Refining the Design of a Contracting Finite-State Dependency Parser

Anssi Yli-Jyr a andJussi Piitulainen andAtro Voutilainen
The Department of Modern Languages

PO Box 3
00014 University of Helsinki
{anssi.yli-jyra,jussi.piitulainen,atro.voutil ainen}@el sinki.fi

Abstract

This work complements a parallel paper of
a new finite-state dependency parser archi-
tecture (Yli-Jya, 2012) by a proposal for
a linguistically elaborated morphology-syntax
interface and its finite-state implementation.
The proposed interfacextends Gaifman’s
(1965) classical dependency rule formalism
by separating lexical word forms and morpho-
logical categories from syntactic categories.
The separation lets the linguist take advantage
of the morphological features in order to re-
duce the number of dependency rules and to
make them lexically selective. In addition,
the relative functional specificity of parse trees
gives rise taa measure of parse qualitfy fil-
tering worse parses out from the parse forest
using finite-state techniques, the best parses
are saved. Finally, we preseatsynthesis of
strict grammar parsing and robust text pars-
ing by connecting fragmental parses into trees
with additional linear successor links.

the sentence: an 80-word sentence has potentially
1.1 x 1052 unrooted unlabeled dependency trees that
are stored “compactly” into a finite-state lattice that
requires at least.4 x 10% states, see Table 4 in Yli-
Jyra (2012).

A truly compact representation of the parse forest
is provided by an interesting new extended finite-
state parsing architecture (Yli-&r2012) that first
recognizes the grammatical sentences in quadratic
time and space if the nested dependencies are lim-
ited by a constant (in cubic time if the length of the
sentence limits the nesting). The new system (Yli-
Jyra, 2012) replaces the additive (Oflazer, 2003) and
the intersecting (Yli-Jya, 2005) validation of depen-
dency links with reductive validation that gradually
contracts the dependencies until the whole tree has
been reduced into a trivial one. The idea of the con-
tractions is illustrated in Example 1. In practice, our
parser operates on bracketed trees (i.e., strings), but
the effect will be similar.

1 Introduction (1) a. time fles like an arrow

Finite-state dependency parsing aims to combine de- o\ :

pendency syntax and finite-state automata into a sin- o ,)(S)/NOB,DE/HO
\SUBJ :

gle elegant system. Deterministic systems such as poV-
(Elworthy, 2000) are fast but susceptible to garden-
path type errors although some ambiguity is encoded
in the output. Some other systems such as (Oflazer,
2003; Yli-Jyta, 2005) carry out full projective de-

pendency parsing while being much slower, espe-

b. timeflieslike an arrow

NOBJ/’O

o/

cially if the syntactic ambiguity is high. In the worst C. time flies like an arrow
case, the size of the minimal finite-state automa- :
ton storing the forest is exponentially larger than o

108

Proceedings of the 10th International Workshop on Finite State Methods and Natural Language Processing, pages 108-115,
Donostia—San Sebastidn, July 23-25, 2012. (©2012 Association for Computational Linguistics

Despite being non-deterministic and efficient, tree is better than another tree if a larger propor-
there are two important requirements that are notful- tion of its dependency links is motivated by the
filled by the core of the new architecture (Yli-dyr linguistic rules. In contrast to Oflazer (2003),
2012): our method counts the number of links needed
to connect the fragments into a spanning tree.
Moreover, since such additional links are in-
deed included in the parses, the ranking method
turns a grammar parser into a robust text parser.

1. A mature finite-state dependency parser must
be robust. The outputs should not be restricted
to complete grammatical parses. For exam-
ple, Oflazer (2003) builds fragmental parses but

later drops those fragmental parses for whic . :
P rag pa l:f‘he paper is structured as follows. The next section
there are alternative parses with fewer frag-

