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Abstract 

 

A key observation is that concept compound 

constituent labels are detrimental to parsing 

performance. We use a PCFG parsing algo-

rithm that uses a multilevel coarse-to-fine 

scheme. Our approach requires a sequence of 

nested partitions or equivalence classes of the 

PCFG nonterminals, where the nonterminals 

of each PCFG are clusters of nonterminals of 

the finer PCFG. We use the results of parsing 

at a coarser level to prune the next finer level. 

The coarse-to-fine method use hierarchical 

projections for incremental pruning. We pre-

sent experiments which show that parsing with 

hierarchical state-splitting is fast and accurate 

on Tsinghua Chinese Treebank. In addition, 

we propose a multiple-model method that adds 

concept compound labels to the output of the 

simple PCFG model and gains higher bracket-

ing recall from the simple model. This scheme 

can be implemented by training two models on 

different labeling styles. 

1 Introduction 

The peculiarity of the annotation of this released 

edition of TCT is that the tree structure is very 

compact, where there are no unary productions 

except root nodes and leaf nodes. 

A major observation is that parser on treebank 

with concept compound constituent labels per-

forms worse than without concept compound 

constituent. The average crossing is 4% lower in 

presence of concept compound constituent labels. 

Since all phrases have a clausal and phrasal 

constituent label, while only a fraction have con-

cept compound constituent label. We can regard 

a phrase label with both clausal and phrasal con-

stituent label and concept compound constituent 

label as a subsymbol of the clausal and phrasal 

constituent label merely. 

The coarse categories in these grammars can 

be regarded as clusters or equivalence classes of 

the fine nonterminal categories. We require that 

the partition of the nonterminals defined by the 

equivalence classes at finer level be a refinement 

of the partition defined at coarser level. This 

means that each nonterminal category at finer 

level is mapped to a unique nonterminal category 

at coarser level (although in general the mapping 

is many to one, i.e., each nonterminal category at 

coarser level corresponds to several nonterminal 

categories at finer level). We use the correspond-

ence between categories at different levels to 

prune possible constituents. A constituent is con-

sidered at finer level only if the corresponding 

constituent at coarser level has a probability ex-

ceeding some threshold. Parsing with hierar-

chical grammar leads to considerable efficiency 

improvements. 

Treebank parsing comprises two problems: 

learning, in which we must select a model given 

a treebank, and inference, in which we must se-

lect a parse for a sentence given the learned 

model. Previous work has shown that high-

quality unlexicalized PCFGs can be learned from 

a treebank, either by manual annotation (Klein 

and Manning, 2003) or automatic state splitting 

(Matsuzaki et al., 2005; Petrov et al., 2006). In 

particular, we demonstrated in Petrov et al. (2006) 

that a hierarchically split PCFG could exceed the 

accuracy of lexicalized PCFGs (Collins, 1999; 

Charniak and Johnson, 2005).  

We adopted here a multilevel coarse-to-fine 

PCFG parsing algorithm as in Charniak (2006) 

and Petrov (2007). The multilevel coarse-to-fine 

PCFG parsing algorithm reduces the complexity 

of the search involved in finding the best parse 

and attempts to constrain the fine parsing space 
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to the coarse parsing space. It defines a sequence 

of increasingly more complex PCFGs. Charniak 

(2006) has demonstrated that coarse PCFG iden-

tified the locations of correct constituents of the 

parse tree (the “gold constituents”) with high 

recall.  

2 Experiment Observation 

We have parsed with three different annotation 

setups. First, we train our model our model with 

only phrasal labels, and evaluate the precision 

and recall on only the phrasal labels. Second, we 

train our model with full labels, and evaluate the 

precision and recall on only the phrasal labels. 

Third，we train the model with full labels, and 

evaluate the precision and recall on full labels. 

