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1 Introduction

Words get their meaning in context and Harris’s Distributional Hypothesis has been used in computa-
tional linguistics in order to identify the relationship between co-occurring words and their senses. In
general, the local context contains the necessary information for word sense disambiguation (Steven-
son&Wilks 2001). However, the exact extent of the local context varies significantly. To cope with
this problem, previous research has shown that the regularity of word usage in natural language can be
exploited (Pustejovsky&Hanks 2001). Many times, words are used in phrases with a patternable struc-
ture. On the basis of corpus evidence (Popescu&Magnini 2007), or on the basis of the lexicographer’s
intuition on the normal usage (Hanks 2005) a set of patterns can be built which makes the link between
context and word senses.

In this paper ! we focus on patterns centered on verbs. We show that their structure is learnable and
by employing a learning algorithm we are able to build a recognizer able to match such patterns against
previously unseen text. The CPA resource (Hanks & Pustejovsky 2005, Pustejovsky & Jezek 2008)
contains a set of patterns for a part of the English verbs and is built through a systematic analysis of the
patterns of meaning and use for each verb. Meaning is associated with prototypical sentences which are
extracted from the BNC. The slots of the patterns are specified with semantic types. For example, the
sentences:

(ACP) ... least that intense moment before the body abandons itself to passion.
(CCN) They danced wildly down the street, abandoning themselves to the night and the moon.

are instances of the pattern:
HUMAN abandon SELF {to ACTIVITY | to ATTITUDE}

HUMAN, SELF etc. are semantic types. The use of {} signals an optional slot of the pattern and |
signals a choice. A semantic type characterizes a whole class of nouns, and as such, the semantic types
are organized in a shallow ontology. The structure of these patterns is regular and we show that we can
use the Angluin Algorithm to build a finite state automaton (FSA) which can recognize the patterns.

Going from the set of sentences associated to each pattern to the FSA recognizer is not trivial. The
CPA does not contain information regarding the syntax of the patterns, or the senses of the words inside
a pattern and it does not provide a resource which assigns a list of possible semantic types to the nouns
of the English language. In order to obtain this information, we must rely on parsing and on other two
resources, WordNet(Miller) and SUMO(Niles&Pease 2001). WordNet is a sense repository and SUMO
is an ontology aligned to WordNet senses. We use SUMO to associate semantic types to the nouns. In the
training phase, which results in the construction of the FSA recognizer, the system learns how to identify
a certain pattern in a text where the words are replaced with SUMO semantic types. By matching a
pattern, we obtain the syntactic structure of the context and the senses of the words in the context due to
the SUMO alignment to WordNet. In the experiments we ran, we tested both the accuracy in finding the
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correct syntactic structure and the accuracy in predicting the correct sense of the words of the matched
context.

We introduce the task of pattern matching. Given an arbitrary sentence for which we know there is a
unique pattern that matches it, the task consists in finding the appropriate pattern which matches the right
words in the sentence. We analyzed the performances obtained by a baseline against a SVM approach
and against the FSA recognizer. The results show that both the SVM and the FSA recognizer are over
the baseline by several tens of percentages. The FSA recognizer reaches a significantly better accuracy
than the SVM approach. We test the approaches both by a cross validation technique and by analyzing
individually the performances on a list of verbs.

This paper is organized as follow: in the next Section we review the relevant literature on the in-
teraction between meaning, syntax, ontology and patterns. In Section 3 we describe the form of corpus
patterns and the CPA resource. in Section 4 we present the way in which the Angluin Algorithm for
learning regular grammars from examples can be modified to learn to recognize the corpus patterns. In
Section 5 the results of the experiments we carried out are presented and discussed. In the last section
we present the conclusion and further research.

2 Related Work

Based on Harris Distributional Hypothesis, many approaches to WSD have focused on the contexts
formed by the words surrounding the target word. With respect to verb behaviour, selectional restrictions
have been used in WSD ( see among others Resnik 1997, McCarthy, Caroll, Preis 2001, Briscoe et al.
2006). Also, (Hindle 1990) has tried to classify English nouns in similarity classes by using a mutual
information measure with respect to the subject and object roles. Such information is very useful only in
certain cases and, as such, it is difficult to use it directly in doing WSD.

