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Abstract 

 

Chinese word structure annotation is potential-
ly useful for many NLP tasks, especially for 
Chinese word segmentation. Li and Zhou 
(2012) have presented an annotation for word 
structures in the Penn Chinese Treebank. But 
they only consider words that have productive 
affixes, which covers 35% of word types in 
that corpus. In this paper, we propose a lin-
guistically inspired annotation that covers var-
ious morphological derivations of Chinese in a 
more general way, such that almost all multi-
ple-character words can be structurally ana-
lyzed. As manual annotation is expensive, we 
propose a semi-supervised approach to auto-
matic annotation, which combines the maxi-
mum entropy learning and the EM iteration for 
the Gaussian mixture model. The proposed 
method has achieved an accuracy of 90% on 
the testing set.  

1 Introduction 

In contrast to the pervasive success in creation 
and use of various language resources for corpus 
linguistics and natural language processing 
(NLP), Chinese word structure annotation has 
rarely been studied, although it is likely to be 
particularly useful to many NLP tasks, especially 
to Chinese word segmentation (CWS). In this 
paper, we propose a semi-supervised approach to 
automatic annotation of Chinese word structures. 
    Li (2011) shows many problems in CWS, in-
cluding wordhood, granularity of lexical units for 
different applications, as well as several other 
linguistic phenomena, such as the so-called sepa-
rable words, and points out that they can only be 
solved with adequate knowledge of word struc-
ture. 

    Our motivation for creating such an annotation 
is to test the usefulness of morphological infor-
mation for the Out-Of-Vocabulary word (OOV) 
detection, a major challenge in CWS (Huang and 
Zhao, 2007). All state-of-the-art word segmenters 
(Zhao and Liu, 2010) based on classification 
(Berger et al., 1992; Xue, 2003) and sequence 
labeling (Lafferty et al, 2001; Peng et al., 2004) 
have to rely on using character n-grams as fea-
tures. Despite recent advances in model combina-
tion (Wang et al., 2010; Sun, 2010), joint learn-
ing (Jiang et al., 2008; Zhang and Clark, 2008; 
Sun, 2011) and integration of supervised and un-
supervised methods (Zhao and Kit, 2008; Sun 
and Xu, 2011), etc., an inherent problem with 
OOV words is that they are novel character com-
binations seldom occurring in a training corpus, 
giving machine learning methods little evidence 
for prediction. Like other linguistic elements, the 
distribution of character n-grams also obeys 
Zipf’s (1949) law, indicating that exponentially 
more tokens have to occur before more distinct 
types are encountered. In other words, we need 
an exponential growth of annotated corpora to 
offset the data sparseness problem (Zhao et al., 
2010), which is certainly expensive and impracti-
cal. 
    Morphology, on the other hand, offers a prin-
cipled way to capture internal word structure and 
model the dynamic and productive word for-
mation process for all words, including OOV 
ones. In this work, we will adhere to the conven-
tional linguistic analysis of Chinese morphology 
(Packard, 2000; Xue, 2001). Chinese words are 
known to be poor in inflections and rich in deri-
vations, including compounding, affixation and 
abbreviation, among many others. Li and Zhou 
(2012) introduce an affixation annotation on the 
Penn Chinese Treebank version 6.0 (CTB, Xue et 
al., 2005), which covers 35% word types. 
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    The annotation to be addressed in this paper 
goes beyond affixation and explores for a general 
approach to accommodating more predominant 
processes including compounding. Our linguisti-
cally inspired annotation scheme (Section 3) is 
based on part-of-speech (POS) like tags for both 
characters and words, together with syntactic and 
morphological rules to derive these tags. In prin-
ciple, our annotation covers most multiple-
character words, except multi-char morphemes or 
binomes, such as 葡萄 ‘grape’.  
    Manual annotation is expensive and ineffi-
cient. To get around this problem, we propose a 
semi-supervised learning approach to automatic 
annotation of Chinese word structures, with a 
focus on two-character words. This method com-
bines the maximum entropy learning and the EM 
iteration for Gaussian mixture models (Section 
5). Our experiments show that it works signifi-
cantly better than (1) two classic semi-supervised 
learning algorithms, self-training and co-training 
(Section 6), and (2) the supervised learning base-
line (Section 4). The accuracy of the 1-best as-
signment of char tags by our approach is 90%. It 
is expected that the probabilistic nature of this 
approach can lead to an even lower error rate in 
real applications. To the best of our knowledge, 
this is the first attempt on wide-coverage semi-
supervised automatic annotation of Chinese word 
structures. 

