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Abstract

In this paper, we present an approach for recognizing spatial containment relations that hold
between event mentions. Event mentions refer to real-world events that have spatio-temporal prop-
erties. While the temporal aspect of event relations has been well-studied, the spatial aspect has
received relatively little attention. The difficulty in this task is the highly implicit nature of event
locations in discourse. We present a supervised method that is designed to capture both explicit and
implicit spatial relation information. Our approach outperforms the only known previous method by
a 14 point increase in F1-measure.

1 Introduction
Understanding the interaction of events expressed in natural language requires the ability to recog-
nize spatio-temporal relations between event mentions. While the automatic recognition of temporal
relations has received significant attention in the literature (Pustejovsky et al. 2003, Verhagen et al.
2009, UzZaman et al. 2012), the automatic recognition of spatial relations has received comparatively
little attention. We believe this is partly due to the difficulty of the task as compared to temporal event
relations. The difficulty stems from the fact that (i) spatial relations are multi-dimensional and there-
fore have a more complex representation, (ii) narrative structure is largely chronological in nature,
and the events are often presented by their relative temporal order instead of their relative spatial
arrangement, and (iii) by extension, spatial event relations are typically implicit in nature, relying on
an intuitive understanding of the semantic properties of events.

Spatial relations between events that are explicitly expressed are typically indicated through syn-
tactic relationships, such as “The [presentation] at the [conference] was excellent”. Here, the prepo-
sition at indicates the presentation event is spatially contained within the conference event.

Far more common, however, are implicitly expressed spatial event relations. For example, in the
sentence “The [bombing] victim [died] immediately”, it is clear that the died event is spatially related
to the bombing event. Specifically, we would say that the bombing event spatially contains the died
event since the assumed bounds of the bombing is larger.

An automatic method for recognizing spatial relations between events would be useful for many
extraction and reasoning tasks. For instance, mapping the location of entities mentioned in discourse
has generally been accomplished through semantic role labeling, which links a predicate with its
local semantic arguments. However, locations are relatively rare in discourse as compared to verbal
and nominal predicates. Usually the location of an entity is not directly stated in the entity’s local
argument structure. Instead, this information is implicit as the relevant information is located outside
a limited syntactic/semantic scope. Tying an entity to a location mentioned elsewhere in the discourse
requires either co-reference (either entity or event co-reference), or an understanding of the spatial
interactions present within the discourse structure so that relevant spatial inferences may be made.



The goal of this paper is to enable this type of spatial reasoning by connecting events through spatial
containment relations.

These spatial relations allow for complex reasoning beyond simply placing an entity on a map.
Consider the following sentence taken from a surgeon’s operative note:

A longitudinal [incision] through the umbilicus was [carried] down through to the fascia.

Here the nominalized incision event is spatially tied to the carried event. Understanding the spatial
relation between these events allows us to recognize that a three-dimensional path exists from the
point of the incision down to the fascia, a layer of tissue between the skin and muscles. This deep
spatial understanding of text motivates new forms of information extraction, machine reading, and
question answering.

In this paper, we present a mostly supervised approach to the detection of spatial event relations.
Due to the presense of both explicitly and implicitly expressed relations, we rely on two different
classes of features. The first class, which targets explicitly expressed relations, utilizes typical in-
formation extraction features, such as lexical and syntactic context. The second class, which targets
implicitly expressed relations, focuses on identifying semantically related events that are more likely
to be spatially related (such as presentation and conference, or bombing and die). This allows us to
leverage unlabeled data to derive semantic similarity measures.

The remainder of this paper is organized as follows. Section 2 outlines related work in generalized
event relations, generalized spatial relations, as well as current work in spatial event relations. Section
3 describes the data we use to train and evaluate our models. Section 4 details our supervised method,
including our classifier, features, and feature selection technique. Section 5 contains the results of our
experiments. Section 6 discusses the limitations of our approach and proposes future work. Finally,
Section 7 concludes by summarizing our work.

