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Abstract 

 

Selecting the best structure from several am-
biguous structures produced by a syntactic 
parser is a challenging issue. The quality of 
the solution depends on the precision of the 
structure evaluation methods. In this paper, we 
propose a general model (context-dependent 
probability re-estimation model, CDM) to en-
hance the structure probabilities estimation. 
Compared with using rule probabilities only, 
the CDM has the advantage of an effective, 
flexible, and broader range of contexture-
feature selection. We conduct experiments on 
the CDM parsing model by using Sinica Chi-
nese Treebank. The results show that our pro-
posed model significantly outperforms the 
baseline parser and the open source Berkeley 
statistical parser. More importantly, we 
demonstrate that the basic framework of the 
parsing model does not need to be changed, 
and the proposed re-estimation functions will 
adjust the probability estimation for every par-
ticular structure, and obtaining the better pars-
ing results. 

1 Introduction 

Structure evaluation method is an important task 
in selecting the best structure from several am-
biguous structures produced by a syntactic parser, 
particularly for Chinese. Since Chinese is an ana-
lytic language, words can play different gram-
matical functions without inflection. To imple-
ment a structure evaluation model, treebank is a 
necessary resource, since it provides useful sta-
tistical distributions regarding grammar rules, 
words, and part-of-speeches. Learning grammar 
rules and probabilities from treebanks is an ef-
fective way to improve parsing performance 

(Johnson, 1998). Unfortunately, sizes of tree-
banks are generally small; certain strategies of 
rule generalization and specialization have to be 
devised to improve the coverage and precision of 
the extracted grammar rules. However no matter 
how the grammar rules are refined, syntactic am-
biguities are unavoidable. The ambiguous struc-
tures should be ranked according to their struc-
tural evaluation scores, which may be an accu-
mulated score of rule probabilities and feature-
based scores. In general, the evaluation functions 
are derived from very limited and biased re-
sources, such as treebanks. Therefore we need to 
find a way to improve the evaluation functions 
under the constraint of very limited resources. 

Suppose that the parsing environment is a 
model of probabilistic context-free grammar 
(PCFG). Several researchers are attaching many 
useful features to the grammar rules to improve 
the precision of the grammar rules (Johnson, 
1998; Sun and Jurafsky, 2003; Klein and Man-
ning, 2003; Hsieh et al., 2005). In this paper, we 
follow grammar representation in Hsieh et al. 
(2005), and propose a context-dependent proba-
bility re-estimation model (CDM) to enhance the 
performance of the original PCFG model. CDM 
combines rule probabilities and machine learning 
techniques in structure evaluation. Similar to 
other machine learning methods (Ratnaparkhi, 
1999; Charniak, 2000; Wang et al., 2006), the 
CDM has the flexibility to adjust the features, 
and to obtain better re-estimated structure proba-
bilities. 

The remainder of this paper is organized as 
follows. Section 2 provides background on 
PCFG parsing with grammar rule representation. 
Section 3 describes the proposed CDM and our 
selected features. The experimental evaluation 
and results are in Section 4. The last section con-
tains some concluding remarks. 
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2 Background 

2.1 The baseline model, PCFG 

PCFG-based parsing, a probabilistic context-free 
grammar parsing model that trains rule probabili-
ties from treebank, is frequently used for parsing 
syntactic structures. Its parsing process is formu-
lated as follows: 

Given a sentence (S), a combination of words 
(W) and parts-of-speech (POS) sequences, 

),...,,,...,(),( 11  mm ttwwPOSWS , 

a PCFG parser tries to find possible tree struc-
tures (T) of S. The parser then selects the best 
tree (Tbest) according to the evaluation score of all 
possible trees: 

),( argmax STScoreT
T

best   

Under the PCFG model, we divide a tree struc-
ture T into a set of sub-trees; that is, a set of 
grammar rules applied in T. If there are n context 
free grammar rules in a tree T, then: 


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Where LHS denotes the left-hand side of the 
grammar rule (e.g., non-terminal); RHS denotes 
the right-hand side of the grammar rule. To satis-
fy the probabilistic constraint, the following re-
striction is placed on the PCFG model: 
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We adopt logarithmic parsing probabilities in 
decoding; therefore, the cumulative product of 
probabilities Score(T,S) can be replaced by ac-
cumulation of logarithmic probabilities in formu-
la 1. 
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where iRP  represents the logarithmic probabili-

ties of the i-th grammar rule in the tree T.  