2 Related Work 

The morphology of Chinese has been studied in 
early works such as (Zhao, 1968; Lü, 1979) and 
more recently in the framework of generative 
linguistics, such as (Huang, 1984; Dai, 1992; 
Duanmu, 1997; Packard, 2000; Xue, 2001). 
Packard (2000) treats the morphology as an ex-
tension of syntax at the word (X0) level. Having 
a lexicalism flavor, it considers both morphemes 
and complex words with their “precompiled” 
morphological structures in the lexicon, except 
for complex words containing grammatical affix-
es. 
    In contrast, Xue (2001) has proposed a system 
that derives virtually all the complex words with 
syntactic rules or with the morphology module 
after syntactic analysis. The boundary of syntax 
and morphology further blurs and the operation 
scope of syntax rules expands most part of the 
morphology. Both Packard (2000) and Xue 
(2001) adopt form class descriptions, which as-
sign words and their components (characters) 

POS-like tags called form classes. Also, rules in 
both systems are more or less syntactic.  
    Computational linguists have also started re-
thinking the limitations of feature-based machine 
learning approaches to CWS and have called for 
morphology-based analysis of OOV words 
(Dong et al., 2010). There are a few pivotal 
works in this direction, such as Zhao (2009), Li 
(2011) and Li & Zhou (2012). Zhao (2009) has 
proposed a character-based dependency parsing 
model, based on the annotation of unlabeled in-
word character dependencies. While this is a val-
uable investigation, the deadlock of OOV word 
detection suggests that pure character-wise de-
pendencies may be inadequate to model the mor-
phological process. 
    Li (2011) and Li & Zhou (2012) have pro-
posed models of joint morphological and syntac-
tical analysis, for constituent and dependency 
parsing, respectively. Both are based on the same 
annotation of word structures for CTB. Influ-
enced by Packard (2000), they only annotated 
words that contain productive affixes, which are 
only a small subset of words formed by morpho-
logical derivations. With a low coverage of the 
word formation phenomena, their models do not 
improve OOV word detection. The morphologi-
cal model is expected to be effective in improv-
ing the performance of OOV word recognition, 
once syntax-like rules can be used to analyze 
most of, rather than a small portion of complex 
words, as illustrated in Xue (2001). 
    Our annotation differs from Li & Zhou’s 
(2012) in that our annotation goes beyond affixa-
tion and aims at a thorough description of the 
derivational morphology in Chinese. Its ultimate 
goal is to construct a linguistic resource for train-
ing wide coverage word formation analyzers for 
Chinese. 

3 Manual Annotation 

3.1 Form-class description 

Following Packard (2000) and Xue (2001), we 
adopt the form class description to describe the 
word formation analysis, as opposed to other 
possible descriptions of word structures, such as 
relational description, modification structure de-
scriptions1. Character form classes refer to POS-
like class identities for component morphemes of 
a word. For example, the word 吃饭 ‘to dine’ can 
be analyzed as a verb [   ]V made of a verbal and 
a nominal element [V N]V  吃 ‘to eat’ and 饭 
                                                
1 See Packard (2000) for a detailed discussion 
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‘rice’, where character form classes are denoted 
by the symbols inside the bracket while the word 
classes/POS tags are denoted by the subscript 
symbol of the bracket. Another example is the 
analysis of the adjective 先进 ‘advanced’ as     
[A V]J. In addition to form class identities, longer 
words have hierarchies in their elements as well.  
    The existence of monosyllabic words, with or 
without ambiguous POS tags, provides the initial 
link between character and word form classes 
(Packard, 2000). The form classes of bounded 
morphemes are more difficult to determine and 
requires extra clues such as morpho/lexical se-
mantics. 