2 Related Work
Event relations in general have received significant attention in the literature, but largely in the form
of temporal event relations. The TimeML annotation standard (Pustejovsky et al., 2003) for temporal
relations as well as the TimeBank corpus (Pustejovsky et al., 2003) have inspired a significant number
of automatic systems for this task (Verhagen et al. 2009, Verhagen et al. 2010, UzZaman et al. 2012,
Sun et al. 2013). Beyond temporal relations, work in other types of event relations has received less
attention. Prominent among the other event relation types is causation (Bethard and Martin 2008,
Beamer and Girju 2009, Rink et al. 2010, Do et al. 2011) and co-reference (Chen et al. 2009, Bejan
and Harabagiu 2010). Beyond event relations, Chambers and Jurafsky (2008, 2009) and Bejan (2008)
both create narrative schemas based on commonly co-occurring event structures, which is a useful
tool for determining a prior likelihood of two or more events being related.

Spatial relations between non-events has likewise received much attention. Several such works
are spatial annotation schemas. SpatialML (Mani et al., 2008) focuses on recognizing geographic
regions and expressions. For example, the following text:

a town some 50 miles south of Salzburg in the central Austrian Alps

SpatialML would recognize town, Salzburg, Austrian, and Alps as geographic locations, normalize
Salzburg and Austrian to their respective geo-political entities, recognize the direction and distance
relation between town and Salzburg, and the containment relations between Salzburg and Austrian
and Alps and Austrian. SpatialML has no handling, however, for spatial event relations. Likewise,
SpRL (Kordjamshidi et al., 2010) represents spatial relations beyond geographic relations, but would
have difficulty representing event relations because SpRL requires an indicator (trigger, e.g., in, on,
at, to the left of) that is rarely present in spatial event mentions. SpRL does, however, have an
annotated corpus (Kordjamshidi et al., 2012) and several automatic approaches have been proposed
(Kordjamshidi et al. 2011, Roberts and Harabagiu 2012). STML (Pustejovsky and Moszkowicz,
2008) focuses on the annotation of spatial relations for events, specifically motion events. But their
scheme connects a motion event with its motion-specific arguments, and does not include event-event
spatial relations.

Despite significant work in both event relations and spatial relations, work specific to spatial
relations between events has been quite sparse. ISO-Space (Pustejovsky et al. 2011a, Pustejovsky
et al. 2011b, Lee et al. 2011) is an on-going effort to develop a detailed annotation system for spatial



information (beyond just spatial language). However, no publicly available corpus is known to exist.1

Prior to this work, we have developed a corpus (Roberts et al., 2012) of spatial event relations, which
is discussed in detail in the next section. While its spatial representation is not as rich as ISO-Space,
it contains similar relation types and is designed to represent the highly implicit nature of spatial
event relations.

3 Data
In order to conceptualize spatial relations between event mentions, the event itself must be spatially
conceptualized. In Roberts et al. (2012), we suggest this can be done by approximating the spatial
bounds of an event. For instance, an election event might assume the spatial bounds of the geo-
political entity conducting the election; a sporting event may be bounded by the field or stadium in
which it is played; and a battle event may be bounded by the immediate vicinity of the various battle
participants. A spatial relation between events, then, can be determined by comparing the spatial
bounds of two events, such as whether they are equal, overlap, or one event subsumes the other.

This corpus consists of 162 newswire documents, a subset of the SpatialML corpus (Mani et al.,
2008). The corpus contains 5,029 events and 1,695 spatial relations. Annotators marked each event
as “spatial” or not based on whether they had intuitive spatial bounds (e.g., “the gas [attack]” would
be spatial while “the stock price [increase]” would not be spatial as it is not clear what the spatial
bounds of increase might be). In order for a spatial relation to hold between two events, both events
must be marked as spatial. For the purposes of this paper, we only evaluate on event pairs in which
both events are manually marked as spatial. The data contains six different spatial relation types:

1. SAME: Two events E1 and E2 have indistinguishable spatial bounds.

2. CONTAINS: E1’s spatial bounds contain E2’s spatial bounds.

3. R CONTAINS: E2’s spatial bounds contain E1’s spatial bounds.

4. OVERLAPS: E1 and E2 share partial spatial bounds but neither is a sub-set of the other.

5. NEAR: E1 and E2 do not share spatial bounds but they are within close proximity of each other.

6. DIFFERENT: E1 and E2 have distinguishably different spatial bounds.

These relation types are based on RCC-8 (Randell et al., 1992). Four of the part-of relations are
collapsed into CONTAINS and R CONTAINS. Also, NEAR and DIFFERENT replace the disconnected
and externally connected relations, a design decision similar to SpatialML. An example sentence
from this corpus exemplifies the CONTAINS relation:

In October of 1985, four hijackers under his command [took] over the Italian cruise ship
Achille Lauro and [killed] a wheelchair-bound American tourist, Leo Klinghoffer.

Here, the took event is determined to exhibit a CONTAINS relation with the killed event, as took’s
spatial bounds are determined to be the entire cruise ship, while the spatial bounds of killed are the
immediate vicinity of the victim.

In addition to annotating spatial events and spatial relations between events, the corpus contains
annotated participants and locations of the events. In this way we can graphically represent the spatial
relationships between various entities in the text, such as in Figure 1. This graph allows us to make
the inference that Leo Klinghoffer was located on the Achille Lauro when he was killed. Without
such a relation, we would have to make the (un-principled) assumption that the closest location (in
this case a vehicle) is the location of the killed event.

4 Method
We utilize a mostly supervised, two-stage machine learning approach for detecting spatial event
relations. A binary support vector machine (SVM) classifier is used for recognizing spatial relations
and a multi-class SVM is used for determining the relation type. Previous SVM-based approaches to
relation extraction have utilized advanced kernels (e.g., Nguyen et al. (2009)). In this work, however,

1Gaizauskas et al. (2012) have annotated a small corpus of facility design reports with a version of ISO-Space, but it is
neither publicly available nor large enough to utilize as training data in a machine learning approach. Furthermore, the majority
of its spatial relations (perhaps all) are not between events.
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In October of 1985, four hijackers under his command took over the Italian cruise ship 
Achille Lauro and killed a wheelchair-bound American tourist, Leo Klinghoffer.

Figure 1: Example spatial event relation from our corpus.

we focus on the utility of different feature types and perform our experiments with a linear kernel
using LibLinear (Fan et al., 2008). We evaluate on 3-sentence and 1-sentence windows for potentially
related events (annotators were limited to relations in a 3-sentence window). Since the vast majority
of event mentions are not spatially related, we adjust the negative weight to 0.05 (leaving the positive
weight at 1.0). For the multi-class relation type classifier, SAME and CONTAINS make up the vast
majority of relations and therefore get a weight of 0.1. These weights were tuned using a different
cross-validation split than that used on our experiments below. Below we detail the features used
by the two classifiers. For both classifiers, a large number of partially overlapping features were
developed, most of which are described below. We utilize a greedy forward/backward technique
known as floating forward feature selection (Pudil et al., 1994) to optimize the best sub-set of features.

4.1 Explicit Relation Features
These features are designed to recognize explicit statements of spatial relatedness based on the con-
text of the relation. Sometimes explicit relations are expressed with spatial prepositions such as in,
on, or at. In general, however, we consider explicit relations to be those in which the local context
indicates a spatial relation is highly likely. For instance:

After today’s air [strikes], 13 Iraqi soldiers [abandoned] their posts and [surrendered] to
Kurdish fighters.

Here, abandoned and surrendered share the same subject and are syntactically connected through
the conjunction and. When an actor performs two actions at connected or overlapping time intervals,
the actions are necessarily spatially related. While an and dependency doesn’t necessarily guarantee
temporal connectivity, it is highly suggestive and therefore acts as a good indicator.

We utilize the following classes of features:

• Words between arguments, which includes features that are ignored entirely when the argu-
ments are separated by a certain number of tokens or sentences. These bag-of-word features
provide useful lexical context that is not always available from a dependency parse (such as
modifiers).

