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Abstract

We propose and advocate the use of an advanced declarative programming paradigm – answer set
programming – as a uniform platform for integrated approach towards syntax-semantic processing
in natural language. We illustrate that (a) the parsing technology based on answer set programming
implementation reaches performance sufficient for being a useful NLP tool, and (b) the proposed
method for incorporating semantic information from FRAMENET into syntactic parsing may prove to
be useful in allowing semantic-based disambiguation of syntactic structures.

1 Introduction

Typical natural language processing (NLP) system consists of at least several components including syn-
tactic and semantic analyzers. A common assumption in the design of an NLP system is that these com-
ponents are separate and independent. On one hand, this allows researchers an abstraction necessary to
promote substantial steps forward in each task, plus such a separation permits for more convenient, mod-
ular software development. On the other hand, constraints from ”higher level” processes are frequently
needed to disambiguate ”lower level” processes. For example, consider the syntactically ambiguous
sentence

I eat spaghetti with chopsticks. (1)

Its verb phrase allows for two syntactic structures:

eat
(VP/PP)/NP

spaghetti

NP

VP/PP

with chopsticks

PP

VP

eat
VP/NP

spaghetti

NP

with chopsticks

NP\NP
NP

VP

(2)

In the former, the prepositional phrase “with chopsticks” modifies the verbal phrase “eat spaghetti”,
and in the latter, it modifies the noun phrase “spaghetti”. The sentence

I eat spaghetti with meatballs (3)

is syntactically ambiguous in a similar manner. In order to assign the proper syntactic structure to each
of these sentences one has to take into account selectional restrictions, i.e., the semantic restrictions that
a word imposes on the environment in which it occurs. For instance, in (1) the fact that a chopstick
is an instrument suggests that “with chopsticks” modifies “eat spaghetti” as a tool for eating. Thus,
an approach that integrates syntactic and semantic processing is essential for proper analysis of such
sentences. Modern statistical methods, dominant in the field of syntactic analysis, take into account
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selectional restrictions implicitly by assigning most probable syntactic structure based on observed co-
occurrences of words and structures in corpora. Yet, this is often not sufficient. Sentences (1) and (3)
illustrate this point, as the advanced parsers, including Stanford and Berkeley systems, do not produce
proper syntactic representations for these sentences: instead they favor the same structure for both of
them.1 Similarly, semantic role labelers (joint syntactic-semantic parsers) such as SEMAFOR (Das et al.,
2010) and LTH (Johansson and Nugues, 2007) display the same issue. The FRAMENET project (Baker
et al., 1998) provides information that can disambiguate sentences (1) and (3). For instance, the frame
food corresponds to the word “spaghetti”. This frame contains information that food only takes other
food as constituents. Thus modifying “spaghetti” with “chopsticks” in a parse tree for (1) yields a
forbidden situation.

In this paper we present preliminary work on a system for natural language parsing that targets a
tight integration of syntax and semantics. We illustrate its ability to take into account both quantitative
and qualitative data available for processing natural language, where the former stems from statistical
information available for natural language and the latter stems from lexical and commonsense knowledge
available in lexical datasets such as FRAMENET.

Lierler and Schüller (2012) developed a Combinatory Categorial Grammar (CCG) parser ASPC-
CGTK2. A distinguishing feature of ASPCCGTK is that its design allows for synergy of both quanti-
tative and qualitative information. First, it relies on the C&C part-of-speech supertagger (Clark and
Curran, 2007) – built using latest statistical and machine learning advances in NLP. Second, its imple-
mentation is based on a prominent knowledge representation and reasoning formalism — answer set
programming (ASP), see Brewka et al. (2011). ASP constitutes a convenient framework for represent-
ing constraints posed by selectional restrictions explicitly; thus we can augment implicit information
available from statistical part-of-speech tagging with qualitative reasoning. We believe that the ASPC-
CGTK parser is a strong ground for designing a systematic, elaboration tolerant, knowledge intensive
approach towards an integrated syntax-semantics analysis tool. Performance results on ASPCCGTK re-
ported in (Lierler and Schüller, 2012) suggest that the “planning” approach adopted for parsing in the
system scales to sentences of length up to 15 words. It may be sufficient for a number of applications: for
example, 6.87 is the average number of words in sentences in the GEOQUERY corpus (Zelle and Mooney,
1996). But, in order for ASPCCGTK to become a viable NLP technology it is important to address the
issue of its scalability.

