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Abstract

Motivated by cognitive lexical models, network-based distributional semantic models (DSMs) were proposed in
[Iosif and Potamianos (2013)] and were shown to achieve state-of-the-art performance on semantic similarity
tasks. Based on evidence for cognitive organization of concepts based on degree of concreteness, we investigate
the performance and organization of network DSMs for abstract vs. concrete nouns. Results show a “concrete-
ness effect” for semantic similarity estimation. Network DSMs that implement the maximum sense similarity
assumption perform best for concrete nouns, while attributional network DSMs perform best for abstract nouns.
The performance of metrics is evaluated against human similarity ratings on an English and a Greek corpus.

1 Introduction

Semantic similarity is the building block for numerous applications of natural language processing (NLP), such as
grammar induction [Meng and Siu (2002)] and affective text categorization [Malandrakis et al. (2011)]. Distribu-
tional semantic models (DSMs) [Baroni and Lenci (2010)] arebased on the distributional hypothesis of meaning
[Harris (1954)] assuming that semantic similarity betweenwords is a function of the overlap of their linguistic con-
texts. DSMs are typically constructed from co-occurrence statistics of word tuples that are extracted from a text
corpus or from data harvested from the web. A wide range of contextual features are also used by DSM exploiting
lexical, syntactic, semantic, and pragmatic information.DSMs have been successfully applied to the problem of
semantic similarity computation. Recently [Iosif and Potamianos (2013)] proposednetwork-based DSMsmoti-
vated by the organization of words, attributes and conceptsin human cognition. The proposed semantic networks
can operate under either theattributional similarity or themaximum sense similarityassumptions of lexical se-
mantics. According to attributional similarity [Turney (2006)], semantic similarity between words is based on the
commonality of their sense attributes. Following the maximum sense similarity hypothesis, the semantic similarity
of two words can be estimated as the similarity of their two closest senses [Resnik (1995)]. Network-based DSMs
have been shown to achieve state-of-the-art performance for semantic similarity tasks.

Typically, thedegree of semantic concretenessof a word is not taken into account in distributional models.
However, evidence from neuro- and psycho-linguistics demonstrates significant differences in the cognitive orga-
nization of abstract and concrete nouns. For example, Kiehlet al. (1999) and Noppeney and Price (2004) show that
concrete concepts are processed more efficiently than abstract ones (aka “the concreteness effect”), i.e., participants
in lexical decision tasks recall concrete stimuli faster than abstract. According to dual code theory [Paivio (1971)],
the stored semantic information for concrete concepts is both verbal and visual, while for abstract concepts stored
information is only verbal. Neuropsychological studies show that people with acquired dyslexia (deep dyslexia)
face problems in reading abstract nouns aloud [Coltheart (2000)], verifying that concrete and abstract concepts
are stored in different regions of the human brain anatomy[Kiehl et al. (1999)]. The reversal concreteness effect
is also reported for people with semantic dementia with a striking impairment in semantic memory [Papagno et al.
(2009)].

Motivated by this evidence, we study the semantic network organization and performance of DSMs for estimat-
ing the semantic similarity of abstract vs. concrete nouns.Specifically, we investigate the validity of the maximum
sense and attributional similarity assumptions in network-based DSMs for abstract and concrete nouns (for both
English and Greek).



2 Related Work

Semantic similarity metrics can be divided into two broad categories: (i) metrics that rely on knowledge resources,
and (ii) corpus-based metrics. A representative example ofthe first category are metrics that exploit the WordNet
ontology [Miller (1990)]. Corpus-based metrics are formalized as DSM [Baroni and Lenci (2010)] and are based
on the distributional hypothesis of meaning [Harris (1954)]. DSM can be categorized into unstructured (unsuper-
vised) that employ a bag-of-words model [Agirre et al. (2009)] and structured that rely on syntactic relationships
between words [Pado and Lapata (2007)]. Recently, motivated by the graph theory, several aspects of the human
languages have been modeled using network-based methods. In [Mihalcea and Radev (2011)], an overview of
network-based approaches is presented for a number of NLP problems. Different types of language units can be
regarded as vertices of such networks, spanning from singlewords to sentences. Typically, network edges repre-
sent the relations of such units capturing phenomena such asco-occurrence, syntactic dependencies, and lexical
similarity. An example of a large co-occurrence network is presented in [Widdows and Dorow (2002)] for the
automatic creation of semantic classes. In [Iosif and Potamianos (2013)], a new paradigm for implementing DSMs
is proposed: a two tier system in which corpus statistics areparsimoniously encoded in a network, while the task
of similarity computation is shifted (from corpus-based techniques) to operations over network neighborhoods.