Lin and Pantel (Lin, Pantel 2001) transpose the HDH from words to dependency trees. However,
their measure of similarity is based on a frequency measure. They maintain that a (slotX, he) is less
indicative than a (slotX, sheriff). While this might be true in some cases, the measure of similarity is
given by the behaviour of the other components of the contexts: both he and sherif f act either exactly
the same with respect to certain verb meanings, or totally differently with respect to others. However,
their method cannot be extended to take into account such differences. A classification of these cases is
instrumental for WSD. Equally important is overcoming the limitation of considering only the subject
and object. It has been shown that closed class categories, especially prepositions and particles, play
an important role in disambiguation and wrong predictions are made if they are not taken into account
(see, among others, Collins and Brooks 1995, Stetina&Nagao 1997). Our approach addresses both these
issues.

Zhao, Meyers and Grishman (Zhao, Meyers and Grishman 2004) proposed a SVM application to
slot detection, which combines two different kernels, one of them being defined on dependency trees.
Their method tries to identify the possible fillers for an event, but it does not attempt to treat ambiguous
cases; also, the matching score algorithm makes no distinction between the importance of the words,
considering equal matching score for any word within two levels of the dependency tree.

(Pederson et al. 1997-2005) have clustered together the examples that represent similar contexts for
WSD. However, given that they adopt mainly the methodology of ordered pairs of bigrams of substantive
words, their technique works only at the word level, which may lead to a data sparseness problem.
Ignoring syntactic clues may increase the level of noise, as there is no control over the relevance of a
bigram. Many of the purely syntactic methods have considered the properties of the subcategorization
frame of verbs. Verbs have been partitioned in semantic classes mainly on the basis of Levins classes of
alternation. (Dorr&Jones 1996, Dang et al. 1998, Collins 1989, McCarthy 2001, Korhonen 2002, Lapata
Brew 2004). These semantic classes can be used in WSD via a process of alignment with hierarchies
of concepts as defined in sense repository resources (Shin&Mihalcea 2005). However the problem of
the consistency of alignment is still an open issue and further research must be pursued before applying
these methods to WSD.



The relationship between events and dependency parsing is analyzed in (McClosky et al. 2011).
They extract events at the sentence granularity. However, the fact that the senses of the words are related
in describing an event is not discussed. A semi-supervised technique for the discovery of semantic
pattern is presented in (Sun&Grishman 2011). Their paper takes into account only the ACE named
entities - PERSON, GPE, LOCATION etc. While the authors tried to catch meaning relations between
their patterns, there is no clear meaning associated with each pattern. In fact, many times different
senses are found in identically syntactic contexts. To capture the differences, the semantic types must be
taken into account as well. The semantic binary relations discoverable in text are the focus of the paper
(Chan&Roth 2011). They individuate syntactico-semantic structures which could be encoded as patterns
but they do not discuss the complexity of learning them. The paper does not discuss possible extensions
of the presented method to patterns matching a whole sentence.

3 Corpus Pattern Analysis

In CPA a pattern is understood as a corpus-derived predicate-argument structure with specification of
the expected semantic type and subcategorization properties for the arguments (HanksPustejovski 2005).
A pattern may not include, and usually it does not, all the phrases presented into the subcategorization
frame. A pattern corresponds to a subgraph of the dependency graph of a set of sentences. In Table 1,
in the first column, we present three patterns of the verb abandon, and in the second column we show
prototypical examples.

Patterns Protypical examples
HUMAN | INSTITUTION he abandoned plans of working
abandon are incapacitated or have abandoned their practices
ACTIVITY | PLAN We should not abandon the search
HUMAN | INSTITUTION he had abandoned immediate hopes
abandon abandoned their principles
ATTITUDE he had abandoned his commitment to persuasion
HUMAN | GROUP citizens of Phocaea abandoned their town
abandon The lands that they abandoned
LOCATION before abandoning the site

Table 1: Patterns and Prototypical Examples

A semantic type outside a pattern is not functional. A word may be characterized by many semantic
types, but only one of them is actuated in a pattern. The lexicologists task in CPA is to find the appropriate
level of generalization of the semantic types on the basis of which senses are distinguished. The words
collocating on the same syntactic position are grouped together according to their influence on the verb.
Different patterns are often meaning contrastive. However, this is not always the case. Consider, for
example, the three sentences below:

ex1 I drove him to the house.
ex2 I drove him to his father.
ex3 I drove him to despair.

which have the following corresponding patterns:

ex1pattern HUMAN drive_3 HUMAN to BUILDING
ex2pattern HUMAN drive_3 HUMAN to HUMAN
ex3pattern HUMAN drive_5 HUMAN to PSYCHOLOGICAL_STATE



