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Abstract

Motivated by cognitive lexical models, network-based ritisttional semantic models (DSMs) were proposed in
[losif and Potamianos (2013)] and were shown to achieve-sththe-art performance on semantic similarity
tasks. Based on evidence for cognitive organization of epticbased on degree of concreteness, we investigate
the performance and organization of network DSMs for absira. concrete nouns. Results show a “concrete-
ness effect” for semantic similarity estimation. Networ®s that implement the maximum sense similarity
assumption perform best for concrete nouns, while atidbat network DSMs perform best for abstract nouns.
The performance of metrics is evaluated against humanasityiratings on an English and a Greek corpus.

1 Introduction

Semantic similarity is the building block for numerous apations of natural language processing (NLP), such as
grammar induction [Meng and Siu (2002)] and affective teategorization [Malandrakis et al. (2011)]. Distribu-
tional semantic models (DSMs) [Baroni and Lenci (2010)]l@ased on the distributional hypothesis of meaning
[Harris (1954)] assuming that semantic similarity betwesnds is a function of the overlap of their linguistic con-
texts. DSMs are typically constructed from co-occurreriagstics of word tuples that are extracted from a text
corpus or from data harvested from the web. A wide range ofectual features are also used by DSM exploiting
lexical, syntactic, semantic, and pragmatic informatib&Ms have been successfully applied to the problem of
semantic similarity computation. Recently [losif and Foi@nos (2013)] proposegetwork-based DSMsoti-
vated by the organization of words, attributes and condegtaman cognition. The proposed semantic networks
can operate under either th#ributional similarity or the maximum sense similarigssumptions of lexical se-
mantics. According to attributional similarity [TurneyQ@6)], semantic similarity between words is based on the
commonality of their sense attributes. Following the maximsense similarity hypothesis, the semantic similarity
of two words can be estimated as the similarity of their twasekt senses [Resnik (1995)]. Network-based DSMs
have been shown to achieve state-of-the-art performamaefoantic similarity tasks.

Typically, thedegree of semantic concretenegsa word is not taken into account in distributional models.
However, evidence from neuro- and psycho-linguistics destrates significant differences in the cognitive orga-
nization of abstract and concrete nouns. For example, Ieiedil (1999) and Noppeney and Price (2004) show that
concrete concepts are processed more efficiently thareabstres (aka “the concreteness effect”), i.e., partid¢gpan
in lexical decision tasks recall concrete stimuli fastartlabstract. According to dual code theory [Paivio (1971)],
the stored semantic information for concrete conceptstis berbal and visual, while for abstract concepts stored
information is only verbal. Neuropsychological studieswhhat people with acquired dyslexia (deep dyslexia)
face problems in reading abstract nouns aloud [Colthe@Q@}, verifying that concrete and abstract concepts
are stored in different regions of the human brain anatdKighl et al. (1999)]. The reversal concreteness effect
is also reported for people with semantic dementia withikistr impairment in semantic memory [Papagno et al.
(2009)].

Motivated by this evidence, we study the semantic netwogkoization and performance of DSMs for estimat-
ing the semantic similarity of abstract vs. concrete no@p&cifically, we investigate the validity of the maximum
sense and attributional similarity assumptions in netwmaked DSMs for abstract and concrete nouns (for both
English and Greek).



2 Related Work

Semantic similarity metrics can be divided into two broatdgaries: (i) metrics that rely on knowledge resources,
and (ii) corpus-based metrics. A representative exampileeofirst category are metrics that exploit the WordNet
ontology [Miller (1990)]. Corpus-based metrics are forinadl as DSM [Baroni and Lenci (2010)] and are based
on the distributional hypothesis of meaning [Harris (195B)SM can be categorized into unstructured (unsuper-
vised) that employ a bag-of-words model [Agirre et al. (20@®d structured that rely on syntactic relationships
between words [Pado and Lapata (2007)]. Recently, motivayethe graph theory, several aspects of the human
languages have been modeled using network-based methodislinalcea and Radev (2011)], an overview of
network-based approaches is presented for a number of Nititgons. Different types of language units can be
regarded as vertices of such networks, spanning from simagtds to sentences. Typically, network edges repre-
sent the relations of such units capturing phenomena such-ascurrence, syntactic dependencies, and lexical
similarity. An example of a large co-occurrence networkriesented in [Widdows and Dorow (2002)] for the
automatic creation of semantic classes. In [losif and Piataos (2013)], a new paradigm for implementing DSMs
is proposed: a two tier system in which corpus statisticgparsimoniously encoded in a network, while the task
of similarity computation is shifted (from corpus-basechieiques) to operations over network neighborhoods.

