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Abstract

In the finite-state temporality approach, events in natural language semantics have been character-
ized in regular languages, with strings representing sequences of temporal observations. We extend
this approach to natural language constructions which are not regular. Context-free constructions are
detailed and discussed. Superposition, the key operator in the finite-state temporality approach is
investigated for context-free languages. The set of context-free languages is found to not be closed
under superposition. However, as with intersection, the superposition of a context-free language and
a regular language results in a context-free language. Previous work on subsumption and entail-
ment is inapplicable to context-free languages, due to the undecidability of the subset relation for
context-free languages.

1 Introduction

In recent years, events have been encoded as strings of a regular language, where a symbol in the language
represents a set of predicate logic formulae that hold at a particular temporal instant, and the order of the
symbols is associated with temporal order. Temporal granularity is revealed by the “superposition” of
languages, essentially forming a more specific representation by collecting together formulae that hold at
the same time. The representation is supplemented by notions of subsumption and entailment, allowing
comparisons of information content, logical soundness, and completeness.

However, some natural language constructions concerning events are difficult to represent in this
regular framework. These constructions suggest a relationship between the frequency of events, simi-
lar to the dependency of symbol frequencies on other symbol frequencies found in many context-free
languages (L = anbn). Together with their increase in complexity over regular langauges, this makes
context-free languages a natural area of interest in this field.

As an example, take the expression “A as often as B”, where A and B can be thought of as events.
This construction implies a frequency relationship between the occurrence of two events, where A occurs
at least as many times as B, possibly more. These events do not have to occur in an ordered sequence,
where a sequence of As are followed by a sequence of Bs, As and Bs can occur in any order as long
as the overall frequncy relationship is maintained. To be accurate, we must also allow for “instants” of
time that separate any occurrence of the events we are interested in. Representing event A as the symbol
a, event B as the symbol b, and an instant of time in which events may be occurring, but which are not
relevant to our analysis by 2, we get strings of the form a2∗b, a2∗b2∗b2∗a, b2∗b2∗a2∗a2∗a etc.
These strings form a context-free language.

Moens and Steedman (1988) highlight the complicated nature of the phrase “when”. They suggest
that “When A, B” implies not a strictly temporal relationship, but a causal one, making it a prime can-
didate for representation by a context-free language. Note that “When I swear, I put money into the
swear jar” implies that if I swear twice, I put money into the jar twice, but not necessarily in a particular
temporal order. I may swear twice during the day, and have to wait until I get home to put money in the
jar.

More formal (and seemingly less natural) constructions such as “an equal number of times as”, while
rare, do have a place in more formal literature such as legal documents. This particular construction



appears in locations as varied as “The Federal Code of the United States of America” and the bye-laws
of the town of New Canaan,CT: “he shall choose alternates in rotation so that the alternates chosen by
the Chairman shall be seated as nearly an equal number of times as is possible”.1

Our analysis is restriced to the case of there being a frequency relationship between two types of
events. It should be noted that the addition of a third event would lead to strings characterised by
languages that are not context-free, similar to the difference between anbn and anbncn. While these
constructions tend to seem less natural (“I cried as often as I laughed, and I laughed as often as I sang”),
they cannot be discounted.

The above linguistic data, while by no means exhaustive, provides a steady base from which to ex-
plore context-free languages in a finite-state temporality framework. The ubiquity of the phrases “when”
or “whenever” highlights the need for this extension, while their causal nature, as opposed to temporal
nature, suggests further ontological applications.

2 Background

Envisaging events as a sequence of “snapshots”, Fernando (2004) has encoded event-types as regular
languages, made up of symbols representing sets of “fluents”(Φ), similar to those found in McCarthy
and Hayes (1969). As well as representing event types, a regular language can represent sequences of
temporal observations. The diagram below represents these two concepts:

L = ∼ swim(john, x) swim(john, x)
+

swim(john,m)

L′ = mile(m)
∗

The “superposition” of two langauges is the componentwise union of their strings:

L&L′ =
⋃
k≥1
{(α1 ∪ α,

1) . . . (αk ∪ α,
k) | α1 . . . αk ∈ L and α,

1 . . . α
,
k ∈ L

′}

Intuitively, snapshots taken at the same temporal instant are merged, forming a larger picture of the world
at that time:

∼ swim(john, x)mile(m) swim(john, x)mile(m)
+
swim(john,m)mile(m)

The set of regular languages is closed under superposition ensuring that the superposition operation
does not take us to a higher level of complexity(Fernando (2003)). Superposition allows us to define
a reflexive, transitive relation (a pre-order) associated with the concept of subsumption. To preserve
reflexivity subsumption � is defined by:

L� L′ iff L ⊆ L′

Subsuption can be thought of as relating to “information content”. A language that subsumes another
is more specific than that language. It contains all the information of the other language, and more.

3 Superposition and Context-Free Languages

Superposition, as the central operation in the finite-state temporality framework, must be re-examined in
light of our inclusion of context-free languages. The key question is whether the result of superposing
a context-free language with either a regular language or another context-free language, is itself regular,
context-free, or otherwise.

1http://ecode360.com/9045062 - accessed on 30/11/12.



Proposition 1 The set of context-free languages is not closed under superposition.