3.2 Words to be annotated 

Our annotation is carried out on CTB 5.0. Since 
longer words can be recursively analyzed similar-
ly to single- and two-character words, we have 
chosen to focus on two-character words, which 
are shortest words that have inner structures. 
Note that the annotation of single-character 
words is trivial. Another reason for giving this 
priority to two-character words is mono- and bi-
syllabic words together account for 64% and 
92% word types and tokens in CTB 5.0, respec-
tively. Our annotation has covered all 21151 
open-class two-character words in CTB 5.0. 

3.3 The annotation scheme 

With form class description, annotating a two-
character word equals to specifying its POS tags, 
form class co-occurrences of component charac-
ters and the association of the two. We have writ-
ten programs to (1) extract the possible word and 
character form classes from CTB 5.0 and online 
resources2, and (2) generate all the possible struc-
tures for a two-character word by calculating the 
Cartesian product of the sets of possible form 
classes of its left and right character, respective-
ly. 

The task of a human annotator is to choose the 
best structure for a <Word, POS> entry from 
computer generated candidates, if there are mul-
tiple ones. An annotator needs to figure out the 
optimal structure analysis, considering various 
information and constraints, including: 

• Semantic compatibility. For example, word 
发展 ‘to develop; development’     [V 
V]V  [V V]N can be interpreted as [N V]? , 
if the nominal form of 发 ‘hair’ is as-
sumed. But this is incompatible with the 

                                                
2 Mostly from http://www.zdic.net/ 

overall word meaning, compared with the 
verbal form of 发 ‘open; send; get started’ 

• Syntactic patterns. Certain patterns such as 
N+N, V+V and J+J compounding are 
more likely than others, e.g. V+ C (verb + 
classifier) combination.  

• Word POS influence. In many cases, the 
form class identity of a word may largely 
determine the form class identity of one or 
both of its constituents. 

It is often necessary to refer to classic Chinese 
to properly use semantics clues. And note that 
most entries with the same word form but distinct 
POS tags can be captured by zero derivations and 
thus share the same structures as well. For exam-
ple, word 发展 ‘to develop; development’ has a 
base form with POS of verb [V V]V , which zero-
derives the noun form [V V]N. As for the actual 
manual annotation, we have manually analyzed 
the 600 most frequent words in CTB 5.0. The 
whole annotation took about 30 annotator hours.   

4 Supervised Annotation with ME 

The number of manually annotated two-character 
words is less than 3% of the those in CTB 5.0. 
Given the limited resource, we have opted for 
training machine learning models from manual 
annotation to automatically annotate the rest 
20551 two-character words. As described in Sec-
tion 3.3, the annotation can be viewed as a tag-
ging task that assigns each word entry a tag from 
a finite tag set of possible words structures, such 
as [V N]  [V V]. In our annotation, the majority 
of the words turn out to be tagged as one of 14 
most popular structures.  
    Tagging is a typical NLP problem that can be 
well solved by supervised classification. We have 
chosen the maximum entropy model (ME, Berger 
et al., 1992) to do the task, for its ability of ac-
commodating overlapping features to achieve the 
state-of-the-art empirical performance.3 

4.1 Features 

For ME modeling, the choice of features strongly 
affects the result. As semantic features are more 
difficult to obtain and encode, we have mostly 
utilized word POS tags and character syntactic 
patterns as features, as shown in Table 1. In Ta-
ble 1, !!!! denotes the indicator function, which

                                                
3 We used Le Zhang’s implementation in our experiments, 
available at: https://github.com/lzhang10/ME 

11



 

Feature Type Feature Group Representative Feature  

Word POS tag  
Individual POS tags !!!!!, !!!!!, !!!!!, !!!"!, !!!"!, most_frequent_tag 
POS tag co-occurrence  !!!!!!!!!!, !!!!!!!!!!, !!!!!!!!"!, !!!!!!!!"! 
Set of POS tags set_of_all_possible_tags, !!!!!!"!!!!!"!!"!!"!!"! 

Left character form class 
Individual form class !!!!, !!!!, !!!!, !!!!, most_frequent_form_class 
Form class co-occurrence !!!!!!!, !!!!!!!!, !!!!!!!! 
Set of form classes set_of_all_possible_form_classes 

Right character form class Similar to left character form class features 
Possible structure Possible word structures both character classes of which are in the set of open-class 

Table 1 Features of the ME based automatic annotator 

represents whether the current feature matches 
pattern !. For example, !!!!! in the first row 
says that “NN is a possible tag of the current 
word”. We have systematically explored various 
feature configurations within these categories, 
among which the current feature set has achieved 
a better result. 