Take a concrete example, we show two pars-

ing output with different annotations as below: 

The input sentence is: 

“之后 ， 北京 一轻 总公司 根据 市政府 的 

决定 ， 在 市 国有 资产 管理局 的 具体 指导 

下 ， 经过 ３ 个 月 的 紧张 工作 ， 完成 了 

公司 国有 资产 的 清查 、 重估 工作 。” 

Parsing output with only phrasal constituent 

labels: 

“( (zj (dj (t 之后) (dj (wP ，) (dj (np (np (nS 

北京) (n 一轻)) (n 总公司)) (vp (pp (p 根据) (np 

(np (n 市政府) (uJDE 的)) (n 决定))) (vp (wP ，) 

(vp (pp (p 在) (sp (np (np (np (np (n 市) (np (b 

国有) (n 资产))) (n 管理局)) (uJDE 的)) (np (a 

具体) (vN 指导))) (f 下))) (vp (wP ，) (vp (pp (p 

经过) (np (np (tp (mp (m ３) (qN 个)) (qT 月)) 

(uJDE 的)) (np (a 紧张) (n 工作)))) (vp (wP ，) 

(vp (vp (v 完成) (uA 了)) (np (np (np (n 公司) 

(np (b 国有) (n 资产))) (uJDE 的)) (np (np (n 清

查) (np (wD 、) (n 重估))) (n 工作))))))))))))) 

(wE 。)) )” 

Parsing output with full labels: 

“( (zj_XX (fj (f 之后) (fj_RT (wP ，) (fj_LG 

(dj (np (nS 北京) (np (n 一轻) (n 总公司))) (vp 

(pp (p 根据) (np (np (n 市政府) (uJDE 的)) (n 

决定))) (vp_RT (wP ，) (vp (pp (p 在) (sp (np 

(np (np (n 市) (np (np (b 国有) (n 资产)) (n 管理

局))) (uJDE 的)) (np (a 具体) (vN 指导))) (f 下))) 

(vp_RT (wP ，) (vp (v 经过) (np (np (tp (mp (m 

３) (qN 个)) (qT 月)) (uJDE 的)) (np (a 紧张) (n 

工作))))))))) (vp_RT (wP ，) (vp (vp (v 完成) 

(uA 了)) (np (np (np (n 公司) (np (b 国有) (n 资

产))) (uJDE 的)) (np (np_LH (vN 清查) (np_RT 

(wD 、) (vN 重估))) (n 工作)))))))) (wE 。)) )” 

The gold parse tree is as follows: 

“( (zj (dj (f 之后) (dj (wP ，) (dj (np (np (nS 

北京) (n 一轻)) (n 总公司)) (vp (pp (p 根据) (np 

(np (n 市政府) (uJDE 的)) (n 决定))) (vp (wP ，) 

(vp (pp (p 在) (sp (np (np (np (n 市) (np (b 国有) 

(np (n 资产) (n 管理局)))) (uJDE 的)) (vp (aD 

具体) (v 指导))) (f 下))) (vp (wP ，) (vp (pp (p 

经过) (np (np (tp (mp (m ３) (qN 个)) (qT 月)) 

(uJDE 的)) (np (a 紧张) (n 工作)))) (vp (wP ，) 

(vp (vp (v 完成) (uA 了)) (np (np (np (n 公司) 

(np (b 国有) (n 资产))) (uJDE 的)) (np (np (vN 

清 查 ) (np (wD 、 ) (vN 重 估 ))) (n 工

作))))))))))))) (wE 。)))” 

In the former parsing result, not only the 

phrasal constituent tags are labels more accurate-

ly, its syntactic structures are segmented more 

reasonably. 

The parsing performances metrics convinced 

that the concept compound is detrimental to the 

parser performance even we only evaluate the 

phrasal constituent labels’ precision and recall. 

Furthermore, we compare the metrics of exact 

match, average crossing, no crossing and 2 or 

less crossing, which show that the higher accura-

cy gained by stripping the concept compound 

labels lies in both its more accurate bracketing 

and tagging ability. 

3 Previous Researches 

Coarse-to-fine search is an idea that has appeared 

several times in the literature of computational 

linguistics and related areas. Maxwell and 

Kaplan (1993) extracted CFG automatically from 

a more detailed unification grammar and used it 

to identify the possible locations of constituents 

in the more detailed parses of the sentence. They 

use their covering CFG to prune the search of 

their unification grammar parser in essentially 

the same manner as we do here, and demonstrate 

significant performance improvements by using 

their coarse-to-fine approach.  

Geman and Kochanek (2001) laid out the 

basic theory of coarse-to-fine approximations 

and dynamic programming in a stochastic 

framework. They describes the multilevel dy-

namic programming algorithm needed for 

coarse-to-fine analysis (which they apply to de-

coding rather than parsing), and show how to 

perform exact coarse-to-fine computation, rather 

than the heuristic search we perform here.  