Figure 1: Distribution of number of patterns
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The patterns ex1pattern and ex2pattern, as opposed to ex3pattern, are not meaning contrastive. It would
be hard to imagine that the same semantic type could cover both house and father. Rather, these remain
separate patterns. However, the intuition is that in ex1 and in ex2, house and father are both understood
as PLACE. The CPA treats such cases as “exploitation of the norm” (Hanks 2008). The CPA provides a
different set of sentence contexts from BNC for exploitation cases. The CPA resource is freely available
from http://deb.fi.muni.cz/pdev/. Table 2 summarizes the figures related to the actual coverage of the
corpus. The number of patterns varies from 1 to 56.

Characteristics Dimension
Number of Verbs 721
Number of Patterns 2745
Number of files with Examples 5447

Table 2: CPA corpus in Figures

Figure 1 shows the distributions of the number of patterns in CPA. There are roughly a couple of
semantic types currently used in CPA. Two of them, namely "Human” and Institution” are significantly
more frequent than others; they are used 1,849 and 365 times, respectively. The CPA also provides the
likelihood of a pattern in BNC. The distribution of the patterns in corpus is not uniform, the mode being
that a dominant pattern is likely to have a few times more occurrences than the next most frequent pattern.

We computed how many times the dominant pattern for a verb has more than 40%, 60% or 80%
of occurrences, by also considering the total number of patterns for the respective verbs grouped in
intervals: verbs which have between 3 and 5 patterns, verbs which have between 5 and 20 patterns, verbs
having between 20 and 40 patterns, and verbs having between 40 and 60 patterns. For example, 65.25%
of the verbs with patterns between 5 and 20 have a dominant pattern that occurs more than 40% in the
corpus, but only 23.72% of the verbs with the same number of patterns have a dominant pattern that
occurs more than 60% of the time in the corpus. See Table 3.

coverage/patterns 2-5 6-20 21-40

40% 94.35% 6525% 25%
60% 60.45% 23.72% 12.5%
80% 271% 14.23% 0%

Table 3: Dominant Pattern Frequency in Corpus

The SUMO ontology is aligned to the senses present in Wordnet1.6. In Table 4 we list the SUMO
attributes for the direct object position for the examples listed in Table 2.

Considering all SUMO attributes of a word is likely to lead to confusion, for example in Table 4 the
“NormativeAttribute” belongs both to practice and principle, which are the direct objects in different pat-



direct object SUMO attributes

plan Plan, Abstract, icon
practice normativeAttribute, EducationalProcess
search Pursuing, Investigating, ContentDevelopment
hope EmotionalState, Reasoning
principle NormativeAttribute, Proposition
commitment TraitAttribute, Declaring
town City, Geopolitical
land LandArea, Geopolitical, Nation
site LandArea, Located

Table 4: Patterns and Prototypical Examples

terns. However, the sense determination relationship characterizing the CPA patterns (explained below) ,
allows only a certain combination of senses, to which only certain SUMO attributes correspond, because
SUMO is aligned to the sense repository. The pattern learning and recognizing algorithm must be able
to retain for a word only the SUMO features which are instantiated in a particular corpus sentence. The
algorithm presented in the next section learns the patterns, as well as which SUMO attributes are legible
in a CPA pattern for each word.

Before concluding this section we discuss a relationship between the components of the corpus pat-
terns which will be proven to be important for the construction of more accurate FSA. The relationships
between the semantic types and the senses of the verbs are such that only certain combinations are valid.
We are interested in corpus patterns for which a determination relationship holds: given either the sense
of the verb or the semantic types of one of the components then all the other can be inferred. For example
knowing that the direct object has the semantic type LAND then the verb abandon must have the sense 3.
The disambiguation of the senses of the words matched by a pattern follow a chain like relationship - it
is enough to disambiguate one component, and all the words get disambiguated. We call this relationship
Chain Clarifying Relationship (CCR) (Popescu,Magnini 2007, Popescu 2012). CCR is instrumental in
constructing accurate FSAs. By considering the difference between two CCRs we do not need to match
the whole pattern, but to identify only the distinctive semantic types in the CCRs. In Section Experiments
we analyze the influence of this relationship on the overall accuracy of the recognizer.