4.2 Evaluation 

We assume that (1) the word structures are inde-
pendent and identically distributed variables and 
(2) automatic annotator’s performance on sam-
ples of the complete set of two-character words, 
e.g. the manually annotated ones may reflect the 
performance on the complete set. We randomly 
split the manual annotation into a training set and 
a testing set, of 500 and 100 words, respectively. 
The performance of the model trained on the 
training set is measured by its accuracy on the 
testing set, which is calculated as follows: 

!""#!"#$ ! !"#$%&!!"!!"##$!%&'!!""#$!$%&!!"#$%
!"#$%&!!"!!"!#$!!"#$%! !!!! 

The average accuracy with 6-fold cross valida-
tion is 81%. Note that the popular pair of met-
rics, precision and recall for binary classification 
does not apply for the evaluation of the collec-
tive result of multiple tags, as the original differ-
ence in denominators of the two metric formula 
no longer exists. 

4.3 Discussion of ME results 

In the incorrectly tagged cases, a few are impos-
sible to learn, due to unseen classification tags. 
The majority are, however, related to inherent 
ambiguities of word structures, such as 完全 
‘complete(ly)’ [J J] [A A], 实行  ‘to imple-
ment’  [A V]  [V V], and 影  ‘to influence; im-
pact’ [N N]  [V V]. Although one structure may 
be more plausible than the other for a word, the 
distinction is somehow inconclusive. This sug-

gests that it is probably NOT the best to assign a 
single structure analysis for every case.  
    From a machine learning perspective, the 
model is characterized by high variance or over-
fitting, indicated by the big performance gap be-
tween the training (97%~92%) and testing (81%) 
accuracy. Besides the optimized regulation fac-
tors and the feature set, the only next thing that 
can improve the accuracy is probably to signifi-
cantly increase the size of the annotated training 
set. In fact, the accuracy of 81% is a reasonably 
good result that can be obtained by ME with a 
relatively small set of available annotated exam-
ples. 

5  Semi-supervised Annotation with 
Gaussian Mixture Model 

5.1 Soft assignment of structures 

Section 4.3 shows that many words are inherent-
ly ambiguous in structure. A better way of struc-
ture tagging may be soft assignment, i.e. allow-
ing assignment of multiple structures to a word 
and using probabilities to indicate the likelihood 
of each assignment. For example, a soft assign-
ment for 实行 ‘to implement’ may look like:  

[V V] : 0.8, [A V] : 0.15, [A N] : 0.01 ... 

5.2 POS fingerprint features  

POS features used in the ME model are discrete 
tag co-occurrence indicators. A drawback is that 
the distribution of POS tags is ignored. A better 
feature set is the distribution of the probabilities 
of seeing a certain POS tag !, given that the 
word is !, which can be estimated by normal-
ized empirical counts with maximum likelihood 
estimation as follows: 

! ! ! ! !!!!!!
!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!! 
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In practice, we only consider 10 open-class POS 
tags: AD, CD, JJ, M, NN, NR, NT, OD, VA and 
VV. The POS fingerprint, is a 10-dimensional 
vector that represents a word, each element of 
which is the conditional probability of the corre-
sponding POS. With the model described in sec-
tion 4, using original word POS features alone 
achieves an accuracy of 70%, while using POS 
fingerprint features alone achieves 74%.4  

5.3 The generative model 

Word POS tags strongly correlate with word 
structures (Packard, 2000). Human annotators 
use the single base POS tag to help annotate a 
word and utilize zero-derivation to generate am-
biguous POS tags. But a computational model 
may need to keep POS ambiguities and use the 
distributions as features, as both base POS find-
ing and zero-derivation probability estimation 
can be tricky. Even if a model can find the cor-
rect base POS for a word, the word structure may 
still be ambiguous in many cases, such as         
[V V]V, [V N]V and [N V]V. In short, it is an m-
to-n non-deterministic mapping between an ob-
servable POS tag ! and the latent structure !. A 
generative model that captures the joint distribu-
tion, !!!!!! can generate all words represented 
by their POS fingerprints in repeated two steps: 

1. Randomly choose a structure according 
to the structure distribution !!!!. 

2. Draw a POS fingerprint data point ac-
cording to the POS fingerprint distribu-
tion ! ! ! !given the chosen structure. 