Goodman (1997)’s parser is a two-stage 

coarse to fine parser. The second stage is a 

standard tree-bank parser while the first stage is a 

regular-expression approximation of the gram-
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mar. Again, the second stage is constrained by 

the parses found in the first stage. Neither stage 

is smoothed.  

The parser of Charniak (2000) is also a two-

stage coarse to fine model, where the first stage 

is a smoothed Markov grammar (it uses up to 

three previous constituents as context), and the 

second stage is a lexicalized Markov grammar 

with extra annotations about parents and grand-

parents. The second stage explores all of the con-

stituents not pruned out after the first stage. Re-

lated approaches are used in Hall (2004) and 

Charniak and Johnson (2005). 

Klein and Manning (2003a) describe efficient 

A* for the most likely parse, where pruning is 

accomplished by using Equation 1 and a true up-

per bound on the outside probability. While their 

maximum is a looser estimate of the outside 

probability, it is an admissible heuristic and to-

gether with an A* search is guaranteed to find 

the best parse first. One question is if the guaran-

tee is worth the extra search required by the 

looser estimate of the true outside probability. 

Tsuruoka and Tsujii (2004) explore the 

framework developed in Klein and Manning 

(2003a), and seek ways to minimize the time re-

quired by the heap manipulations necessary in 

this scheme. They describe an iterative deepen-

ing algorithm that does not require a heap. They 

also speed computation by precomputing more 

accurate upper bounds on the outside probabili-

ties of various kinds of constituents. They are 

able to reduce by half the number of constituents 

required to find the best parse (compared to 

CKY).  

McDonald et al. (2005) have implemented a 

dependency parser with good accuracy (it is al-

most as good at dependency parsing as Charniak 

(2000)) and very impressive speed (it is about ten 

times faster than Collins (1997) and four times 

faster than Charniak (2000)). It achieves its 

speed in part because dependency parsing has a 

much lower grammar constant than does stand-

ard PCFG parsing — after all, there are no 

phrasal constituents to consider. The current pa-

per can be thought of as a way to take the sting 

out of the grammar constant for PCFGs by pars-

ing first with very few phrasal constituents and 

adding them only after most constituents have 

been pruned away. 

4 Hierarchically Split PCFGs 

We use a novel coarse-to-fine processing scheme 

for hierarchically split PCFGs. Our method con-

siders the splitting history of the final grammar, 

projecting it onto its increasingly refined prior 

stages. For any projection of a grammar, we use 

techniques for infinite tree distributions (Corazza 

and Satta, 2006) and iterated fix point equations. 

We then parse with each refinement, in sequence, 

much along the lines of Charniak et al. (2006). 

We consider PCFG grammars in a hierarchy 

fashion in Petrov et al. (2006). From the starting 

point of the raw treebank grammar, we iterative-

ly refine the grammar in stages. The refined 

grammar is estimated using a variant of the for-

ward-backward algorithm (Matsuzaki et al., 

2005). After a splitting stage, many splits are 

rolled back based on (an approximation to) their 

likelihood gain. This procedure gives an ontoge-

ny of grammars from the raw grammar to the 

final grammar. Empirically, the gains on the 

English Penn treebank level off after 6 rounds.  

5 Coarse-to-Fine Search 

When working with large grammars, it is stand-

ard to prune the search space in some way. In the 

case of lexicalized grammars, the unpruned chart 

often will not even fit in memory for long sen-

tences. Several proven techniques exist. Collins 

(1999) combines a punctuation rule which elimi-

nates many spans entirely, and then uses span-

synchronous beams to prune in a bottom-up fash-

ion. Charniak et al. (1998) introduces best-first 

parsing, in which a figure-of merit prioritizes 

agenda processing. Most relevant to our work is 

Charniak and Johnson (2005) which uses a pre-

parse phase to rapidly parse with a very coarse, 

unlexicalized treebank grammar. Any item with 

sufficiently low posterior probability in the pre-

parse triggers the pruning of its lexical variants 

in a subsequent full parse. 

Charniak et al. (2006) introduces multi-level 

coarse-to-fine parsing, which extends the basic 

pre-parsing idea by adding more rounds of prun-

ing. In their work, the extra pruning was with 

grammars even coarser than the raw treebank 

grammar, such as a grammar in which all non-

terminals are collapsed. We propose a novel mul-

ti-stage coarse-to-fine method which is particu-

larly natural for our hierarchically split grammar, 

but which is, in principle, applicable to any 

grammar. 