The two contributions of this paper are as follows. First we demonstrate how use of the Cocke-
Younger-Kasami (CYK) algorithm (Kasami, 1965) enhances the performance of ASPCCGTK. We evalu-
ate the new approach implemented in ASPCCGTK on the CCGbank corpus (Hockenmaier and Steedman,
2007) and report the results. Second we propose and illustrate the method on how (a) FRAMENET can
be used for properly disambiguating sentences (1) and (3), and (b) how this information is incorporated
into the ASPCCGTK system. As a result we are able to use the ASPCCGTK parser to generate only the
expected syntactic structures for the sentences in question.

In the future, we will automate a process of extracting selection restriction constraints from the data
available in FRAMENET, by building an interface between ASPCCGTK and FRAMENET. CCGbank will
provide us with extensive real world data for evaluating our approach. Once successful, we will look
into expanding the approach to the use of other semantic annotations datasets for lexical items such as
VERBNET, PROPBANK, NOMBANK and others for more complete sets of lexical constraints.

2 Extending ASPCCGTK for parsing CCG with CYK in ASP

Combinatory Categorial Grammar (Steedman, 2000) is a formalism that uses a small set of combinatory
rules and a rich set of categories. Categories are either atomic such as NP , or complex such as S\NP ,
which is a category for English intransitive verbs. The category S\NP states that an NP to the left of the

1Thanks to Nathan Schulte for carrying out the research supporting this claim by investigating the behavior of nine state-of-
the-art parsers listed at http://nlp.stanford.edu/software/stanford-dependencies.shtml.
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word will result in a sentence S. Given a sentence and a lexicon containing a set of word-category pairs,
we replace words by appropriate categories and then apply combinators. For example, in the former
derivation in (2), “eat” has category (VP/PP)/NP and “spaghetti” has category NP . The combinator
used in this derivation is forward application (fa)

A/B B

A
fa

(4)

where A and B are variables that can be substituted for CCG categories. Applying forward application
to “eat” and “spaghetti” substitutes A with VP/PP and B with NP and yields VP/PP . An input
sentence is part of a grammar if some sequence of applying combinators results in the category S at the
root of the parse tree.

The implementation of ASPCCGTK is based on answer set programming – a declarative logic pro-
gramming paradigm. ASP roots in answer set semantics of logic programs (Gelfond and Lifschitz, 1988).
The idea of ASP is to represent a problem by a program whose answer sets correspond to solutions. For
example, for parsing we encode the grammar and the input sentence in a way that each answer set cor-
responds to a valid parse tree of the input. Unlike in an imperative style of programming, in declarative
programming we describe a specification of the problem, which expresses what the program should ac-
complish rather than prescribing how to do it. Answer set solvers use this specification to efficiently
navigate through a search space and find solutions to the problem. For a more detailed and yet brief
introduction of CCG and ASP we refer the reader to (Lierler and Schüller, 2012).

The CYK (Cocke, Younger, and Kasami) algorithm for context-free-grammars was initially pub-
lished by Kasami (1965). It can be extended to CCG using ideas from Lange and Leiß (2009). Given
an input of n words, CYK operates on an n× n triangular chart. Words in the input are associated with
categories in the diagonal of the chart. Combinatory rules combine categories from two chart cells into
a single category in another “corresponding” cell. We illustrate these intuitions using a 3× 3 chart:

AA/B

B

1,1 2,1 3,1

2,2 3,2

3,3

Pi,PjPleft,Pj

Pi,Pdown
(5)

An input is recognized as part of the grammar if the top right chart cell contains the category S after
successive application of combinators to the chart. A realization of CYK for recognition of context-free
grammars in ASP was described by Drescher and Walsh (2011). First, we adapt their approach to CCG.
Second, we extend it to the task of generating parse trees as we are not only interested in recognizing
grammatical inputs but also in producing appropriate parses.