4 Angluin Algorithm

The Angluin’s algorithm (AA) is proved to be able to learn the minimal regular grammar that produces
or rejects a set of examples provided as input. In general, the problem of learning a regular grammar only
from positive examples is an NP-hard problem. Angluin’s algorithm is guided in learning by an oracle,
which can answer yes/no questions or give a counter example, and it runs in linear time by considering
the length of the input examples.

The AA exploits the fact that a language is regular if and only if it is prefix closed, which means that
a language is regular if and only if there is a finite number of equivalence classes of the strings, prefixes,
which affect the acceptability of the bigger strings that they initiate in the same way. As it learns new
examples, the AA builds a table of observation of all possible prefixes and suffixes. When the acceptance
of each of the strings formed by joining prefixes with suffixes is known, the table is considered closed. If
a closed table also obeys the prefix closeness condition, then it is also considered consistent. The entries
in a closed and consistent table describe a Finite State Automaton (FSA), which correctly accepts or
rejects the examples given. However, there is more that one possible regular language that describes a
set of finite examples. Therefore, when the table is closed and consistent the algorithm asks for a counter



Figure 2: System Flow
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example - which is a string that is accepted or rejected by the language to be learned, and is rejected or
accepted, respectively, by the language described in the actual table. If such a counter example is given,
the operation of closing the table is carried out again; otherwise, the algorithm stops and the desired FSA
is the one described in the table. (Angluin 1987).

The oracles questions about the acceptance of a new string formed by prefixing and suffixing parts
of the previously seen strings are called the membership queries. The oracles questions regarding the
equivalence between the FSA found by consistently closing the table and the FSA parsing the real gram-
mar are called equivalence queries. A counter example to the equivalence query shows that the actual
FSA is too general and new states must be found.

The AA receives as input all the strings created by considering all the SUMO attributes for the
words in training and learns the correct prefixes and suffixes for the patterns. The membership queries
are carried out in order to determine what SUMO attributes form valid strings in which slot. The
equivalent queries are carried out to determine that no relevant SUMO attribute is left unanalyzed.
If a word has many SUMO features, it generates more symbols: practice, for example, generates
EDUCATIONAL_PROCESS, and NORMATIVE_ATTRIBUTE. The same string may be
generated by two sentences with different patterns, for example abandon practice and abandon prin-
ciple, which generates HUMAN abandon NORMATIVE ATTRIBUTE (see Table 1 and Table 4). This
is incorrect, because if the FSA accepts HUMAN abandon NORMATIVE _ATTRIBUTE then the FSA is
unable to assign a unique pattern to the text. Such strings are considered counter examples for the AA
algorithm and the system learns that they are not part of the language to be learned. Consequently, the
respective SUMO feature for that particular slot will not be considered by the final FSA. Whether a
SUMO attribute is considered or not depends entirely on the structure of the patterns for that verb. The
flow is plotted in Figure 2.

The grammars we are interested in are finite. The role of the oracle can be skipped in this case.
In an input file we provide the set of strings with the specification of their acceptances. The AA reads
the examples from the input file and builds the table. The answer to both membership queries and
equivalence queries is carried out automatically by assuming that if a string is not in the input file, then it
is not accepted, and by assuming that if there are strings in the input file which are not generated by the



Figure 3: the FSA recognizer for a subset of examples for move
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current FSA, then any of them can serve as a counter-example and the search for a new FSA resumes.

The input to the AA algorithm is a set of examples of patterns and the output is a FSA able to
recognize only the strings that corresponds to the contexts which are matched by only one pattern. In
Figure 3 we present the FSA generated by a subset of examples for move.

S Experiments

We ran several experiments in order to evaluate the performances of pattern recognition via regular gram-
mars. We started by running a 4 fold cross validation experiment. Because we wanted to analyze the
results in more detail, we look for a set of verbs having a representative number of patterns and of exam-
ples for the whole set of verbs and we analyzed specifically the accuracy of various methods individually.
The recognizing process using FSA can be made in two scenarios: using a parser or not. The second
scenario, no parsing for the input text, is challenging, because the recognizer acts as syntactico-semantic
parser which outputs a dependency path corresponding to the context matched and it also outputs the
senses of the words . While the accuracy of pattern recognition is lower in this case, the results are
promising.

The SUMO features are obtained for the noun phrases heads via a public available API (Pianta et al.
2002). At the test phase all the possible SUMO combinations inside the syntactic slots of a pattern are
given to FSA. If the FSA is unable to find a derivation, or if it finds more than one, it means that we are
unable to match a single pattern against the given sentence and these cases are considered errors.