3 Corpus-Based Baseline Similarity Metrics

Co-occurrence-based: The underlying assumption of co-occurrence-based metrics is that the co-existence of
words in a specified contextual environment indicates semantic relatedness. In this work, we employ a widely-
used co-occurrence-based metric, namely, Dice coefficient[Iosif and Potamianos (2010)]. The Dice coefficient
between wordswi andwj is defined as follows:D(wi, wj) =

2f(wi,wj)
f(wi)+f(wj)

, wheref(.) denotes the frequency of
word occurrence/co-occurrence. Here, the word co-occurrence is considered at the sentential level, whileD can
be also defined with respect to broader contextual environments, e.g., at the paragraph level [Véronis (2004)].
Context-based: The fundamental assumption behind context-based metricsis thatsimilarity of context implies
similarity of meaning[Harris (1954)]. A contextual window of size2H + 1 words is centered on the word of
interestwi and lexical features are extracted. For every instance ofwi in the corpus theH words left and right of
wi formulate a feature vectorvi. For a given value ofH the context-based semantic similarity between two words,
wi andwj , is computed as the cosine of their feature vectors:QH(wi, wj) =

vi.vj
||vi|| ||vj||

. The elements of feature
vectors can be weighted according various schemes [Iosif and Potamianos (2010)], while, here we use a binary
scheme.

4 Network-based Distributional Semantic Models

Here, we summarize the main ideas of network-based DSMs as proposed in [Iosif and Potamianos (2013)]. The
network is defined as an undirected (under a symmetric similarity metric) graphF = (V,E) whose the set of
verticesV are all words in our lexiconL, and the set of edgesE contains the links between the vertices. The links
(edges) between words in the network are determined and weighted according to the pairwise semantic similarity
of the vertices. The network is a parsimonious representation of corpus statistics as they pertain to the estimation of
semantic similarities between word-pairs in the lexicon. In addition, the network can be used todiscover relations
that are not directly observable in the data; such relations emerge via the systematic covariation of similarity
metrics. For each word (reference word) that is included in the lexicon,wi ∈ L, we consider a sub-graph ofF ,
Fi = (Ni, Ei), where the set of verticesNi includes in totaln members ofL, which are linked withwi via edges
Ei. TheFi sub-graph is referred to as the semantic neighborhood ofwi. The members ofNi (neighbors ofwi)
are selected according to a semantic similarity metric (co-occurrence-basedD or context-basedQH defined in
Section 3) with respect towi, i.e., then most similar words towi are selected. Next, we present two semantic
similarity metrics that utilize the notion of semantic neighborhood [Iosif and Potamianos (2013)].

4.1 Maximum Similarity of Neighborhoods

This metric is based on the hypothesis that the similarity oftwo words,wi andwj , can be estimated bythe
maximum similarity of their respective sets of neighbors, defined as follows:

Mn(wi, wj) = max{αij , αji}, where αij = max
x ∈ Nj

S(wi, x), αji = max
y ∈ Ni

S(wj , y). (1)

αij (orαji) denotes the maximum similarity betweenwi (orwj) and the neighbors ofwj (orwi) that is computed
according to a similarity metricS: in this work eitherD orQH . Ni andNj are the set of neighbors forwi andwj ,



respectively. The definition ofMn is motivated by the maximum sense similarity assumption. Here the underlying
assumption is that the most salient information in the neighbors of a word are semantic features denoting senses of
this word.

4.2 Attributional Neighborhood Similarity

The similarity betweenwi andwj is defined as follows:

Rn(wi, wj) = max{βij , βji}, where βij = ρ(CNi

i , CNi

j ), βji = ρ(C
Nj

i , C
Nj

j ) (2)

where CNi

i = (S(wi, x1), S(wi, x2), . . . , S(wi, xn)), and Ni = {x1, x2, . . . , xn}.

Note thatCNi

j , CNj

i , andCNj

j are defined similarly asCNi

i . Theρ function stands for the Pearson’s correlation
coefficient,Ni is the set of neighbors of wordwi, andS is a similarity metric (D orQH). Here, we aim to exploit
the entire semantic neighborhoods for the computation of semantic similarity, as opposed toMn where a single
neighbor is utilized. The motivation behind this metric is attributional similarity, i.e., we assume that semantic
neighborhoods encode attributes (or features) of a word. Neighborhood correlation similarity in essence compares
the distribution of semantic similarities of the two words on their semantic neighborhoods. Theρ function incorpo-
rates the covariation of the similarities ofwi andwj with respect to the members of their semantic neighborhoods.

