The cluster identifier assigned to the target 

token is used as a feature for the CRF-based system for NER. This feature is similar to the Clark’s 

automatically created clusters (Clark 2000), used by Finkel and Manning (Finkel and Manning 

2009b), where the same number of clusters are used. We focused on using features generated from 

semantic vectors as they allow us to also create the other two types of features. 

Quasi-Thesaurus of Distributionally Similar Words Using N-Nearest Neighbors  

Figure 2: Nearest Tokens to Haloperidol 

 
The closest tokens to haloperidol in the word space are psychiatric drugs. Using the nearest tokens to 

haloperidol as features, when haloperidol is not a manually compiled lexicon or when the context is 

unclear, would help to still infer (statistically) that haloperidol is a drug (medical treatment). 

 

Cosine similarity of vectors is used to find the 20 nearest tokens for each token. These nearest tokens 

are used as features for the respective target token. Figure 2 shows the top few tokens closest in the 

word space to “haloperidol” to demonstrate how well the semantic vectors are computed. Each of 

these nearest tokens is used as an additional feature whenever the target token is encountered. Barring 

evidence from other features, the word “haloperidol” would be classified as belonging to the “medical 

treatment,” “drug,” or “psychiatric drug” semantic class based on other words belonging to that class 

sharing nearest neighbors with it. 

Evaluation Strategy 

The previous sub-sections detail how the manually created lexicons are compiled and how the 

empirical lexical resources are generated from semantic vectors (2000 dimensions). In the respective 

machine learning system for extracting concepts from literature and clinical notes, each manually 

created lexicon (three for the clinical notes task) contributes one binary feature whose value depends 

on whether a term surrounding the word is present in the lexicon. Each quasi-lexicon will also 

contribute one binary feature whose value depends on the output of the SVM classifier discussed 

before. The distributional semantic clusters together contribute a feature whole value is the id of the 

cluster the word belongs to. The quasi-thesaurus contributes 20 features that are the 20 distributionally 

similar words to the word for which features are being generated. 

As a gold standard for clinical NER, the fourth i2b2/VA NLP shared-task corpus (i2b2 2010) for 

extracting concepts of the classes―problems, treatments, and tests―is used. The corpus contains 349 

clinical notes as training data and 477 clinical notes as testing data. For protein tagging, the 

BioCreative II Gene Mention Task (Wilbur, Smith, and Tanabe 2007) corpus is used. The corpus 

contains 15,000 training set sentences and 5,000 testing set sentences. 



Results 

Comparison of Different Types of Lexical Resources on Extracting Clinical Concepts 

Table 1: Clinical NER: Comparison of SVM-Based Features and Clustering-Based Features 

With N-Nearest Neighbors–Based Features 
Setting Exact F Inexact F Exact Increase Inexact Increase 

MED_Dict 80.3 89.7     

MED_Dict+SVM 80.6 90 0.3 0.3 

MED_Dict+NN 81.7 90.9 1.4 1.2 

MED_Dict+NN+SVM 81.9 91 1.6 1.3 

MED_Dict+CL 80.8 90.1 0.5 0.4 

MED_Dict+NN+SVM+CL 81.7 90.9 1.4 1.2 

MED_Dict is the baseline, which is a machine-learning clinical NER system with several 

orthographic and syntactic features, along with features from lexicons such as UMLS, Drugs@FDA, 

and MedDRA. In MED_Dict+SVM, the quasi-lexicons are also used. In MED_Dict+NN, the quasi-

thesaurus is used. In MED_Dict+CL, the clusters automatically generated are used in addition to other 

features in MED_Dict. Exact F is the  F-score for exact match as calculated by the shared task 

software. Inexact F is the F-score for inexact match or matcing only a part of the other. Exact Increase 

is the increase in Exact F from previous row. Inexact Increase is the increase in Inexact F from 

previous row. 