The results for the 4 fold cross validation experiment are presented in Table 8. Both the SVM and
the FSA reaches a good accuracy. However, the results may be biased by the existence of verbs having
just one pattern or of verbs having a dominant pattern. In such cases, which represents more or less a
quart of the total number, there is no ambiguity so we can hardly talk about a recognition process. For
a clearer understanding of the behavior of the systems we chose a set of 12 verbs having a number of
patterns between 3 and 9, half of them having exactly 5 patterns (see Table 5). The maximal and the
minimal frequencies of a pattern are listed in the third and forth column, respectively.

We are interested in the maximal and minimal frequencies of the pattern, because, usually, there is
little training available for those patterns with low frequency. The risk of not recognizing the minimal
frequency is high. The approach presented here depends to a little extent on the dimension of the training
corpus and to a large extent on its quality. That is why we wanted to analyze the performances for



verb pattern max Freq min Freq # train 10%

abandon 8 48% 1% 41
accompany 5 31% 1% 23
acknowledge 5 54% 1% 56
acquire 5 51% 2% 46
arrive 5 69% 1% 41
execute 5 36% 8% 60
fence 3 64% 2% 5

furnish 4 31% 14% 21
launch 6 60% 3% 41
maintain 5 67% 2% 9

saddle 4 71% 2% 9

yield 9 24% 4% 55

Table 5: Test Verbs

different types of patterns. The available sentences were divided randomly into training and test sets. We
considered approximately two training sets containing approximately 10% and 30% of all the available
sentences, respectively. With a training ratio of 10%, 8 verbs had between 40 and 50 sentences. Two
verbs, accompany and furnish, have around 20 examples each, and two other verbs have only 5 and,
respectively, 9 examples each (see column 5 Table 6). The 30% training sets had three times more
examples. The very first run we tried was to use all SUMO features, which led to the acceptance of
all the possible combinations. The result was very low; in more than 90 percent of the cases when the
recognition set was not empty, it contained more than a pattern. This experiment showed the necessity
of observing the CCR condition for the CPA patterns. If the CCR condition is observed, then not all the
SUMO attribute combinations are accepted. All the following experiments are conducted by observing
the CCR condition (see section 4). Using a 10% ratio for training was enough to obtain a very good
precision, on average between 80% and 90%. However, fence expectedly performed poorer than the
rest, with a precision of 45%, as it contained only 5 training examples. Considering the precision for two
other verbs with a relatively low number of training examples, namely accompany and furnish, we
can see that 20 examples seem to be enough for a precision around 96% (Table 7).

The low figure for recall has three main different causes: (1) the errors along the pipe generated at
parsing time and at dependency extraction (2) the lack of SUMO features for pronouns and proper names
and (3) the rigid condition of recognizing all the elements of a pattern, as requested by the FSA.

verb BasicFSA 10% train RECALL  ExtendedFSA 10% train RECALL
abandon .26 .36
accompany 22 .49
acknowledge 10 12
acquire 25 48
arrive 25 37
execute .10 22
fence 23 23
furnish .10 32
launch 2 45
maintain .1 .36
saddle 22 .34
yield .14 4

Table 6: Recall for BasicFSA vs. ExtendedFSA with 10%

The first two causes are not directly linked to the methodology described here. These causes could
be addressed in an independent manner. However, the third cause is directly linked to the way the



FSA works and we wanted to focus on it. When the string corresponding to a test sentence is not
complete, the FSA rejects it. As many of the patterns may differ due to the direct object or due to the
prepositional complement, it suffices to correctly recognize that part of the string in order to correctly
categorize the test sentence as belonging to one group or another. These subparts of the patterns can
be automatically generated by comparing the patterns against each other. We can include them in the
training set as well. In a second experiment we provided to the AA the automatically generated subparts
of the patterns. We refer to the new automaton as extended FSA in order to distinguish it from the
initial FSA trained on complete patterns, which we called BasicFSA. The recall increased significantly
by using the extendedFSA. For certain verbs the recall was doubled or nearly doubled. In Table 6 the
results obtained are listed. We also ran the Extended FSA with a 30% training corpus. The results are
listed in Table 7.