• Token-level and sentence-level distance. Event mentions that are lexically closer are more
likely to be spatially related, and mentions in different sentences are much less likely to be
spatially related.

• Dependency paths. We use the Stanford Dependency Parser (de Marneffe et al., 2006) with the
collapsed representation so that preposition nodes (prep) become edges (e.g., prep at). This
also results in more semantic conjunction edges (conj and instead of simply conj).

• TimeML relations from TARSQI (Verhagen et al., 2005), including TLinks, SLinks, and ALinks.
TLinks are typical temporal links, such as one event occurring before or after another event.
SLinks are a subordinate links, such as in “John [promised] to [buy] wine for Mary”. ALinks
are aspectual links, such as “John [stopped] [talking]”.

• Event participants/locations from the manually annotated data. If necessary these could be
automatically annotated by a semantic role labeler.



Top 5 Events via TLink PMI
bomb PMI pass PMI drive PMI

strafe 0.298 touchdown 0.288 intoxicate 0.276
nuke 0.281 defense 0.277 floorboarding 0.271
landmark 0.273 exam 0.268 park 0.239
shell 0.242 interception 0.249 impair 0.231
machine-gun 0.242 amendment 0.233 bike 0.208

Top 5 Events via Gigaword Sentence PMI
bomb PMI pass PMI drive PMI

strafe 0.295 touchdown 0.354 homer 0.289
plot 0.292 veto 0.237 intoxicate 0.260
nuke 0.291 vote 0.230 floorboarding 0.257
landmark 0.255 squash 0.212 reformat 0.256
scan 0.249 test 0.209 touchdown 0.234

Table 1: Highly associated events for bomb, pass, and drive, as acquired from unlabeled data.

4.2 Implicit Relation Features
These features are designed to recognize spatial relatedness between events based entirely on their
semantic properties (i.e., without regard to context). Many times our intuitive understanding of event
structures enables the omission of linguistic context clues of spatial relations. For instance:

During a live broadcast, Geraldo [drew] a map in the sand [showing] the location of the
unit in relation to Baghdad.

Here, we understand the purpose of drew is manifested in showing, and further that in such a rela-
tionship the two events are connected by a common object (in general a drawing, but specifically
a map in this example) that forms an integral part of their spatial bounds. This kind of information
requires a source of external knowledge, potentially from (i) a manually constructed knowledge base,
(ii) knowledge built from training data, or (iii) knowledge built from unlabeled data. While manual
knowledge sources such as ConceptNet (Liu and Singh, 2004) or FreeBase (Bollacker et al., 2008)
could be utilized, they are quite sparse on event information (rather focusing on entity information).
Instead, we focus on learning which individual events are likely to participate in a spatial relation
(using the training data), which pairs of events are likely to participate in a spatial relation (also from
the training data), and which pairs of events are likely to be related (from unlabeled data).

We utilize the following classes of features:

• Individual arguments (separate features for first and second arguments). Includes features
based on event mention’s surface form, caseless form, lemmatized form, part-of-speech from
the Stanford Parser (Klein and Manning, 2003), General Inquirer categories (Stone et al.,
1966), TimeML event classes from TARSQI (Verhagen et al., 2005), WordNet (Fellbaum,
1998) synsets and hypernyms, and VerbNet (Kipper et al., 1998) classes.

• Concatenation of the above individual argument features for both arguments (e.g., “draw::show”
for lemmatized form, “25.2::29.5-2” for VerbNet classes).

• Intersection of feature values for individual argument features.