2.2 F-PCFG - the feature-extended PCFG 

We adopt a linguistically-motivated grammar 
generalization method (Hsieh et al., 2005) to ob-
tain a binarized grammar, called F-PCFG, from 
original CFG rules extracted from treebank. The 
binarized F-PCFG grammars are produced by 
grammar generalization and grammar specializa-
tion processes. The grammar binarization process 
may produce generalized grammars with better 
coverage. However, such grammars may degrade 
the representational precision. Therefore, a 

grammar specialization process is needed to im-
prove precision of the generalized grammars un-
der the constraint of without much sacrificing 
grammar coverage.  

A method of embedding useful features in 
phrasal categories is adopted. In the following 
we use an example shown in Figure 1 to illus-
trate the grammar generalization and specializa-
tion processes. See Hsieh et al. (2005) for details. 
In this tree structure, Nh is pronoun; VF is active 
Verb with VP object; VC is Active transitive 
verb; Na is Noun. For detail explanation of POS, 
please refer to CKIP (1993). 

 
S

NP

Head:Nh

他
Ta
He

Head:VF

叫
Jiao
ask

李四
Li-si
Li-si

撿
jian
pick

皮球
qiu
ball

Head:Nb Head:VC Head:Na

NP

VP

NP

 
 

Figure 1. An example of a labeled syntactic tree struc-
ture in Treebank 

 
Figure 2 shows the transformed tree represen-

tation by right-association binarization and fea-
ture embedding. We see that terminal nodes (i.e., 
S-NP-Head:VF, NP-Head:Nh) and intermediate nodes 
(i.e., S’-Head:VF-1, S’-NP-0, etc.). Both type of nodes 
attached the features of the left-most constituent 
of the RHS, phrasal category of parent-node, and 
existence of the phrasal head.  
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Figure 2. A transformed tree structure from original 
tree structure  
 

We then use transformed binary trees to ex-
tract CFG and use maximum likelihood estima-
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tion to derive the rule probabilities from trans-
formed Sinica Treebank 
(http://TreeBank.sinica.edu.tw). 

3 Context-Dependent Probability Re-
estimation Model 

Many works try to improve rule probability es-
timation by using context-dependent probabili-
ties in PCFG model, and show that rules with 
dependent context features perform better than 
PCFG alone (Ratnaparkhi, 1999; Charniak, 2000; 
Wang et al., 2006; Li et al., 2010). Charniak 
(2000) presented a maximum-entropy-inspired 
model to estimate probabilities in Markov 
grammar. The model uses a standard bottom-up 
best-first probabilistic chart parser to generate 
possible candidate parses in the first pass, and 
then evaluates the candidates with the proposed 
probabilistic model in the second pass. Therefore 
Charniak’s method (2000) generates possible 
candidate parses first and then evaluates these 
candidates without early pruning. We adopt the 
maximum entropy method for structure evalua-
tion, and integrate it into present PCFG model, 
called as CDM.  

CDM integrates the original rule probabilities 
of PCFG and contextual probabilities as in the 
Formula 2: 
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where CDPi represents the logarithmic probabil-
ityestimated according to the i-th rule and related 
lexical, grammatical and contextual features. We 
calculated CDPi by using the maximum-entropy 
toolkit (Zhang, 2004). The advantage of using 
the maximum entropy model is that it hasthe 
flexibility to adjust features. To set a proper ratio 
for the probabilities estimated by the joint RPi 
and CDPi , we use the parameter λ in Formula 2. 
We use Collins’ (1999) smoothing method dur-
ing the estimation of the probabilities. 