Each structure S determines a POS fingerprint 
distribution, which should somehow differ from 
the distributions of other structures, yet might 
considerable overlaps with that of others. This 
trait formalizes the observation that POS distri-
bution has a significant correlation with struc-
tures, although words of different structures may 
show up with the same POS.  
    !!!!!! should be a continuous distribution, as 
the data points, i.e. POS fingerprints, are contin-
uous values.  We choose the Gaussian distribu-
tion, following the central limit theorem stating 
that the average of a sufficiently large number of 
independent random variables can be approxi-
mated by the Gaussian. The prior distribution of 
structures !!!!  is a multinomial distribution, 
which neatly describes the random choice of dis-

                                                
4 Note that simple substituting original POS features with 
POS fingerprints leads to little performance improvement in 
our supervised annotation experiment. 

crete categories. An advantage of the generative 
model, as opposed to zero derivation, is that all 
possible POS tags of a word are treated in a simi-
lar way, which avoids the problems of base POS 
selection and derivation probability estimation. 

5.4 Gaussian mixture model  

The unsupervised version of the generative mod-
el can be formally described as a Gaussian mix-
ture model (GMM, Bishop, 2006). The training 
data is a set of POS fingerprints {t(1),.., t (m) } rep-
resenting the word forms. The structures of these 
words, {s(1) ,.., s(k) }, are unknown, i.e. there is no 
structure annotation for any word. The data is 
specified by a joint distribution: 

! ! ! ! ! ! ! !!! ! !!!! ! !! ! !         (3) 

!!!!!!!!"#$%&'(%&)#! !  

!!!!!!!!!!! ! ! ! !! !!!!"#$$%"&!!!! ! !!! 
where the parameter of the multinomial distribu-
tion !! ! !!! ! ! !! ! !! !!!

!!! . And ! and ! 
are the vector of mean and variance of the 
Gaussian distribution, respectively. 
    The EM algorithm (Dempster et al., 1977) is 
the standard technique to estimate the parameters 
that maximize the likelihood of the data distribu-
tion with latent variables ! ! . The algorithm runs 
the E-step and M-step iteratively until coverage: 

1. E-step: 
 For each ! and !, set: 

!! ! ! ! ! ! ! !! ! ! ! !!! !! !!! ! 

! ! ! ! ! !! !!! ! ! ! ! ! ! !! !!!
! ! ! ! !! !!! ! ! ! ! ! ! !! !!!!

!!!
!!!! !  

2. M-step: 

!! !
!
! !!!

!

!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!! !
!! ! ! !!

!!!

!!
!!

!!!
!!!!!!!!!!!!!!!!!!!!!!!!! 

!! !
!! ! !!!! ! !! !!!! ! !!

!!
!!!

!!
!!

!!!
!!!!! 

    The quantity that we calculate in the E-step, 
the posterior probability of the structure ! ! , 
given ! ! , the POS fingerprint that represents the 
word is exactly the soft assignment of structures 
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that we need. The ! ! !! values obtained in the 
last iteration make the final annotation.  