• Statistical association of events based on various resources:

– Gigaword (Parker et al., 2009) sentence co-occurrence
– TimeML relations on Gigaword
– Wikipedia co-occurrence

The statistical association features discussed above are designed to elicit spatial information from
data without spatial labels. To accomplish this, we start by extending the chronological narrative
assumption to space. That is, the narrative not only expresses a directional path through time, but a
path through space as well. Thus, events that are closer to each other in the narrative are more likely
to be spatially related. The resources mentioned above are thus drawn from different representations
of potential narratives. First, sentence co-occurrence in Gigaword is a means of discretizing the
narrative into small, tightly related sets of events. Second, TimeML relations are designed to extract



the narrative in a temporal structure. These relations have the advantage of including related cross-
sentence events while excluding un-related within-sentence events. While this is more principled,
TimeML is a difficult task, and any automatic technique would contain both noise and bias. Third,
Wikipedia’s article structure is more inclined to articles whose events take place in a single location.
Thus, we can relax our local constraint to allow for document-wide context. This not only reduces
sparsity, but is more likely to capture transitive spatial relations.

While all of these resources should be capable of providing related events, we require a method to
increase the likelihood of the event associations being spatial. For this purpose, we use the statistical
association metric known as pointwise mutual information (PMI):

PMI(x, y) = log
p(x|y)
p(y)

Where co-occurrences with less than 10 instances are discarded. PMI is a simple technique that has
been shown to be effective at natural language tasks, most appropriately narrative chain construction
(Chambers and Jurafsky, 2008). Due to the large amount of data, we require a highly efficient
technique, such as PMI, that only requires a limited view of the data.2

The result of these PMI calculations for three events (bomb, pass, and drive) are shown in Table 1.
As can be seen, PMI across this data is able to capture spatially related events: bomb is spatially
related to sub-types of bombing events such nuke and shell and other war activities such as strafe
and machine-gun. PMI captures spatially related events for multiple senses of pass and drive. For
instance, touchdown, defense, and interception are spatially related events to the sporting sense of
pass, while vote, veto and amendment are spatially related events to the political sense of pass (as
in, “pass a bill into law”). Further, as can be seen in Table 1, while the different data sources assign
different weights, there is some degree of overlap between them.

Given the different data sources, and the myriad of potential features that could be written to rep-
resent this data (in addition to all the other feature types), we utilize the automated feature selection
technique discussed above. This enables us to optimize how we present these partially overlapping
features to the classifier, ultimately resulting in increased performance. We next discuss the actual
features chosen by this technique.

4.3 Selected Features
The features chosen by the feature selector for relation detection are shown in Table 2. The feature
selector chose four explicit relation features and eight implicit relation features. The chosen implicit
relation features include the first feature chosen and five of the first six features. The features chosen
by the feature selector for relation type classification are shown in Table 3. Here, the feature selec-
tor chose only two features, both of which are implicit features, suggesting the context is of little
significance for determining specifically how two event mentions may be related. The next section
evaluates these two classifiers on held-out data.

5 Experiments
We experiment under two different settings: (1) intra-sentence relations only, and (2) intra-sentence
relations up to a 3-sentence window, the maximum relation length for the data. We evaluate both
relation recognition (whether two event mentions have a spatial relation between them) and relation
type classification (given a related pair of mentions, which is the proper relation type). These are
both evaluated on the data described in Section 3. In Roberts et al. (2012), we present a baseline
method for both spatial relation recognition and spatial relation type classification based on the event
mention words, the words between the mentions, and the mention hypernyms. We consider this our
baseline for the task. The results for spatial relation recognition are shown in Table 4, and the results
for spatial relation classification are shown in Table 5.

Our method easily outperforms the baseline for spatial relation recognition with a 30% increase
in F1-measure. The overall score is still quite low, however, owing to the difficulty of the task. This
is discussed more in the next section. Spatial relation type classification outperforms the baseline,

2For instance, our same sentence data has 837 million event pairs (14 million unique), while our TLink data has 360 million
event pairs (12 million unique).