3.1 Feature Design 

Feature selection is the most important step of 
any classifier and directly influences the parsing 
performance. Johnson (1998) observed that add-
ing linguistic features (such as a parent node’s 
category) improves accuracy of grammar rules; 
and Collins (1999) assessed the importance of 
head word and word bigram information in 
phrases. Sun and Jurafsky (2003) posited that the 
number of syllables in a word plays an important 

role in Chinese syntax. Hence, we try to include 
useful features for parsing Chinese. Suppose we 
need to calculate CDPi based on the related fea-
tures, while the i-th rule is applied for covering a 
span of words [L…R]. The used context and 
contextual features are as follows: 

 Lexical features include word (W), parts-
of-speech (C) and word sense (V) features. 
Our word sense feature uses the E-
HowNet (will be discussed in Section 4) 
sense definition. 

 Grammar features, which provide rele-
vant information used in applying gram-
mar rules, include features of the phrasal 
category of the LHS (LHS Category), the 
constituents of the right-hand-side of rule 
(RHS), and the attached features of the 
LHS (LHS Feature) in our F-PCFG.  

 Context features include span words and 
immediately neighboring lexical units. 

Table 1 shows the details of the feature tem-
plates. After feature selection phase, we train a 
CDM model by the maximum entropy method 
and apply it to re-estimate structure evaluation 
score in every parsing stage.  

 
Feature template and description 
The word L, R information.  
(LW0, LC0, LV0, RW0, RC0, RV0) 
The LHS, RHS and features of each grammar rule. 
(LHS Category, RHS, LHS Feature) 
The previous and next lexical unit of  the word L,R 
(LW-1, LC-1, LW1, LC1, RW-1, RC-1, RW1, RC1) 
The word bigram information of the RHS, including 
word, parts-of-speech and word sense combination. 
(RhsW1&RhsW2, RhsC1&RhsC2, RhsV1&RhsV2) 
The combination of L or R with the previous lexical 
unit, or with the next lexical unit.  
(LW-1&LW0, LC-1&LC0, LW0&LW1, LC0&LC1, 
RW0&RW1, RC0&RC1, RW-1&RW0, RC-1&RC0)
The combination of L and R’s immediate neighboring 
lexical units  
(LW0&RW0, LC0&RC0, LW-1&RW1, LC-1&RC1) 

 
Table 1. Feature templates for context-dependent es-
timation of partial tree structure while covering a span 
of words [L…R] 

 
For instance, Figure 3 shows a partial parsing 

stage. We estimate the structure evaluation score 
P(S’-Head:VF+0+NP | features as shown in Table 1) 
for the non-terminal S’-Head:VF+0+NP which covers a 
span of words [李四 Li-si ... 皮球 ball] by the 
maximal entropy model. Some examples of con-
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textual features are “LW0=李四, RW0=皮球, LW-

1=叫, LW1=撿, RW-1=撿, RW1=X, LW-1&LW0=
叫&李四, LW0&LW1=李四&撿, RW-1&RW0=撿
& 皮 球 , RW0&RW1= 皮 球 &X, RhsW1= 李 四 , 
RhsW2= 撿 , RhsC1=Nb, RhsC2=VC, RHS=NP-

Head:Nb_VP-Head:VC, …”, etc. Afterwards, we inte-
grate and calculate the evaluation score by For-
mula 2. 
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Figure 3. A partial tree of a parsing stage covered 
from “李四 Li-si” to “皮球 ball”. 
 

4 Experiments and Results 

In this section, we describe the experiment de-
sign, and then evaluate the proposed models 
based on Sinica Treebank. We also analyze the 
results, and compare them with the results de-
rived by the open source Berkeley statistical par-
ser on the same test set. 