3 Corpus-Based Baseline Similarity Metrics

Co-occurrence-based: The underlying assumption of co-occurrence-based nseigithat the co-existence of
words in a specified contextual environment indicates sémeglatedness. In this work, we employ a widely-
used co-occurrence-based metric, namely, Dice coeffifiesif and Potamianos (2010)]. The Dice coefficient

between wordsv; andw; is defined as followsD(w;, w;) = % wheref(.) denotes the frequency of
word occurrence/co-occurrence. Here, the word co-ocnoerés considered at the sentential level, wiilean

be also defined with respect to broader contextual envirotsne.g., at the paragraph level [Véronis (2004)].
Context-based: The fundamental assumption behind context-based méstritet similarity of context implies
similarity of meaningHarris (1954)]. A contextual window of siz2H + 1 words is centered on the word of
interestw; and lexical features are extracted. For every instaneg @f the corpus theéd words left and right of

w; formulate a feature vectex. For a given value off the context-based semantic similarity between two words,
w; andwy, is computed as the cosine of their feature vect@r¥:(w;, wj) = va\\% The elements of feature
vectors can be weighted according various schemes [lodifPartamianos (2010)], while, here we use a binary
scheme.

4 Network-based Distributional Semantic M odels

Here, we summarize the main ideas of network-based DSMsog®eed in [losif and Potamianos (2013)]. The
network is defined as an undirected (under a symmetric sitgilmetric) graphF = (V, E) whose the set of
verticesV are all words in our lexicoi, and the set of edgéds contains the links between the vertices. The links
(edges) between words in the network are determined anchtegigiccording to the pairwise semantic similarity
of the vertices. The network is a parsimonious represemtafi corpus statistics as they pertain to the estimation of
semantic similarities between word-pairs in the lexicanaddition, the network can be useddigcover relations
that are not directly observable in the datauch relations emerge via the systematic covariation roflaity
metrics. For each word (reference word) that is includedhéléxicon,w; € L, we consider a sub-graph &f,

F;, = (N,, E;), where the set of vertices; includes in totak members of_, which are linked withw; via edges
E;. The F; sub-graph is referred to as the semantic neighborhoed .offhe members ofV; (neighbors ofw;)

are selected according to a semantic similarity metricqcodrrence-base® or context-based)” defined in
Section 3) with respect ta;, i.e., then most similar words tau; are selected. Next, we present two semantic
similarity metrics that utilize the notion of semantic naigrhood [losif and Potamianos (2013)].

4.1 Maximum Similarity of Neighbor hoods

This metric is based on the hypothesis that the similaritywaf words, w; andw;, can be estimated bthe
maximum similarity of their respective sets of neighbdefined as follows:

My (w;,w;) = max{a,;, o}, whereo;; = Jnax S(w;, x), o = yrréaj)v(b S(w;,y). 1)
J 7

a5 (or a;) denotes the maximum similarity between (or w;) and the neighbors af; (or w;) that is computed
according to a similarity metri§: in this work eitherD or Q. N; andN; are the set of neighbors far; andw;,



respectively. The definition a¥/,, is motivated by the maximum sense similarity assumptioneliee underlying
assumption is that the most salient information in the nedgh of a word are semantic features denoting senses of
this word.

4.2 Attributional Neighborhood Similarity

The similarity betweem; andw; is defined as follows:
Ry, (wi,wy) = max{Bij, B}, where 5 = p(C)*, O}, Bji = p(C}7, C}) )

where CNi = (S(wi, 1), S(wi, x2), ..., S(wi, x,)), and N; = {x1,29,...,2,}.