We now show parts of our realization of CYK in the ASP formalism. We represent a chart using a
predicate grid(Pi,Pj,Cat) and initialize the diagonal using the rule

grid(P,P,C) :- category at(C,P).

where the category at predicate is obtained from tagging the input with the C&C supertagger.
Forward application is realized as follows (grid variables are shown in (5), X and Y are variables

that stand for CCG categories):

applicable(fa,Pj,Pi,Pleft,Pdown,X,rfunc(X,Y),Y) :-
grid(Pleft,Pi,rfunc(X,Y)), grid(Pj,Pdown,Y).

grid(Pj,Pi,X) :- applicable( ,Pj,Pi, , ,X, , ).

where rfunc(X,Y) encodes complex category of the form X/Y . The first rule defines where the fa
combinator can be applied to within the chart. The second rule defines which categories this application



creates. For obtaining parse trees, we “guess” for each instance of applicable if that combinator is
actually applied (SrcLeft, SrcDown, and Result stand for CCG categories in the CYK grid):

{ applied(Comb,Pj,Pi,Pleft,Pdown,Result,SrcLeft,SrcDown) } :-
applicable(Comb,Pj,Pi,Pleft,Pdown,Result,SrcLeft,SrcDown).

The curly bracket construct in the head of this rule is what expresses the guess as we can intuitively read
this rule as follows: an expression in the head may hold in case if the body of the rule holds.

To obtain only valid parse trees, we furthermore (i) add rules that constraint the selection of multiple
applied combinators in one cell, (ii) define reachability of diagonal chart cells from the S category in
the top right cell, and (iii) add rules that require all diagonal cells to be reachable.

We believe that the possibility of explicitly representing alternatives and then restricting them by
expressing appropriate conditions using declarative means makes ASP a powerful tool for working with
ambiguities in the field of NLP.

We conducted empirical experiments to compare the performance of the original ASPCCGTK and
the ASPCCGTK enhanced with CYK as described here. We report average times and number of timeouts
when parsing all sentences of Section 00 of the CCGbank corpus (Hockenmaier and Steedman, 2007)
using a timeout of 1200 seconds. The sentences were chunked and tagged by the C&C supertagger. The
benchmark results show that the CYK approach has a significant performance advantage over the old
approach. Columns show average time in seconds for groups of sentences of a certain length. Number
in parenthesis represents the number of timeouts.

Number of Words 1-10 11-15 16-20 21-25 26-30 31-35 36-40 41+

Number of Sentences 195 285 345 330 287 224 118 129

ASPCCGTK (CYK) 0.04 0.18 0.49 1.04 2.11 3.21 6.66 27.01(3)

ASPCCGTK (original) 0.13 1.07 4.90 20.93 68.21(1) 194.59(2) 342.88(24) 497.93(75)

3 Semantic Disambiguation using FRAMENET

FRAMENET is a dataset of semantic relations based on Frame Semantics (Fillmore and Baker, 2001).
Lexical items evoke certain frames that contain frame elements; for example, “eat” evokes an ingestion
frame and everything that is of semantic type food evokes a food frame. Sample information available
in the ingestion and food frames follow:

Frame Frame Element Semantic Type

ingestion INGESTOR sentient
INGESTIBLE ingestible
INSTRUMENT tool
MANNER manner

Frame Frame Element Semantic Type

food CONSTITUENT food constituent

Each frame element is a slot that may be filled only by elements of the correct semantic type. Types are
organized in a taxonomy. For instance, the following part of the taxonomy is relevant to this presentation:

tool is a instrument food is a ingestible food is a food constituent.