Proof(by counter-example): Let the set {φ} be represented by the symbol φ , and the set {ψ} be rep-

resented by the symbol ψ . The language L1 = φ
n
ψ

n
is context-free, as is the language L2 =

φ
m
ψ

2m
. L1 is given by the grammar:

S → φ S ψ

S → e
and L2 by the grammar:

S → φ S ψ ψ

S → e
The superposition of these two languages will contain strings consisting of three possible symbols:

{φ} ∪ {φ} = {φ} represented as φ , {φ} ∪ {ψ} = {φ, ψ} represented as φψ , and {ψ} ∪ {ψ} = {ψ}
represented as ψ .

Strings in the language L1 have length 2n, and strings in the language L2 have length 3m. Strings
can only be superposed if they have equal length, therefore only strings of length 6r from both languages
can be superposed, resulting in strings of the same length. Strings in L1 will consist of 3r φ s followed

by 3r ψ s, and strings in L2 will consist of 2r φ s followed by 4r ψ s. The superposition of these two

strings will consist of 2r φ s superposed with φ s, r φ s superposed with ψ s, and 3r ψ s superposed

with ψ s, resulting in strings of the form φ
2r
φψ

r
ψ

3r
. Introducing a homomorphism from φ to ‘a’,

from φψ to ‘b’, and from ψ to ‘c’, we have an equivalent language a2rbrc3r.
If this language were context-free, given that it is infinte, there would be some constant K such

that any string longer than K would be representable as a string uvxyz such that v and y are not empty
and are pumpable. If we choose the string a2KbKc3K as a string longer than K, we should be able to
factorize it in this manner. If we chose v to have both as and bs or both bs and cs, then upon pumping
it, we would have bs before as or cs before bs, which would result in a string not in our language. The
same considerations apply to choosing y. Therefore v and y must each contain only as, or only bs, or
only cs. Pumping v and y would therefore increase the number of one or two of the symbols but not
all three, thereby losing the frequency relationship between the three symbols. The language cannot be
context-free.2

Proposition 2 The superposition of a context-free language with a regular language is context-free.

Proof: Given L1, a context-free language, and L2, a regular language, let P = 〈QP ,Σ,Γ,∆P , qP0, FP 〉
be a pushdown-automaton accepting L1 and A = 〈QA,Σ, δA, qA0, FA〉 be a finite-state-automoton ac-
cepting L2. ∆P is the set of transitions of the form (qi, a, A)→ (qj , γ) interpreted as: when in state qi ,
with input symbol a, and symbol A at the top of the stack, go to state qj and replace A by the string γ, and
δA is the set of transitions of the form (qi, a) → (qj) interpreted as: when in state qi with input symbol
a, go to state qj . We form a pushdown automaton R = 〈QP ×QA,Σ,Γ,∆P×A, (qP0, qA0), FP × FA〉,
with transitions ∆P×A constructed as follows:

1. If ∆P contains a rule of the form (q0, e, e) → (q1, S), then ∆P×A contains a rule of the form
((q0, q0), e, e)→ ((q1, q0), S).

2. If ∆P contains a rule of the form (q1, e, A) → (q1, γ), then ∆P×A contains rules of the form
((q1, qx), e, A)→ ((q1, qx), γ) for every qx ∈ QA.

3. If ∆P contains a rule of the form (q1, a, a) → (q1, e), then ∆P×A contains rules of the form
((q1, qx), a ∪ b, a)→ ((q1, qy), e) if and only if there is a transition (qx, b)→(qy) in δA.

The new transitions are akin to running the PDA and FSA in tandem, where a state (qx, qy), while
strictly a state of R, can be thought to represent the simultaneous states of P and A. A rule of type 1 and



rules of type 2 perform the same stack operations as the PDA they were derived from. Therefore, R can
produce on its stack the same set of strings that P produces on its stack. No input symbol is being read
while these stack operations are performed, therefore R should remain in state (qx, qy). Rules of type 3
ensure that if R is in a state (q1, qy) with an input symbol a ∪ b, and encounters the terminal symbol a
on its stack, along with there being a transition in A from qy to qz on input b, then R will transition to
state (q1, qz), and delete a from its stack. These are exactly the states that P and A would seperately be
in upon reading input a and b respectively. Thus, if P reads a string a1 . . . an and is in a final state with
an empty stack (i.e. P accepts this string), and A reads a string b1 . . . bn and is in a final state (i.e. A
accepts this string), then R will be in a final state upon reading the superposition of these two strings. If
P accepts a language L1 and A accepts a language L2, then R will accept L = L1&L2.2

If we superpose the context-free language that represents “I laughed as often as I cried” with the
regular langauge that represents “an hour” to get a language representing “In an hour, I cried as often as
I laughed”, this language, as the superposition of a context-free langauge and a regular language, will be
context-free.

4 Final Remarks

Further work will involve investigating how the concepts of subsumption and entailment can be related
to context-free languages. In this framework, entailment is defined in terms of subsumption, which is
defined in terms of the subset relation (Fernando and Nairn (2005)). However, according to Hopcroft
et al. (1979), the problem of whether a context-free language is a subset of another context-free language
is undecidable. If the subset relation cannot be calculated for context-free languages, subsumption and
entailment relations break down.

One possible avenue of exploration is the making of regular approximations of context-free languages
(Mohri et al. (2001)). This would preserve the subsumption and entailment relations, but at a possible cost
to accurately representing the context-free construction, possibly losing the exact relationship between
the frequencey of two symbols.
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