# Type Feature Description

1
a

I
Concatenated event mention lemmas. Argument order is ignored by
representing lemmas in orthographic order. E.g., kill::take

2 E Dependency path between the event mentions. E.g., ↓conj and

3 I

TLink co-occurrence from Gigaword, adjusted by point-wise mutual
information (PMI). Specifically, we use a symmetric PMI so the feature is
mention-order independent. This is done by taking the minimum of
PMI(E1, E2) and PMI(E2, E1). (real-valued)

4 I
Concatenated event mentions in their caseless form. Argument order is
preserved. E.g., took::killed

5 I Co-occurrence from Wikipedia, adjusted using PMI. (real-valued)

6 I
Concatenated event mention lemmas. Argument order is preserved unlike
Feature 1. E.g., take::kill

7 E

Whether the two event mentions have the same location. This feature uses
the Stanford co-reference resolution system (Raghunathan et al., 2010) to
expand locations so that two events have the same location if their respective
locations belong to the same co-reference chain. (boolean-valued)

8 E Whether the two event mentions have the same participant. (boolean-valued)

9 E
Token distance between the event mentions. Reduced to scalar between
0 and 1 by computing 1− (|t1 − t2|+ 1)−1. (real-valued)

10 I

Intersection of event mention categories from the General Inquirer. E.g.,
kill’s categories are: ACTIVE, DAV, H4LVD, HOSTILE, NEGATIV, NGTV,
NOUN, PFREQ, SOCREL, STRONG, SUPV, and TRNLOSS. take’s
categories are: ACTIVE, AFFIL, BEGIN, DAV, FETCH, H4, HANDELS,
IAV, MODIF, NEED, POWER, SOCREL, STRONG, SUPV, TRY, VARY, and
VIRTUE. The intersection is thus ACTIVE (i.e., active orientation), DAV
(descriptive action verb), SOCREL (socially defined inter-personal process),
STRONG (strength), and SUPV (support verb).

11 I Intersection of event mention VerbNet classes. E.g., ∅

12 I
Concatenated event mention surface form. Argument order is ignored.
E.g., killed::took

Table 2: Spatial event relation recognition features, shown in the order chosen by the feature
selector. Type ‘E’ refers to the explicit features (Section 4.1), Type ‘I’ refers to the implicit
features (Section 4.2). Feature values taken from example in Figure 1.

# Type Feature Description

1 I Whether the ALink co-occurrence PMI (from Gigaword) is greater than 0
(i.e., is the aspectual link positively correlated?). This does not use a
symmetric PMI because the relation type order matters. (boolean-valued)

2 I Co-occurrence from Gigaword sentences, adjusted using PMI. (real-valued)

Table 3: Spatial event relation type features.
aThis was not technically the first feature chosen. Instead, the length of the dependency path was the first

feature, but this was pruned after Feature 8 was added to the feature set.



1-sentence 3-sentence
Method P R F1 P R F1

Baseline 35.1 41.3 37.9 29.1 35.5 32.0
Our Method 44.7 69.2 54.3 37.2 60.4 46.0

Table 4: Spatial event relation recognition experiments on our corpus.

1-sentence 3-sentence
Method % %

Baseline 59.3 58.3
Our Method 60.1 59.3

Table 5: Spatial event relation type classification experiments on our corpus.

but only slightly. Here, the issue is largely a matter of data imbalance: the SAME relation is favored
by the classifier in almost all cases.

Reducing the context to a single-sentence window improves the relation recognition score by
a further 8.3 points. While this would limit the reasoning power of any downstream system, it is
useful to know that performance gains are possible by focusing on an easier sub-set of the data. This
improvement in relation recognition does not apply to relation type classification, however. In the
next section we place our results in greater context and analyze some typical errors.

6 Discussion
The performance gains seen in the previous section are encouraging: they validate our assumption
that spatial information can be obtained from large amounts of unlabeled data in an efficient manner.
The overall F1-measure, though, still seems quite low compared to other natural language tasks such
as named entity recognition (NER) and semantic role labeling (SRL). However, those tasks are lim-
ited to explicit context, such as contiguous tokens for NER and parse nodes within the syntactic scope
for SRL. These tasks also utilize more predictable features, such as surface-level casing features for
NER and predictable argument structures for SRL (e.g., the syntactic subject for an active verb is
usually the ARG0). Proper comparison requires evaluating our results alongside other implicit tasks.
One such work involves implicit SRL. Gerber and Chai (2010) perform nominal SRL and achieve an
overall F1-measure of 42.3. While the tasks are not directly comparable in terms of difficulty, this
does suggest that implicit tasks require far more advanced methods to achieve superior performance
and that downstream systems will likely need to be highly tolerant to noise. To address this, we dis-
cuss future work below, analyzing the types of errors that our system makes to give context to these
ideas.