Note thatC]J.Vi, OZ.N]', ande.Vj are defined similarly aé'l.Ni. The p function stands for the Pearson’s correlation
coefficient,N; is the set of neighbors of word;, andS is a similarity metric O or Q7). Here, we aim to exploit
the entire semantic neighborhoods for the computation msgic similarity, as opposed tf,, where a single
neighbor is utilized. The motivation behind this metric t&ributional similarity, i.e., we assume that semantic
neighborhoods encode attributes (or features) of a worayH¥erhood correlation similarity in essence compares
the distribution of semantic similarities of the two wordstheir semantic neighborhoods. Th&nction incorpo-
rates the covariation of the similarities@f andw; with respect to the members of their semantic neighborhoods

5 Experimental Procedure

Lexica and corpora creation: For English we used a lexicon consisting8f752 English nouns taken from the
SemCor3 corpus. In addition, this lexicon was translated into Gresikg Google Translatewhile it was further
augmented resulting into a set®@f324 entries. For each noun an individual query was formulatetthal, 000
top ranked results (document snippets) were retrievedjubi Yahoo! search engifieA corpus was created for
each language by aggregating the snippets for all noungdésicon.

Network creation: For each language the semantic neighborhoods of lexicom paits were computed following
the procedure described in Section 4 using either co-oenoed or context-base®”=! metrics®.

Networ k-based similarity computation: For each language, the semantic similarity between nous pas
computed applying either the max-sersg or the attributionalz,, network-based metric. The underlying seman-
tic similarity metric (theS metric in (1) and (2)) can be eithér or Q¥ . Given that for both neighborhood creation
and network-based semantic similarity estimation we hheeoption ofD or Q, a total of four combinations
emerge for this two-phase process:IfjD, i.e., use co-occurence metdizfor both neighborhood selection and
network-based similarity estimation, (i/Q*, (i) Q¥ /D, and (iv)QF/Q*.

6 Evaluation Datasets

The performance of network-based similarity metrics waaeated for the task of semantic similarity between
nouns. The Pearson'’s correlation coefficient was used &satiem metric to compare estimated similarities against
the ground truth (human ratings). The following dataseteewsed:

English (WS353): Subset of WS353 dataset [Finkelstein et al. (2002)] cangisif 272 noun pairs (that are also
included in the SemCor3 corpus).

Greek (GIP): In total, 82 native speakers of modern Greek were asked t@ ske similarity of the noun pairs
in a range from O (dissimilar) to 4 (similar). The resultingtalset consists ¢f9 nouns pairs (a subset of pairs
translated from WS353) and is freely available

Abstract vs. Concrete: From each of the above datasets two subsets of pairs wetesklevhere both nouns
in the pair are either abstract or concrete, i.e., pairsisting of one abstract and one concrete nouns were ruled
out. More specifically74 abstract and4 concrete noun pairs were selected from WS353, for a totel®pairs.
Regarding GIP]8 abstract and8 concrete noun pairs were selected, for a totapairs.

Ihttp://www.cse.unt.edu/ ~rada/downloads.html

2http://translate.google.com/

Shttp://www.yahoo.com//

4We have also experimented with other values of context winébnot reported here for the sake of space. However, the higiestir-
mance was achieved féf = 1.

Shttp://www.telecom.tuc.gr/ ~iosife/downloads.html



7 Results

The performance of the two proposed network-based mefvigsand R,,, for neighborhood size df00, is pre-
sented in Table 1 with respect to the English (WS353) andiGBH°) datasets. Baseline performance (i.e., no use
of the network) is also shown for co-occurrence-based métrand context-based metrig!” . For the max-sense

Language: Number of || Baseline | Network | Neighbor selection / Similarity computatian
dataset pairs D |1 Q" metric | D/ID [ DIQ™ | Q"/D | QTIQH
English: 272 0.22| 0.30|| Mp=100 | 064 | 064 0.47 0.46
WS353 Rn—100 | 0.50 | 0.14 0.56 0.57
Greek: 99 0.25| 0.13 || M,,—100 | 0.51 0.51 0.04 0.04

GIP R,—100 | -0.11| 0.03 0.66 0.11

Table 1: Pearson correlation with human ratings for neighbod-based metrics for English and Greek datasets.
Four combinations of the co-occurrence-based mérand the context-based metr’ were used for the defi-
nition of semantic neighborhoods and the computation ofiaiity scores. Baseline performance is also shown.

similarity M,,—100 metric, the use of the co-occurrence metticfor neighbor selection yields the best correla-
tion performance for both languages. For the attributisirallarity R,,—100 metric, best performance is achieved
when using the context-based metficfor the selection of neighbors in the network. As explaineflosif and
Potamianos (2013)], the neighborhoods selected bytimeetrics tend to include words that denote word senses
(vielding best results for similarity), while neighbortasocomputed using th@’ metric are semantically broader
including word attributes (yielding best results for ddtriional similarity). The network-based DSM results are
also significantly higher compared to the baseline for batiyliages. The best results achievedit) for the
M,,—100, andQ*/D for the R,,—19 are consistent with the results reported in [losif and Paaws (2013)] for
English. The best performing metric for Englishii,—100 (max-sense) while for Greek,,—1¢o (attributional).
Overall, utilizing network neighborhoods for estimatiregrsantic similarity can achieve good performahend
the type of metric (feature) used to select the neighborlmadey performance factor.