4.1 Experimental Settings 

Treebank: We employ Sinica Treebank as our 
experimental corpus. It contains 61,087 syntactic 
tree structures and 361,834 words. The syntactic 
theory of Sinica Treebank is based on the Head-
Driven Principle (Huang et al., 2000); that is, a 
sentence or phrase is composed of a phrasal head 
and its arguments or adjuncts. We divide the 
treebank into four parts: the training data (55,888 
sentences), the development set (1,068 sentenc-
es), the test data T06 (867 sentences), and the 
test data T07 (689 sentences). The test datasets 
(T06, T07) were used in CoNLL06 and 
CoNLL07 dependent parsing evaluation individ-
ually. The main difference between Sinica Tree-
bank data and CoNLL data is that the CoNLL is 
in dependency format. 

Word Sense: With regard to semantic features, 
we use the head senses of words expressed in E-
HowNet (http://ehownet.iis.sinica.edu.tw/) as 
words’ sense types. For example, the E-HowNet 
definition of 車 輛 (Na), is {LandVehicle|

車 :quantity={mass|眾}}, and its head sense is 
“LandVehicle|車”. For detailed description about 
E-HowNet, readers may refer to Huang et al. 
(2008). 

Estimate Parsing Performance: To evaluate 
a model, we compare the parsing results with the 
gold standard. Black et al. (1991) proposed a 
structural evaluation system is called PARSE-
VAL. In all the experiments, we used the brack-
eted f-score (BF) as the parsing performance 
metric.  

BR  BP

2 * BR * BP
 (BF) score-F Bracketed


  

 

data  testingof sparser'in  tsconstituenbracket  #

data  testingof parse sparser'in  ntsconsitituecorrect bracket  #

(BP)Precision Bracketed 

 

data  testingof sk'in treeban tsconstituenbracket  #

data  testingof parse sparser'in  ntsconsitituecorrect bracket  #

(BR)RecallBracketed 

 
For training CDP in CDM model, we extract 

relevant features from each parse tree in training 
data, in accordance with features setting in Table 
1. Zhang (2004) provides a maximum entropy 
toolkit (MaxEnt) to help us training. We use op-
tion “-i 30 –gis –c 0” in MaxEnt training parame-
ter. The training scale is 407 outcomes, 2438366 
parameters and 1593985 predicates. 

4.2 Results 

Figure 4 shows the parsing performances on the 
developing data for different values of the pa-
rameter   in Formula 2. The appropriate setting 
(  =0.6) is learned and adopted for the future 
experiments.  
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Figure 4. BF scores for different values of λon the 
development data set  
 

The results in Table 2 show that the integrated 
a general PCFG model with a CDM can improve 
the parsing performance. Implementing the inte-
grated CDM on the T06 and T07 test datasets 
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indicted improved the parsing performance by 
1.45% and 1.53% respectively. The purpose in 
this research is to incorporate the rich contextual 
features to assist the constituent parsing. Results 
in Table 2 prove our method to be useful. As 
shown in the bracketed f-scores, about 20% of 
the errors are reduced. For instance, the ambigu-
ous structures like “((Nh Nc) Nc)” and “(Nh (Nc 
Nc))” can be better resolved by our CDM model, 
since it can provide rich contextual features as 
additional information to help the parser making 
more precise evaluation scores in resolving am-
biguous structures. 
  

BF-Score (%) T06 T07 
PCFG 87.40 81.93 
F-PCFG 88.56 83.96 
CDM 90.01 (+1.45) 85.49 (+1.53)

 
Table 2. The bracketed f-score of the integrated CDM. 
 

4.3 Comparison with the Berkeley Chinese 
parser 

Berkeley parser1 (Petrov et al., 2006) is used for 
comparison in our experiments because it ap-
pears to be the best PCFG parser for non-English 
languages. The parser has POS tagging and pars-
ing functions; meanwhile, it takes word seg-
mented data as input and outputs Penn Treebank 
style tree structures. We need to use pre-
specified gold standard POS tags in our experi-
ment, we transform our test data to “Berkeley 
CoNLL format” with word and POS. In addition, 
we need to transform our training data from Sini-
ca Treebank style to Penn Treebank style (see 
Table 3) for Berkeley parser training model. 
 