Basic+10% Extended+30%

verb precision recall FI1 precision recall FlI
abandon 95 26 41 97 .6 74
accompany .96 22 .35 .87 g1 T8
acknowledge .88 10 18 9 25 .39
acquire .98 25 .39 97 .6 74
arrive .60 25 35 1 41 .58
execute 78 A0 15 .85 46 .59
fence 45 2330 57 36 44
furnish 1 A .16 .84 42 .56
launch .99 20 33 .95 79 .87
maintain 93 A0 17 9 48 .63
saddle 1 22 36 1 36 .68
yield .96 14 24 .96 ST .62

Table 7: BasicFSA + 10% vs. ExtendedFSA + 30% training set

Considering a training corpus which represents 30% of the total number of corpus sentences does
not mean that the training was three times more informative than a 10% training corpus. This happens
because it is not unusual for otherwise different sentences to have the same word on the same spot in the
argument structure. If two such sentences were in the training set, there was nothing new to learn. It
seemed that the precision is not affected by the dimension of the training set. We noticed that even the
low frequency patterns were correctly identified. However, the increase in recall is significant. Both the
increasing of the training set and the improvement brought by the ExtendedFSA are equally contributors
to this.

A baseline of the most frequent pattern scores low. The precision never exceeds 40% and the recall
is 18.65%. It is most likely that these low figures are due to the fact that the CPA corpus is not a random
part of BNC; on a totally random corpus, the baseline is expected to perform better. A SVM approach
which considers the right and the left context relatively to the target verb (Giuliano et all. 2009) did not

method Fi
method Fl BasicFSA+10% 26.58
BasicFSA 53.61 BasicFSA+30% 37.45
[cross validation] ExtendedFSA 71.93 [12 verbs] ExtendedFSA+10% 45.08
SVM 68.58 ExtendedFSA+30% 60.52
MostFrequent 48.12 SVM+30% 55.71
MostFrequent 21.85

Table 8: Cross Validation and 12 Verb F1 results



perform better either. It reached an average precision of 65%, and a recall a little lower than 48%. The
SVM approach works best with contexts that are bigger than the sentence, which were not available in
this experiment. However the SVM figures reported above refer only to verb sense and not to pattern
recognition. In Table 8 the F1 formula averaged for all verbs is presented for the 4-fold cross validation
and for the set of the chosen 12 verbs respectively. A last experiment we conducted was to see how
much the learned FSA matches against the raw text. The test sentences werent parsed anymore but
all the nouns were considered together with their SUMO features and were sent into input to the FSA.
For the 12 chosen verbs we obtained the results reported in Table 9. Using the FSA recognizer in this
way means to have a deep semantic parser which provides in the same time the syntax, the dependency
relationships, the senses of the words and ontological links. These are not separate operations carried in
cascade, but the results of “understanding” a verbal phrase according to the grammar associated with the
respective verb. The experiments on raw text show that it is possible to develop a technique which does
not necessarily make use of a parser. However, the interaction between two CCRs which are recognized
in the same sentence must be first resolved in order to adopt such technique.

verb subject F1  object F1 | verb subject F1  object F1
abandon .55 .59 fence 22 31
accompany 42 .34 furnish 44 .59
acknowledge .39 22 launch .58 48
acquire Sl .58 maintain .39 .37
arrive .6 54 saddle .34 41
execute 46 .61 yield .52 .49

Table 9: Applying FSA to raw text

6 Conclusion and Further Research

The CPA is a resource that creates links between word senses and word usage. A mutual sense depen-
dency relationship acts between the slots of a pattern. We presented a methodology for pattern learning
and recognition using finite state automata. A FSA is built for each verb by using dependency chains
with SUMO attribute features. In the process of learning only the relevant SUMO features are retained.
The results suggest that the methodology is stable and works properly when the slots of the patterns
are filled. The method is very precise for frequent senses as well as for less frequent senses. However,
in order to improve the coverage, a module which handles the pronouns and proper names should be
implemented. This represents the next goal for us.

The experiments we carried out suggest that the quantity of data required for training is small. We
start experimenting with a training set which is built iteratively by letting the algorithm decide what is the
next training example expected to help in learning the patterns. In the same vein as the original Angluins
Algorithm, the learning of patterns can be carried completely automatically. The states of the obtained
FSAs, although nameless, may correspond to a set of semantic types.

An important direction of work is to improve the technique of using the FSA with raw text, and
shortcut the role of the parser in the architecture pipe. Our initial experiments suggest that this could be
done by bootstrapping. The results obtained so far are very good and they compare positively with the
ones obtained by the state of the art approaches.
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