 
Table 1 shows that the F-score of the clinical NER system for exact match increases by 0.3% after 

adding quasi-lexicons, whereas it increases by 1.4% after adding quasi-thesaurus. The F-score slightly 

increases further with the use of both these features. The F-score for an inexact match follows a 

similar pattern. Table 1 also shows that the F-score for an exact match increases by 0.5% after adding 

clustering-based features, whereas it increases by 1.6% after adding quasi-thesaurus and quasi-

lexicons. The F-score slightly decreases with the use of both the features. The F-score for an inexact 

match follows a similar pattern.  

Overall Impact on Extracting Clinical Concepts 

Table 2: Clinical NER: Impact of Distributional Semantic Features 
Setting Exact F Inexact F Exact Increase Inexact Increase 

MED_noDict 79.4 89.2   

MED_Dict 80.3 89.7 0.9 0.5 

MED_noDict+NN+SVM 81.4 90.8 2.0 1.6 

MED_Dict+NN+SVM 81.9 91.0 2.5 1.8 

MED_noDict is the machine-learning clinical NER system with all the orthographic and syntactic 

features, but no features from lexicons such as UMLS, Drugs@FDA, and MedDRA. 

MED_noDict+NN+SVM also has the features generated using SVM and the nearest neighbors 

algorithm. 

 

Table 2 shows how the F-score increased over the baseline (MED_noDict, which uses various 

orthographic and syntactic features). After manually constructed lexicon features are added 

(MED_Dict), it increased by 0.9%. On the other hand, if only distributional semantic features (quasi-

thesaurus and quasi-lexicons) were added without using manually constructed lexicon features 

(MED_noDict+NN+SVM), it increased by 2.0% (P<0.001 using Bootstrap Resampling (Noreen 

1989) with 1,000 repetitions). It increases only by 0.5% more if the manually constructed lexicon 

features were used along with distributional semantic features (MED_Dict+NN+SVM). The F-score 

for an inexact match follows a similar pattern. 

Moreover, Table 3 shows that the improvement is consistent even across different concept classes, 

namely medical problems, tests, and treatments. Each time the distributional semantic features are 

added, the number of TPs increases, the number of FPs decreases, and the number of FNs decreases. 

Impact of the Source of the Unlabeled Data 

We utilized three sources for creating the distributional semantics models for NER from i2b2/VA 

clinical notes corpus. The first source is the set of Medline abstracts indexed as pertaining to clinical 



trials (447,000 in the 2010 baseline). The second source is the set of 0.8 million clinical notes (half of 

the total available) from the clinical data warehouse at the School of Biomedical Informatics, 

University of Texas Health Sciences Center, Houston, Texas (http://www.uthouston.edu/uth-

big/clinical-data-warehouse.htm). The third source is the set of 0.8 million randomly chosen clinical 

notes written by clinicians at Mayo Clinic in Rochester. Table 3 shows the performance of the 

systems that use each of these sources for creating the distributional semantics features. Each of these 

systems has a significantly higher F-score than the system that does not use any distributional 

semantic feature (P<0.001 using Bootstrap Resampling (Noreen 1989) with 1,000 repetitions and a 

difference in F-score of 2.0%). The F-scores of these systems are almost the same (differing by 

<0.5%).  

Table 3: Clinical NER: Impact of the Source of Unlabeled Corpus 

Unlabeled Corpus Exact F Inexact F 

None 80.3 89.7 

Medline 81.9 91.0 

UT Houston 82.3 91.3 

Mayo 82.0 91.3 

None = The machine-learning clinical NER system that does not use any distributional semantic 

features. Medline = The machine-learning clinical NER system that uses distributional semantic 

features derived from the Medline abstracts indexed as pertaining to clinical trials. UT Houston = The 

machine-learning clinical NER system that uses distributional semantic features derived from the 

notes in the clinical data warehouse at University of Texas Health Sciences Center. Mayo = The 

machine-learning clinical NER system that uses distributional semantic features derived from the 

clinical notes of Mayo Clinic, Rochester, MN. 