: will give an overview of the new parser architecture.
ments. However, his approach handles onl)& . .
o fter it, we present the new morphology-syntax in-
gap-free bottom-up fragments and optimize
. rface in Section 3 and the parse ranking method in
the number of fragments by a counting metho .) :
L ection 4. The paper ends with theoretical evalua-
whose capacity is limited. . . ! L
tion and discussion about the proposed formalism in
2. Besides robustness, a wide-coverage parsgection 5.
should be able to assign reasonably well-
motivated syntactic categories to every word i2 The General Design
the input. This amounts to having a morpho- 1 The Int | Linquistic R tati
logical guesser and an adequate morpholog);-' € Internal Linguistic Representation
syntax interface. Most prior work trivializes We need to define a string-based representation for
the complexity of the interface, being comparathe structures that are processed by the parser. For
ble to Gaifman’s (1965) legacy formalism thatthis purpose, we encode the dependency trees and
is mathematically elegant but based on wordthen augment the representation with morphological
form lists. A good interface formalism is pro- features.
vided, e.g., by Constraint Grammar parsers Dependency bracketsncode dependency links
(Karlsson et al., 1995) where syntactic rulebetweerpairs of tokens that are separated by an (im-
can refer to morphological features. Oflazeplicit) token boundary. The four-token stringcd
(2003) tests morphological features in complihas 12 distinctundirected unlabeled dependency
cated regular expressions. The state complexityracketings a((()b)c)d, a((b())c)d, a(()b()c)d,
of the combination of such expressions is, howa(()bc())d, a(()b)c()d, a(b(()c))d, a(b(c()))d,
ever, a potential problem if many more rulesa(b()c())d, a(b())c()d, a()b(()c)d, a()b(c())d,
would be added to the system. a()b()c()d.1
This paper makes two main contributions: The basic dependency brackets extend with labels

, , i such as inLBL LBL) and directions such as kBL
1. Itadapts Gaifman’s elegant formalism to the re-

. .) LeL\ and in/LBL LBL>. Directed dependency links
quirements of morphologically rich I"’mg’u""ges'de:signate one of the linked words as the head and
With the adapted formalism, grammar writing

b _— Hicient impl another as the dependent. The extended brackets let
ecomes easier. However, etliclent IMPIEMen; s o hcode a full dependency tree in a string format

ta_tlo.n of the rule qukup becomes |nhereqtly?s indicated in (25. The dependent word of each
trickier because testing several morphologica

conditions in parallel increases the size of the !Dependency bracketing differs clearly frdsimary phrase-
finite-state automata. Fortunately, the new forstructure bracketingshat put bracketsround phrases: the
malism comes with an efficient implementations”'”g abcd has only five distinct bracketings(ab) (cd)),

L - (((ab)c)d), ((a(bc))d), (a((bc)d)),and(a(b(cd))).
that keeps the finite-state representation of the “>1. syntactic labels used in this paper ame=Agent,

rule set as elegant as possible. by=Preposition 'by’ as a phrasal verb complement,

. . Lo . D=Determiner, EN=Past Participle, FP=Final Punctuation,
2. The_paper mtroducesallngwstlcally_ mOt'V_ate¢:adjunctive preposition, PC=Preposition Complement,
ranking for complete trees. According to it, as=Subjectsgs=Singular Subject.

109

~N o g W NP

link is indicated in trees with an arrowhead but inthe universal language*. The (binary) finite-state

bracketing with an angle bracket. relationsare defined ovekE* and include all finite
subsets oE* x ¥*. In addition, they are closed un-
(2 it was inspired by the writings . der the operations over finite-state languagesnd
<S S\ /FP/ENENSAG AG>:/PC <DD\PCH FP> ' M and finite-state relation& and .S according to
: : ' : 5\0 : § Table 2. The language relation(ld) restricts the
: ; : /6/P°/\O : identity relation to a language. The composition
(5\ : /O/G FF,/'o of language relations corresponds to the intersection

S\o% of their languages.

Table 2: The relevant closure properties

In Table 1, the dependency bracketing is com-I i -
bined with a common textual format for morpho- anguage refation meaning

logical analyses. In this format, the base forms are”, R*S colncatenatlon
defined over the alphabet of orthographical symbol R N (Kleene) s:ar
Q2 whereas the morphological symbols and syntacti o R g (K_eene) pIUS
categories are multi-character symbols that beIong,L Y %U Iumon lati
respectively, to the alphabellsandI’. In addition, -1 ld(L) I:ju;guage :3 aLtlon
there is a token boundary symbol (R) or.R =1d(L)
L—-M Id(L)-Id(M) set difference
_ _ LxM cross product
Table 1: One morpho-syntactic analysis of a sentence R, input res.t.riction
_— PRON NOV SG3 <S , Rols _composmon
be _ V PAST SGL3 S\ /FP /EN # R~ inverse
inspirekEN EN> /AG # Proj, (R) Id(the input side ofR?)
by PREP AG |PC # ;)
t he DET SG PL <D # Proj,(R) Id(the output side oR)
wr i ting NNOVPL D PC> #
. PUNCT FP> #

For notational convenience, the empty string is
denoted by. A string x is identified with the sin-

Depending on the type of the languages, one ogleton sef{x}.
thographical word can be splitinto several parts such The syntactic component of the grammar defines
as the inflectional groups in Turkish (Oflazer, 2003)a set of parse strings where the bracketing is a valid
In this case, a separate word-initial token boundargependency tree. In these parses, there is no mor-
can be used to separate such parts into lines of th@ihological information. One way to express the set
own. is to intersect a set of constraints as in (Yli-dyr