We propose a concept of a “semantically coherent” parse tree. Information from FRAMENET allows
us to disambiguate semantically coherent and incoherent trees. We now make these ideas precise. Each
node in a tree is annotated with a tag – either a distinguished tag ⊥ or a pair T ||F where both T and
F are sets consisting of semantic types. Each leaf of a tree is assigned a tag T ||F in accordance with
FRAMENET information for a corresponding word. The set T contains the semantic types associated with
the leaf-word. For instance, for word “spaghetti”, this set Tsp is {food, food constituent, ingestible}.
The set F contains the semantic types associated with the frame elements of a frame evoked by a leaf-
word. For instance, for word “eat” that evokes the ingestion frame, this set Feat is

{sentient, ingestible, tool,manner}.



To define a tag for a non-leaf node of a tree we introduce the following terminology. Any non-leaf node
in a CCG parse tree is a parent of two children: a functor and an argument. Depending on semantic
information assigned to nodes, they act as functors or arguments. For a non-leaf node p, we define a tag
Tp||Fp as follows

Tp||Fp =


⊥ if a tag of either f or a is ⊥
⊥ if Ff ∩ Ta = ∅
Tf ||(Ff \ {s}) if there is a semantic type s ∈ Ff ∩ Ta

where f and a stand for a functor and an argument children of p, respectively. Pairs Ff ||Tf and Fa||Ta

correspond to tags of these children. We say that a parse tree is semantically coherent if there is no node
in the tree annotated by the ⊥ tag.

Recall the syntactic structures (2) corresponding to the verb phrase of sentence (1). The annotated
counterpart of the former structure follows3:

eat
(VP/PP)/NP : ∅||Feat

spaghetti

NP : Tsp||{food constituent}
VP/PP : ∅||{sentient, tool,manner}

with chopsticks

PP : {tool, instrument}||∅
VP : ∅||{sentient,manner}

This subtree is semantically coherent. On the other hand, part of the later structure in (2) constitutes
semantically incoherent subtree:

spaghetti

NP : Tsp||{food constituent}
with chopsticks

NP\NP : {tool, instrument}||∅
NP : ⊥

To implement described process within ASPCCGTK approach, we first manually specify a dictionary
that contains FRAMENET information sufficient for annotating leaf nodes stemming from the words in an
input sentence. We then use logic rules to (a) define annotations for non-leaf nodes of parse trees and (b)
restrict the produced parse trees only to these that are semantically coherent. On the sentences (1) and (3),
the ASPCCGTK parser implementing this approach is capable to enumerate only and all semantically
coherent parses that correspond to syntactic structures expected for the sentences.

4 Conclusions and Future Work

In this work we propose and advocate the use of advanced declarative programming paradigm – answer
set programming – as a uniform platform for integrated approach towards syntax-semantic processing
in NLP. We illustrate that the CCG parser ASPCCGTK based on an ASP implementation reaches per-
formance sufficient for being a useful NLP technology by taking advantage of the data structures of the
CYK algorithm. Even though ASP has a high worst-case complexity, a related declarative paradigm
with the same worst-case complexity was shown to be effective for solving NLP problems: the usage
of Integer Linear Programming in (Roth and Yih, 2007). We also propose a method for disambiguating
syntactic parse trees using the semantic information stemming from the FRAMENET dataset and imple-
ment it within the ASPCCGTK parser. This implementation results in the first step towards a synergistic
approach in syntax-semantic processing by means of technology such as ASP. There is an open question
on how to automatically fetch relevant information from FRAMENET in order to make the proposed im-
plementation widely usable. This is the subject of ongoing and future work. One reasonable direction to
explore is assess the usability of FRAMENET-based semantic role labeling systems for our purposes, in
particular, LTH and SEMAFOR. The CCGbank will serve us as a test bed for evaluating the effectively of
proposed method and directing this research. The source code of the reported implementation is available
online at the ASPCCGTK website under version 0.3.

3The definition of semantically coherent trees presented here is a simplified version of a more complex construct, which
takes into account functors that carry no semantic type information by themselves (for example, a functor corresponding to a
word “with”) but rather inherit this information from its argument.
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