 

Impact of the Size of the Unlabeled Data 

Using the set of 1.6 million clinical notes from the clinical data warehouse at the University of Texas 

Health Sciences Center as the baseline, we studied the relationship between the size of the unlabeled 

corpus used and the accuracy achieved. We randomly created subsets of size one-half, one-fourth, and 

one-eighth the original corpus and measured the respective F-scores. Figure 3 depicts the F-score for 

exact match and inexact match, suggesting a monotonic relationship with the number of documents 

used for creating the distributional semantic measures. While there is a leap from not using any 

unlabeled corpus to using 0.2 million clinical notes, the F-score is relatively constant from there. We 

might infer that by incrementally adding more documents to the unlabeled corpus, one would be able 

to determine what size of corpus is sufficient. 

Figure 3: Impact of the Size of the Unlabeled Corpus 

 
On the X-axis, N represents the system created using distributional semantic features from N-

unlabeled documents. N=0 refers to the system that does not use any distributional semantic feature. 

http://www.uthouston.edu/uth-big/clinical-data-warehouse.htm
http://www.uthouston.edu/uth-big/clinical-data-warehouse.htm


Impact on Extracting Protein Mentions 

Table 4: Protein Tagging: Impact of Distributional Semantic Features on BANNER 

Rank Setting Precision Recall F-score Significance 

1 Rank 1 system 88.48 85.97 87.21 6-11 

2 Rank 2 system 89.30 84.49 86.83 8-11 

3 BANNER_Dict+DistSem 88.25 85.12 86.66 8-11 

4 Rank 3 system 84.93 88.28 86.57 8-11 

5 BANNER_noDict+DistSem 87.95 85.06 86.48 10-11 

6 Rank 4 system 87.27 85.41 86.33 10-11 

7 Rank 5 system 85.77 86.80 86.28 10-11 

8 Rank 6 system 82.71 89.32 85.89 10-11 

9 BANNER_Dict 86.41 84.55 85.47 - 

10 Rank 7 system 86.97 82.55 84.70 - 

11 BANNER_noDict 85.63 83.10 84.35 - 

 

The significance column indicates which systems are significantly less accurate than the system in the 

corresponding row. These values are based on the Bootstrap re-sampling calculations performed as 

part of the evaluation in the BioCreative II shared task (the latest gene or protein tagging task). 

BANNER_Dict+DistSem is the system that uses both manual and empirical lexical resources. 

BANNER_noDict+DistSem is the system that uses only empirical lexical resources. BANNER_Dict 

is the system that uses only manual lexical resources. This is the system available prior to this 

research, and the baseline for this study. BANNER_noDict is the system that uses neither manual nor 

empirical lexical resources. BANNER_Dict+DistSem is the system that is significantly more accurate 

than the baseline. It is equally important to the improvement that the accuracy of 

BANNER_noDict+DistSem is better than BANNER_noDict. The most significant contribution in 

terms of research is that an equivalent accuracy (BANNER_noDict+DistSem and BANNER_Dict) 

could be achieved even without using any manually compiled lexical resources apart from the 

annotated corpora. 

 

In Table 4, the performance of BANNER with distributional semantic features (row 3) and without 

distributional semantic features (row 9) is compared with the top ranking systems in the most recent 

gene-mention task of the BioCreative shared tasks. Each system has an F-score that has a statistically 

significant comparison (P<0.05) with the teams indicated in the Significance column. The 

significance is estimated using Table 1 in the BioCreative II gene mention task (Wilbur, Smith, and 

Tanabe 2007). The performance of BANNER with distributional semantic features and no manually 

constructed lexicon features is better than BANNER with manually constructed lexicon features and 

no distributional semantic features. This demonstrates again that distributional semantic features (that 

are generated automatically) are more useful than manually constructed lexicon features (that are 

usually compiled and cleaned manually) as means to enhance supervised machine learning for NER. 