Tree style Example 
Sinica 
Treebank 

S(NP(Head:Nh:他們)|Head:VC:散播

|NP(Head:Na:熱情)) 
Penn  
Treebank 

( (S (NP (Head:Nh (Nh 他們))) 
(Head:VC (VC 散播)) (NP (Head:Na 
(Na 熱情))))) 

 
Table 3. Comparison of the Sinica and Penn Treebank 
styles 
 

After re-training the Berkeley’s parser with 
parameters, “-treebank CHINESE –SMcycles 6 -
useGoldPOS”, a new model is obtained. We 
parse the test dataset based on the gold standard 

                                                 
1 The version is “2009 1.1” and download from 
http://code.google.com/p/berkeleyparser/ 

word segmentation and POS tags. Then, we 
transform to Sinica Treebank style from the pars-
ing results and evaluate by the same parsing per-
formance metric. In our experiment, Berkeley’s 
parser has best performance in using training 
model with 2th split-merge iterations. The brack-
eted f-score results of T06 and T07 test datasets 
are 88.58% and 83.56% respectively. The results 
of Berkeley’s parser are closed to F-PCFG model 
in Table 2. Either Berkely’s parser or F-PCFG 
represents the ceiling results of a general method, 
and they both outperform the naïve PCFG model. 

4.4 Experiments for Task4 of CLP2012 

Task 4 of CLP2012 includes two sub-tasks: sen-
tence parsing and semantic role labeling task. For 
each sub-task, the testing data are complete Chi-
nese sentence with gold standard word segmenta-
tion. Therefore, a pipeline process is needed to 
solve the POS tagging, syntactic parsing and se-
mantic role assignment in our experiment. We 
adopt the context-rule tagger proposed by Tsai 
and Chen (2004) for the POS tagging. For syn-
tactic parsing, we use the CDM parser with same 
training data in Section 4.1. For semantic role 
labeling, we follow You and Chen’s (2004) 
method to assignment semantic role automatical-
ly. The detail parsing results of our systems on 
the test set can be found on the official evalua-
tion report. Our system obtains acceptable results 
on both sentence parsing and semantic role label-
ing tasks. 

 

F1-Score 
Micro-

Averaging 
Macro-

Averaging
Task 4-1 0.7287 0.7448 
Task 4-2 0.6034 0.6249 

 
Table 4. Official scores of sentence parsing (task4-1) 
and semantic role labeling (task4-2). 

 
Table 4 shows the F1-score results are report-

ed by the official organizer of the 2012 CIPS-
SIGHAN bakeoff task. The result of the first 
sub-task (Task4-1) is about 0.7448. The POS 
tagging accuracy directly influences the senten-
tial structure. Therefore, F1-score will be im-
proved with better POS tagging accuracy. On the 
other hand, the result of the semantic role label-
ing (Task 4-2) is about 0.6249. Semantic role 
labeling is processed after sentence parsing. Our 
labeling system is based on different decision 
features, such as head-argument/modifier pairs, 
special cases, sentence structures, etc. These sta-
tistical information are extracted from training 
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data (see Section 4.1), and we use a backoff ap-
proach to decide the best semantic role. In future 
work, we will try using lexical semantic and con-
text information to improve accuracy of semantic 
role labeling. 

5 Conclusion  

In this paper, we propose effective models to 
improve the performance of Chinese parsing. 
The models employ a broad range of features to 
integrate general statistical parsing and machine 
learning techniques to re-estimate structure score 
in module and incremental way. Our evaluations 
show that by adding CDM models, the parser 
outperforms the baseline PCFG model and an 
open source statistical parser. 

We also consider a number of future research 
directions. In addition to the current treebank and 
lexical semantic information, more knowledge 
could be obtained from massive amounts of un-
labeled data to make CDM more precise through 
auto-parsing and self-learning process. Our ulti-
mate goal is to generate unlimited amounts of 
training data by parsing web corpus. As a result, 
we expect that the overall performance of our 
parser will be improved continually by the never 
ending self-learning process. 
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