The current dependency bracketing captures pr@005). However, the contracting dependency parser
jective and weakly non-projective (1-planar) treegxpresses the Id relation of the set through a compo-
only, but an extended encoding for 2-planar andition of simple finite-state relations:

multi-planar dependency trees seems feasible (Yli- . .
Jyra, 2012): Syn, = Proj, (Absto R o t o RoRoot), (1)

2.2 The Valid Trees Root= Id(#). (2)

We are now going to define precisely the semantide (1), Abst is a relation that removes all non-
of the syntactic grammar component using finitesyntactic information from the strings,
state relations. .

The finite-state languagewill be defined over a Abst= (Id(I) U ld(x) U Deletq", 3)
finite alphabek and they include all finite subsets of Delete= {(z,¢) | z € QUII}, (4)

110

and R is a relation that performs one layer of con+o a finite number of potentiahorpho-syntacticat-
tractions in dependency bracketing. egories that relate word forms to their syntactic func-
o tions. The words of particular categories are then
R=(ld(I")Uld(#) ULeftURight®, (5) related bydependency rules
Left = {(<a# o ,¢) | <a,an €T}, (6)

Right= {(/a # a>,¢) | la,a> € T'}. (7) Xo(Xp, s Xor*, Xu, oo, X)) (9)

The parametet determines the maximum numberThe rule (9) states that a word in categd¥y is the

of layers of dependency links in the validated brackhead of dependent words in categotés . .., X_;
etings. The limit of Sypast approachesc is not before it and words in categorié$,, . .., X,, after
necessarily a finite-state language, but it remairg in the given order. The rule expresses, in a cer-
context-free because only projective trees are agin sense, the frame or the argument structure of the
signed to the sentences. word. RuleX (*) indicates that the word in category
. X can occur without dependents.

2.3 The Big Picture In addition, there is aoot rule » (X)) that states
We are now ready to embed the contraction baseHat a word in categorX’ can occur independently,
grammar into the bigger picture. that is, as the root of the sentence.

Let z € Q* be an orthographical string to be |n the legacy notation, the distinction between
parsed. Assume that it is segmented inttokens. complements and adjuncts is not made explicit, as
The stringz is parsed by composition of four rela- hoth need to be listed as dependents. To compact the
tions: the relation{(x, x)}, the lexical transducer notation, we introduceptional dependentsat will
(Morph), the morphology-syntax interface (Iface)pe indicated by categorieX,?, ..., X 12 and cat-
and the syntactic validator Syn . egoriesX?,..., X,,?. This extension potentially

_ saves a large number of rules in cases where sev-

Parsegr) = ld(z) o Morphe Ifaceo Sym,.. (8) eral dependents are actually adjuncts, some kinds of

The language relation PrgParsegr)) encodes modifiers®
the parse forest of the input

In practice, the syntactic validator Syn, cannot
be compiled into a finite-state transducer due to itk practice, atomic morpho-syntactic categories are
large state complexity. However, when each copy afften too coarse for morphological description but
the contracting transducet in (1) is restricted by too refined for convenient description of syntactic
its admissible input-side language, a compact rejirames. A practical description requires a more ex-
resentation for the input-side restrictig®yn, ;) x pressive and flexible formalism.
whereX = Proj,(ld(xz)oMorpholface) is computed In our new rule formalism, each morpho-syntactic

3.2 The Decomposed Categories

efficiently as described in (Yli-Jg; 2012). categoryX is viewed as a combination of a morpho-
_ logical categoryM (including the information on
3 The Grammar Formalism the lexical form of the word) and a syntactic cate-

In the parser, the linguistic knowledge is organize§°"Y S- The morphological category/ is a string
into Morph (the morphology) and Iface (the lexical-Of orthographical and morphological feature labels
ized morphology-syntax interface), while Syn hadvhile S is an atomic category label.

mainly a technical role as a tree validator. Imple- The morphological category/, and the syntactic
menting the morphology-syntax interface is far fronfateégorySy are specified for the head of each de-

an easy task since it is actually the place that lexicaRendency rule. Together, they specify the morpho-
izes the whole syntax. syntactic categoryMy, Sp). In contrast, the rule
specifies only the syntactic categorigs ..., S_1,

3.1 Gaifman’s Dependency Rules I
. , . .) 30Optional dependents may be a worthwhile extension even
Gaifman’s legacy notation (Gaifman, 1965; Haysj, gescriptions that treat the modified word as a complement of

1964) for dependency grammars assigns word formsmodifier.