5.5  Semi-supervised GMM 

A problem with EM is that there is no guarantee 
of finding the global optima, i.e. it often suffers 
from local optima. So EM is usually sensitive to 
the initialization and the default random initiali-
zation often leads to poor results, which has also 
been observed in NLP tasks (Lamar et al., 2010; 
Peng and Schuurmans, 2001). To solve this prob-
lem, we propose a semi-supervised version of 
GMM that uses the probabilistic output of the 
ME model for the EM initialization.  
    We train the ME model for automatic annota-
tion in the same way as in section 4 with 500 
training words. Then we apply the model to pre-
dict the structures of the all the 21151 words in 
this study except the 100 testing words. Instead 
of using the single best prediction, here we uti-
lize the probabilistic output of the ME model, 
which gives all possible structures of the words 
together with their marginal probabilities.  
    We use this output as ! ! ! ! ! !!to initialize 
the E-step of the EM algorithm.  Since the EM 
algorithm runs on GMM, from now on, POS fin-
gerprint features represent the words instead. The 
following points may explain why it can improve 
the performance: (1) Even though the best testing 
accuracy with "hard assignment" given by the 
ME model is only 81%, the "true" structure anal-
yses may still exist as the top-k candidate with 
relatively large probabilities, while irrelevant 
ones may have only small probability mass. (2) 
In general the assignments that EM induce do 
not necessarily correspond to the desired classifi-
cation tags, but the ME outputs can give the EM 
a better starting point to move towards the right 
one among all possible local optima, given the 
data likelihood and the classification accuracy 
are well correlated. (3) From the perspective of 
the original ME model, the connections and 
similarities between data points from a much 
bigger sample (21151 vs. 500) may help fix the 
high variance problem discussed in section 4.3.  
    The final soft assignments for the 100 testing 
words are obtained by applying the E-step for 
them with the parameter estimated in previous 
iterations. To get the hard assignment, we simply 
select the assignment with the highest probability 
for each word. The evaluation for the hard as-
signments is still based on testing accuracy, 
which stays at 90% in multiple runs that we have 
tried.  

6 Comparison Experiments 

We have tried other approaches to automatic an-
notation to compare with the proposed method. 
Since our semi-supervised approach is a combi-
nation of supervised ME model and unsuper-
vised GMM, two natural baselines would be the 
performance that could be achieved by applying 
two models independently, the former is 81% as 
shown in section 4. 

6.1 Unsupervised GMM 

We have run the traditional unsupervised GMM, 
which is characterized by the random initializa-
tion of the EM algorithm. As there is no prior 
mapping between assignment IDs and word 
structures, their optimal one-to-one mapping is 
found via our implementation of the Hungarian 
algorithm (Kuhn, 1955). With 1-to-1 mapping, 
the testing accuracy is 54% for several trial of 
random initialization. 

6.2 Self-training 

Self-training is a classic semi-supervised learn-
ing approach widely used in NLP. We have im-
plemented and experimented with the Yarowsky 
(1995) version. It is a meta- algorithm based on a 
basic learning model, for which we use the ME 
model with the same features, training set and 
testing set as described in section 4. The unla-
beled data U are the rest of the two-character 
words. We evaluate intermediate and final mod-
els with their performance on the testing set, the 
best of which is kept as the result.  
    Other setups: (1) Loop stopping criterion. We 
choose the performance on the testing data, con-
ditioned on the current accuracy !!(the previous 
accuracy- tolerance). The tolerance avoids stop-
ping too early. (2) Selection criteria. We use the 
standard one, namely, the classifier's confidence 
on its best prediction of each instance, which is 
highest marginal probability for ME. The selec-
tion relies on a parameter k, which defines the 
minimum confidence score needed for an in-
stance to get selected. In our experiment, we 
have tried scores from 0.95 to 0.5 with an inter-
val of 0.05. 
    We have tested with different configurations 
of k, splitting of U, and regularization parame-
ters. The result of self-learning giving an accu-
racy of 82% is not too good- one percentage 
point beyond that of the baseline ME model.  

14



6.3 Co-training 

Co-training (Blum and Mitchell, 1998) is another 
classic semi-supervised algorithm. Two classifi-
ers trained with independent views (feature set) 
are expected to teach one another in the iteration. 
Two views that we have adopted are: 1) left char 
and right char derived features and 2) POS fin-
gerprint features. 
    With a standard setup of the co-training exper-
iments, we have tried different selection criteria 
and regularization parameters. There is also only 
slightly (1%) improvement brought by co-
training.  It looks like that neither feature set of 
the two views provides the other with much ad-
ditional information for classification, as the ini-
tial classifiers trained with these two views have 
already reached an accuracy of 68% and 74%, 
respectively.  
    To summarize, neither self-training nor co-
training is capable of enhancing their perfor-
mance to a level comparable to our proposed 
approach, which improves the accuracy from 
81% to 90%. An overview of the performance of 
all tested methods in our research is given in Ta-
ble 2. 
 