5 Experimental Procedure

Lexica and corpora creation: For English we used a lexicon consisting of8, 752 English nouns taken from the
SemCor31 corpus. In addition, this lexicon was translated into Greekusing Google Translate2, while it was further
augmented resulting into a set of9, 324 entries. For each noun an individual query was formulated and the1, 000
top ranked results (document snippets) were retrieved using the Yahoo! search engine3. A corpus was created for
each language by aggregating the snippets for all nouns of the lexicon.
Network creation: For each language the semantic neighborhoods of lexicon noun pairs were computed following
the procedure described in Section 4 using either co-occurrenceD or context-basedQH=1 metrics4.
Network-based similarity computation: For each language, the semantic similarity between noun pairs was
computed applying either the max-senseMn or the attributionalRn network-based metric. The underlying seman-
tic similarity metric (theS metric in (1) and (2)) can be eitherD orQH . Given that for both neighborhood creation
and network-based semantic similarity estimation we have the option ofD or QH , a total of four combinations
emerge for this two-phase process: (i)D/D, i.e., use co-occurence metricD for both neighborhood selection and
network-based similarity estimation, (ii)D/QH , (iii) QH /D, and (iv)QH /QH .

6 Evaluation Datasets

The performance of network-based similarity metrics was evaluated for the task of semantic similarity between
nouns. The Pearson’s correlation coefficient was used as evaluation metric to compare estimated similarities against
the ground truth (human ratings). The following datasets were used:
English (WS353): Subset of WS353 dataset [Finkelstein et al. (2002)] consisting of 272 noun pairs (that are also
included in the SemCor3 corpus).
Greek (GIP): In total, 82 native speakers of modern Greek were asked to score the similarity of the noun pairs
in a range from 0 (dissimilar) to 4 (similar). The resulting dataset consists of99 nouns pairs (a subset of pairs
translated from WS353) and is freely available5.
Abstract vs. Concrete: From each of the above datasets two subsets of pairs were selected, where both nouns
in the pair are either abstract or concrete, i.e., pairs consisting of one abstract and one concrete nouns were ruled
out. More specifically,74 abstract and74 concrete noun pairs were selected from WS353, for a total of148 pairs.
Regarding GIP,18 abstract and18 concrete noun pairs were selected, for a total of36 pairs.

1http://www.cse.unt.edu/ ˜ rada/downloads.html
2http://translate.google.com/
3http://www.yahoo.com//
4We have also experimented with other values of context window H not reported here for the sake of space. However, the highestperfor-

mance was achieved forH = 1.
5http://www.telecom.tuc.gr/ ˜ iosife/downloads.html



7 Results

The performance of the two proposed network-based metrics,Mn andRn, for neighborhood size of100, is pre-
sented in Table 1 with respect to the English (WS353) and Greek (GIP) datasets. Baseline performance (i.e., no use
of the network) is also shown for co-occurrence-based metricD and context-based metricQH . For the max-sense

Language: Number of Baseline Network Neighbor selection / Similarity computation
dataset pairs D QH metric D/D D/QH QH /D QH /QH

English: 272 0.22 0.30 Mn=100 0.64 0.64 0.47 0.46
WS353 Rn=100 0.50 0.14 0.56 0.57

Greek: 99 0.25 0.13 Mn=100 0.51 0.51 0.04 0.04
GIP Rn=100 -0.11 0.03 0.66 0.11

Table 1: Pearson correlation with human ratings for neighborhood-based metrics for English and Greek datasets.
Four combinations of the co-occurrence-based metricD and the context-based metricQH were used for the defi-
nition of semantic neighborhoods and the computation of similarity scores. Baseline performance is also shown.

similarity Mn=100 metric, the use of the co-occurrence metricD for neighbor selection yields the best correla-
tion performance for both languages. For the attributionalsimilarity Rn=100 metric, best performance is achieved
when using the context-based metricD for the selection of neighbors in the network. As explained in [Iosif and
Potamianos (2013)], the neighborhoods selected by theD metrics tend to include words that denote word senses
(yielding best results for similarity), while neighborhoods computed using theQH metric are semantically broader
including word attributes (yielding best results for attributional similarity). The network-based DSM results are
also significantly higher compared to the baseline for both languages. The best results achieved byD/QH for the
Mn=100, andQH /D for theRn=100 are consistent with the results reported in [Iosif and Potamianos (2013)] for
English. The best performing metric for English isMn=100 (max-sense) while for GreekRn=100 (attributional).
Overall, utilizing network neighborhoods for estimating semantic similarity can achieve good performance6, and
the type of metric (feature) used to select the neighborhoodis a key performance factor.