Petrov et al. (2007) construct a sequence of 

increasingly refined grammars, reparsing with 

each refinement. They derive sequences of re-

finements and automatically tune the pruning 

thresholds on held-out data. Their hierarchical 
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coarse-to-fine parsing take the projection that 

collapses split symbols in finer round to their 

earlier identities in coarser round. The final state-

split grammars G come, by their construction 

process, with an ontogeny of grammars where 

each grammar is a (partial) splitting of the pre-

ceding one. 

6 Experimental Setup 

We ran experiments on TCT. The training and 

test data set splits are described in Table below. 

Treebank Train 

Dataset 

Develop 

Dataset 

Test Da-

taset 

TCT(Qiang 

Zhou, 2004) 

16000 

sentences 

800 sen-

tences 

758 sen-

tences 

 

Table 1. Experiment DataSet Setup 

 

Tsinghua Chinese Treebank is a 1,000,000 

words Chinese treebank covering a balanced col-

lection of journalistic, literary, academic, and 

other documents. 

7 Final Results 

We took the final model and used it to parse the 

specified test set in the 3nd Chinese Parsing 

Evaluation which contains 1000 sentences, and 

achieved the best precision, recall and F-measure. 

We use the evaluation method released by CLP 

2012. 

SC_F1 ULC_P ULC_R ULC_F1 

92.29% 87.02% 87.04% 87.03% 

 

Table 2. Experiment Results of SC and ULC 

 

NoCross_P LC_P LC_R LC_F1 

87.02% 77.29% 77.32% 77.30% 

 

Table 3. Experiment Results of LC 

 

LC_P LC_R LC_F1 

76.35% 76.20% 76.27% 

 

Table 4. Experiment Results of Tot4 

 

Where LR = label recall, LP = label precision, 

F1 = F-measure, EX = exact match, AC = aver-

age crossing, NC = no crossing, 2C = 2 or less 

crossing. 

8 Another Relabeling Method 

A major observation is that concept com-

pound constituent labels are detrimental to pars-

ing performance. Since clausal and phrasal con-

stituent labels are obligatory, while concept 

compound constituent labels are optional, we can 

strip concept compound constituent labels and 

parse with only clausal and phrasal constituent 

labels. Experiments show that parsing perfor-

mance without concept compound constituents 

labels, especially the bracketing precision is sig-

nificantly superior to the one with concept com-

pound constituents labels. 

Therefore, parsing directly with full labels 

(both clausal and phrasal constituent labels and 

concept compound labels) is unwise. In this pa-

per, we get the concept compound label by the 

parser with full label, but get the extra perfor-

mance gain by the parser with only clausal and 

phrasal constituent labels. 

9 Integration of Both Parser 

Clausal and phrasal constituent labels distinguish 

constituent phrasal categories, and full label 

(phrasal constituent label together with com-

pound constituent label) moves forward to dis-

tinguish constituent structures.  

A parser trained on the trees with only phrasal 

constituent labels have higher bracketing accura-

cy and phrasal constituent labels tagging accura-

cy. While another step can label the decoded tree 

with concept compound tags, either by incorpo-

rating the concept compound labels from the 

output of a parser trained on full label, or by re-

labeling the concept compound labels with a 

maximum entropy model. 

In order to get strength from the both the par-

ser output with and without concept compound 

labels, we train parser on both trees with only 

phrasal constituents label and full label, then add 

the concept compound labels from the later par-

ser to the phrasal constituent labels from the 

former parser. 

The simple PCFG identified the locations of 

correct constituents of the parse tree (the “gold 

constituents”) with high precision and recall. 

Then we label the concept compound labels in 

corresponds to the complex PCFG. 

10 Conclusion 

We employ a novel parsing algorithm based up-

on the coarse-to-fine processing model. It takes 

197



the unpruned constituents and specifying them in 

the next level of granularity.  

The coarse-to-fine scheme allows fast, accu-

rate parsing. For training, one needs only a raw 

context-free treebank, and for decoding one 

needs only a final grammar, along with coarsen-

ing maps. 

In addition, we propose a delicate integration 

method based upon two independently trained 

parsing models with different tree annotation 

style. The final output gains the higher bracket-

ing label precision and recall from simpler tree 

annotation style, and adding the concept com-

pound labels form the more complex tree annota-

tion model. 
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