Next, we investigate the performance of the network metsitls respect to the neighborhood sizdor the
abstract and concrete noun pairs included in English andliGiatasets. The performance of the max-sdise
(DIQH) metric is shown in Fig. 1(a),(c) for the (subsets of) WS368 &IP, respectively. The performance over
the whole (abstract and concrete) dataset is shown withidlseé. Similarly the results for the attributional,,
(QH1D) metric are shown in Fig. 1(b),(d). The main conclusionstf@se experiments (for both languages) are:
1) The correlation performance for concrete noun pairs ghdii than for abstract noun pairs. 2) For concrete
nouns the max-seng¢,, metric achieves best performance, while for abstract nthenattributionalR,, metric is
the top performer. 3) For thR,, network metric, very good performance is achieved for alostnoun pairs for a
small neighborhood size (around10), while for concrete nouns larger neighborhoods are ne@getb 40 and
30 neighbors, for English and Greek, respectively).

Type of neighbors (abstract/concrete
Neighbor Number of Type of English (WS353) Greek (GIP)
selection metric| reference nouns reference nouns abstract| concrete abstract| concrete
D 15 abstract 76% 24% 82% 18%
D 15 concrete 36% 64% 23% 77%
Q7 15 abstract 82% 18% 91% 9%
QF 15 concrete 31% 69% 31% 69%

Table 2: Distribution of abstract vs. concrete nouns in tfast/concrete noun) neighbourhoods.

In order to further investigate the network organizationdbstract vs. concrete nouns, we manually inspected
the top twenty neighbors of 30 randomly selected nouns ($8att and 15 concrete) and classified each neighbor
as either abstract or concrete. The distributions of atigt@ncrete neighbors are shown in Table 2 as a function
of neighbor selection metricl{ vs. Q) and reference noun category. It is clear, that the neididmms of
abstract nouns contain mostly abstract concepts, eslyefiatthe Q7 neighbor selection metric (similarly the
neighborhoods of concrete nouns contain mainly concreteeqs). The neighbors of concrete nouns mainly
belong to the same semantic class (e.g., “vehicle”, “bus™dar”) often corresponding to relevant senses. The

5The best correlation score for the WS353 dataset does neeésthe top performance.68) of unsupervised DSMs [Agirre et al. (2006)].
However, we have found that the proposed network metricsimbtate-of-the-art results for other standard datasejs(.87 for [Rubenstein
and Goodenough (1965)] a1 for [Miller and Charles (1998)].
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Figure 1: Correlation as a function of number of neighborsetwork-based metrics. Max-sendg, (D/Q)
for datasets: (a) English and (c) Greek. AttributioRal (Q*!/D) for datasets: (b) English and (d) Greek.

neighbors of the abstract nouns have an attributive fungctieflecting relative attributes and/or aspects of the

referent nouns (e.qg., “religion”, “justice” for “morality.

8 Discussion

We investigated the performance of network-based DSMsdimasmtic similarity estimation for abstract and con-
crete noun pairs of English and Greek. We observed a “caemess effect”, i.e., performance for concrete nouns
was better than for abstract noun pairs. The assumption xifiman sense similarity as encoded by thig metric
consistently yielded higher performance for the case ot nouns, while the semansinilarity of abstract
nouns was better estimated via the attributional similagssumptioras implemented by th&,, metric. The
results are consistent with the initial hypothesis thafedénces in cognitive organization may warrant different
network organization in DSMs. In addition, abstract corisepere best modeled using an attributional network
DSM with small semantic neighborhoods. This is a first steyatds the better understanding of the network orga-
nization of DSMs for different categories of concepts. Imts of computation algorithms of semantic similarity,
it might prove advantageous to define a metric that combimesrntaximum sense and attributional assumptions
based on the semantic concreteness of the words underigatesi. Further research on more data and languages
is needed to verify the universality of the findings.
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