As might be guessed, rare event mentions with long dependency paths are highly likely to result
in false negatives, such as the relation between elected and disillusionment here:

Tehran had been governed by reformists since 1989, but a conservative city council was
[elected] in the February 28 municipal polls in a result attributed to a meager turnout amid
growing public [disillusionment] with electoral politics.

Here the elected and disillusionment events are judged to cover all of Tehran. The dependency
path for this relation has five edges, including the rare dependency relation prep amid. Further, the
disillusionment event is fairly rare. Such long dependency relations with rare arguments is unlikely
to be recognized by a simple machine learning classifier. Instead, this suggests an approach where
either intermediate events are able to transitively suggest spatial relations, or the dependency parse is
relaxed in certain cases to allow for longer-range relations.

As is common in semantic tasks, word sense presents an issue, resulting in a false negative:

It was believed Naotia was a [practicing] sorcerer and through his black magic he had [cast]
evil spells on villagers, prompting a group within the village to eliminate them.

Since our corpus-based method uses a lemmatized form only, when related but rare senses are used,
such as the witchcraft sense of cast, PMI is unable to attribute the proper association between the
two events.



In terms of false positives, our implicit features can result in errors when very similar events are
clearly different based on their context:

The British leader [travelled] to the United States before also [visiting] Japan, South Korea,
China on a whistle-stop tour.

Here, the spatial bounds of travelled is interpreted as being the United States and the flight from
Britain, while the visiting event is interpreted as being several Asian countries. While one might
argue these two trips are spatially related since one is a continuation of the other, the annotator in this
case chose to use neither the NEAR or OVERLAPS relations. This highlights another issue with such
implicit tasks: the annotations rely heavily on the annotator’s intuition. Not unexpectedly, the corpus
has fairly low inter-annotator agreement (Roberts et al., 2012).

One final error highlights the difference between events that are related by a narrative, and events
that are spatially related:

Police have [arrested] four people in connection with the [killings].

This false positive resulted from the high degree of association between arrested and killings, but
arrests are rarely made at the scene of the crime. One potential solution to this is to automatically ex-
tract event narrative structures, then check the locations of the events on that structure for unexpected
location changes. This would be quite challenging: automatic narrative structures proposed thus far
are quite simplistic, and most events within a narrative structure will not have an explicit location, so
a very robust model of structure would be required.

Finally, despite the accuracy score being higher than the F1-measure for relation recognition,
spatial relation type classification may be the more difficult task. Almost all errors were the result
of misclassifying a relation as SAME due to the class imbalance. While the classifier weights may
be tuned to improve F1-measure for recognition, this rarely improves a multi-class task significantly.
Our main direction for future work is to actually classify the size of events. For example, we would
like to recognize that an election has larger bounds than a protest. This would allow our classifier to
recognize when two events are very different in size, and if so which is larger. Ideally, by constricting
the set of classes for a containment relation using the sizes of the arguments, this would allow other
semantic features to contribute to relation type classification.

7 Conclusion
We have presented an approach for recognizing spatial containment relations between event men-
tions. Using a corpus of event mentions from newswire texts, we have developed a supervised clas-
sifiers for (1) recognizing the presense of a spatial relation between two event mentions, and (2)
classifying spatially related event pairs into one of five spatial containment relations. Our method
combines features that are designed to extract explicit information from the relation context, as well
as implicit information about the likelihood of two events being spatially related. We have evaluated
our method and shown substantial improvements over the pre-existing baseline, achieving an F1 of
46.0 on relation recognition and an accuracy of 59.3% on relation type classification. These gains,
though, are largely limited to the task of recognizing whether a spatial relation exists. Finally, we
have performed an error analysis to determine paths of future work on this challenging task.
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