Methods Test Accuracy 
ME 81% 
Self-training 82% 
Co-training 82% 
Unsupervised GMM 54% 
Semi-supervised GMM 90% 

Table 2 Performance of the tested methods 

7 Discussion 

The performance of the proposed semi-
supervised approach suggests that the distribu-
tion of the data has good characteristics that 
tightly link to the underlying structures. In other 
words, the form class descriptions of word struc-
tures provide much information for inducing the 
structural regularities of Chinese words. 
    To the best of our knowledge, this is the first 
work on automatic annotation of Chinese word 
structures based on semi-supervised learning. We 
are unable to find any existing work to directly 
compare with it. However, there are previous 
works on semi-supervised learning for other 
NLP tasks, such as document classification (Ni-
gam et al., 2006).  They used naïve Bayes for 
both the supervised learning and unsupervised 
learning, whereas our supervised and unsuper-
vised models are ME and GMM, respectively. In 

our design, we use ME as our initial model, be-
cause it can incorporate overlapping features to 
get better baseline. We could not simply keep 
using ME as the model for EM iterations, be-
cause it does not take probabilistic (soft) assign-
ment for training. We use Gaussian mixture for 
EM iteration out of two main reasons: (1) we 
observe a strong correlation between POS distri-
bution and word structures, and (2) Gaussian can 
deal with continuous features and suffers not too 
much from the data sparseness, for it has only a      
few parameters to estimate.  
    A message from Nigam et al. (2006) is that in 
their experiments, the performance gap between 
the supervised model and the semi-supervised 
model that utilize extra unlabeled instances de-
creases from initially 20%~10% to complete di-
minishing when there are abundant labeled data 
to such a degree that unlabeled data do not pro-
vide any extra information. Despite the differ-
ences in modeling and application, we assume 
that these semi-supervised learning algorithms 
follow similar tack of performance improvement 
over the baselines.  
    In this sense, the performance improvement 
from 81% to 90% of our semi-supervised method 
is very good, especially in view of the high base-
line and the relative error reduction (52%) it has 
achieved. Besides, we can directly use the prob-
abilistic annotation to train models for real appli-
cations, which is probably a more sensible way 
than training on the hard-assignment (top-1) of 
structure analyses, due to the inherent ambigui-
ties of word structures themselves. In this proba-
bilistic/soft mode, the error rate for applications 
is expected to be further decreased, as the train-
ing of probabilistic grammar can be similar to 
EM: Even if the top-1 candidate is incorrect in a 
strict sense, the correct analysis may still exist in 
the top-k best with considerable amount of prob-
ability mass, in contrast with truly irrelevant 
ones. The accumulations of a large number of 
instances will push the probability distribution 
towards the right direction.  
    Of course, the ultimate purpose of this auto-
matic annotation approach is to facilitate tasks 
such as grammar learning, Chinese word seg-
mentation, and joint segmentation and parsing. 
As for the question of how good this accuracy of 
90% can be to these applications, its answer has 
to be explored through further experiments. The 
success of existing works in this direction cer-
tainly points to a promising prospect.  
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8 Conclusion 

We have developed a semi-supervised approach 
to annotating Chinese word structures, based on 
Chinese morphology and applied it to automatic 
annotation of two-character Chinese words with 
the aid of a Gaussian mixture model, which uti-
lizes the output of the ME model for its initiali-
zation for EM iterations. The proposed method 
can achieve an accuracy of 90% on a test set of 
100 words, using 500 manually annotated words 
as training examples. This method works signifi-
cantly better than pure supervised model and two 
other typical semi-supervised learning tech-
niques, namely self-training and co-training. 
    Since this work focuses only on structure an-
notation of two-character words in Chinese, our 
plan for future work will be to semi-
automatically annotate longer words. This needs 
to incorporate annotation techniques in Li & 
Zhou (2012) and develop necessary models to 
describe the recursive nature of word derivation 
in Chinese. With a complete word structure an-
notation of all words in CTB, we expect to have 
more experiments with novel word structure-
driven models for Chinese word segmentation 
and even a joint modeling of word segmentation 
and parsing, with a focus on the typical problems 
of OOV word recognition. 
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