Discussion 

The evaluations for clinical NER reveal that the distributional semantic features are better than 

manually constructed lexicon features. The accuracy further increases when both manually created 

dictionaries and distributional semantic feature types are used, but the increase is not very significant 

(P=0.15 using Bootstrap Resampling (Noreen 1989) with 1,000 repetitions).  This shows that 

distributional semantic features could supplement manually built lexicons, but the development of the 

lexicon, if it does not exist, might not be as critical as previously believed. Further, the N-nearest 

neighbor (quasi-thesaurus) features are better than SVM-based (quasi-lexicons) features and 

clustering-based (quasi-clusters) features for improving the accuracy of clinical NER (P<0.001 using 

Bootstrap Resampling (Noreen 1989) with 1,000 repetitions). For the protein extraction task, the 

improvement after adding the distributional semantic features to BANNER is also significant 

(P<0.001 using Bootstrap Resampling (Noreen 1989) with 1,000 repetitions). The absolute ranking of 



BANNER with respect to other systems in the BioCreative II task improves from 8 to 3. The F-score 

of the best system is not significantly better than that of BANNER with distributional semantic 

features. We again notice that distributional semantic features are more useful than manually 

constructed lexicon features alone. The purpose of using protein mention extraction in addition to 

NER from clinical notes is to verify that the methods are generalizable. Hence, we only used the 

nearest neighbor or quasi-thesaurus features (as the other features contributed little) for protein 

mention extraction and have not studied the impact of the source or size of the unlabeled data 

separately. The advantages of our features are that they are independent of the machine-learning 

system used and can be used to further improve the performance of forthcoming algorithms. 

The increment in F-scores after adding manually compiled dictionaries (without distributional 

semantic features) is only around 1%. However, many NER tools, both in the genomic domain 

(Leaman and Gonzalez 2008; Torii et al. 2009) and in the clinical domain (Friedman 1997; Savova et 

al. 2010) use dictionaries. This is partly because systems trained using supervised machine-learning 

algorithms are often sensitive to the distribution of data, and a model trained on one corpus may 

perform poorly on those trained from another. For example, Wagholikar (Wagholikar et al. 2012) 

recently showed that a machine-learning model for NER trained on the i2b2/VA corpus achieved a 

significantly lower F-score when tested on the Mayo Clinic corpus. Other researchers recently 

reported this phenomenon for part of speech tagging in clinical domain (Fan et al. 2011). A similar 

observation was made for the protein-named entity extraction using the GENIA, GENETAG, and 

AIMED corpora (Wang et al. 2009; Ohta et al. 2009), as well as for protein-protein interaction 

extraction using the GENIA and AIMED corpora (Siddhartha Jonnalagadda and Gonzalez 2010; S. 

Jonnalagadda and Gonzalez 2009). The domain knowledge gathered through these semantic features 

might make the system less sensitive. This work showed that empirically gained semantics are at least 

as useful for NER as the manually compiled dictionaries. It would be interesting to see if such a 

drastic decline in performance across different corpora could be countered using distributional 

semantic features.  

Currently, very little difference is observed between using distributional semantic features derived 

from Medline and unlabeled clinical notes for the task of clinical NER. In the future, we would study 

the impact using clinical notes related to a specific specialty of medicine. We hypothesize that the 

distributional semantic features from clinical notes of a subspecialty might be more useful than the 

corresponding literature. Our current results lack qualitative evaluation. As we repeat the experiments 

in a subspecialty such as cardiology, we would be able to involve the domain experts in the qualitative 

analysis of the distributional semantic features and their role in the NER. 

Conclusion 

Our evaluations using clinical notes and biomedical literature validate that distributional semantic 

features are useful to obtain domain information automatically, irrespective of the domain, and can 

reduce the need to create, compile, and clean dictionaries, thereby facilitating the efficient adaptation 

of NER systems to new application domains. We showed this through analyzing results for NER of 

four different classes (genes, medical problems, tests, and treatments) of concepts in two domains 

(biomedical literature and clinical notes). Though the combination of manually constructed lexicon 

features and distributional semantic features has slightly better performance, suggesting that if a 

manually constructed lexicon is available, it should be used, the de-novo creation of a lexicon for 

purpose of NER is not needed. 

The distributional semantics model for Medline and the quasi-thesaurus prepared from the i2b2/VA 

corpus and the clinical NER system’s code is available at (http://diego.asu.edu/downloads/AZCCE/) 

and the updates to the BANNER system are incorporated at http://banner.sourceforge.net/. 
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