Next, we investigate the performance of the network metricswith respect to the neighborhood sizen for the
abstract and concrete noun pairs included in English and Greek datasets. The performance of the max-senseMn

(D/QH) metric is shown in Fig. 1(a),(c) for the (subsets of) WS353 and GIP, respectively. The performance over
the whole (abstract and concrete) dataset is shown with a solid line. Similarly the results for the attributionalRn

(QH /D) metric are shown in Fig. 1(b),(d). The main conclusions forthese experiments (for both languages) are:
1) The correlation performance for concrete noun pairs is higher than for abstract noun pairs. 2) For concrete
nouns the max-senseMn metric achieves best performance, while for abstract nounsthe attributionalRn metric is
the top performer. 3) For theRn network metric, very good performance is achieved for abstract noun pairs for a
small neighborhood sizen (around10), while for concrete nouns larger neighborhoods are needed(up to40 and
30 neighbors, for English and Greek, respectively).

Type of neighbors (abstract/concrete)
Neighbor Number of Type of English (WS353) Greek (GIP)

selection metric reference nouns reference nouns abstract concrete abstract concrete

D 15 abstract 76% 24% 82% 18%
D 15 concrete 36% 64% 23% 77%
QH 15 abstract 82% 18% 91% 9%
QH 15 concrete 31% 69% 31% 69%

Table 2: Distribution of abstract vs. concrete nouns in (abstract/concrete noun) neighbourhoods.

In order to further investigate the network organization for abstract vs. concrete nouns, we manually inspected
the top twenty neighbors of 30 randomly selected nouns (15 abstract and 15 concrete) and classified each neighbor
as either abstract or concrete. The distributions of abstract/concrete neighbors are shown in Table 2 as a function
of neighbor selection metric (D vs. QH) and reference noun category. It is clear, that the neighborhoods of
abstract nouns contain mostly abstract concepts, especially for the QH neighbor selection metric (similarly the
neighborhoods of concrete nouns contain mainly concrete concepts). The neighbors of concrete nouns mainly
belong to the same semantic class (e.g., “vehicle”, “bus” for “car”) often corresponding to relevant senses. The

6The best correlation score for the WS353 dataset does not exceed the top performance (0.68) of unsupervised DSMs [Agirre et al. (2006)].
However, we have found that the proposed network metrics obtain state-of-the-art results for other standard datasets,e.g.,0.87 for [Rubenstein
and Goodenough (1965)] and0.91 for [Miller and Charles (1998)].
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Figure 1: Correlation as a function of number of neighbors for network-based metrics. Max-senseMn (D/QH)
for datasets: (a) English and (c) Greek. AttributionalRn (QH /D) for datasets: (b) English and (d) Greek.

neighbors of the abstract nouns have an attributive function, reflecting relative attributes and/or aspects of the
referent nouns (e.g., “religion”, “justice” for “morality”).

8 Discussion

We investigated the performance of network-based DSMs for semantic similarity estimation for abstract and con-
crete noun pairs of English and Greek. We observed a “concreteness effect”, i.e., performance for concrete nouns
was better than for abstract noun pairs. The assumption of maximum sense similarity as encoded by theMn metric
consistently yielded higher performance for the case of concrete nouns, while the semanticsimilarity of abstract
nouns was better estimated via the attributional similarity assumptionas implemented by theRn metric. The
results are consistent with the initial hypothesis that differences in cognitive organization may warrant different
network organization in DSMs. In addition, abstract concepts were best modeled using an attributional network
DSM with small semantic neighborhoods. This is a first step towards the better understanding of the network orga-
nization of DSMs for different categories of concepts. In terms of computation algorithms of semantic similarity,
it might prove advantageous to define a metric that combines the maximum sense and attributional assumptions
based on the semantic concreteness of the words under investigation. Further research on more data and languages
is needed to verify the universality of the findings.
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