111

B W NP

and 51, ..., 5, of the dependent words and thuscan be motivated by the linguistic knowledge. To
delegates the selection of the morphological catgfue the fragments together, we interpret the roots
gories to the respective rules of the dependent wordsf fragments asinear successors thus dependents
The categoriesS,, ..., S_i, and Sy,...,S,, may - for the word that immediately precedes the frag-
again be marked optional with the question mark. ment.

The rules are separated according to the direction The |ink to a linear successor is indicated with a
of the head dependency. Rules (10), (11) and (1ghecial category having a default rule«(+). Since

attach the head to the right, to the left, and in any diyny word can act as a root of a fragment, every word
rection, respectively. In addition, the syntactic cateyg provided with this potential category. In addi-

gory of the root is specified with a rule of the formyjoy there is, for every rule (12), an automatic rule

(13). ++(Sp, ..., 8 1,%[M], S1,...,S,,) that allows the
— S0(Sp, ..., S 1,%[Mg),S1,...,Sn,), (10) rootsofthe fragments to have the corresponding de-
 S0(Sps .oy Sy % [Mo], Sty Sm)s (11) p_endents. Similar automatic rules are defined for the
directed rules.
So(Sp, - S-1,* [Ma], 51, Sm), - (12) The category++ is used to indicate dependent
*(S0). (13)

words that do not have any linguistically motivated
The interpretations of rules (10) - (12) are similar tesyntactic function. The root rule(++) states that
rule (9), but the rules are lexicalized and directedhis special category can act as the root of the whole
The feature stringlfy € (Q*2* U Q*)IT* defines dependency tree. In addition to the root function ex-
the relevant head word forms using the features prgressed by that rule, an optional dependeitis
vided by Morph. The percent symbaj(stands for appended to the end of every dependency rule. This
the unspecified part of the lexical base form. connects fragments to their left contexts.

The use of the extended rule formalism is illus- wiith the above extensions, all sentences will have
trated in Table 3. According to the rules in the tablegt |east one complete tree as a parse. A parse with
a phrase headed by prepositibp has three uses: some dependents of the typeare linguistically in-
an adjunctive prepositiorp), the complement of a ferior to parses that do not have such dependents or
phrasal verbdy), or the agent of a passive Vers|. have fewer of them. Removing such inferior analy-

Note that the last two uses correspond to a fully lexises from the output of the parser is proposed in Sec-
calized rule where the morphological category spegign 4.

ifies the lexeme. The fourth rule illustrates how mor-
phological features are combined innov sG and _
then partly propagated to the atomic name of thd-4 The Formal Semantics of the Interface

syntactic category.
y gory Let there ber dependency rules. For each rile

Table 3: Extended Gaifman rules i €{1,...,r} of type (10), let

P (*[% PREP], PC) % prepos.

by (*[by PREP], PQ) % phr asal F; = My, (14)
AG (*[b y PREP], PC) % agent

sgS (D?, M?, *[% N NOM SG, M?) % noun GrL = S_l\ NN Sp\ S0> /Sm/ Sl, (15)

whereS_\,...,Sp\, 80>,/ Sm,...,1.S1 € I'. For
3.3 Making a Gaifman Grammar Robust each rule of type (11)Sy> in (15) is replaced with
Dependency syntax describes complete trees wheveo- Rules with optional dependents are expanded
each node is described by one of the dependeniﬂm subrules, and every undirected rule (12) splits
rules. Sometimes, however, no complete tree for A0 two directed subrules.
input is induced by the linguistically motivated de- In (16), Iface is a finite-state relation that injects
pendency rules. In these cases, only tree fragmerttependency brackets to the parses according to the

112

dependency rules. In this improved method, the application of Iface de-
mands only linear space according to the number of

Iface= Intro 2 C*hk’ . . (16) rules. This method is also fast to apply to the input,
Intro = (1d(Q"II") (exI™)Id(#))", (17) as far as the morphology-syntax interface is con-
Chk = Proj, (Matcho Rules, (18) cerned. Meanwhile, one efficient implementation of
Rules= Id (U/_, F;Gi#)* . (19) Syn,_, is already provided in (Yli-Jy&, 2012).
Mid = Id(e) U (2" x% 21
! (€) U (S8, (21) The parsing method of (Yli-J&; 2012) builds the
Tag= Id(II) U (IIxe). (22)

parse forest efficiently using several transducers,

Iface is the composition of relations Intro and Chkbut there is no guarantee that the whole set of
Relation Intro inserts dependency brackets betwedi@rses could be extracted efficiently from the com-
the morphological analysis of each token and the foRact representation constructed during the recogni-
lowing token boundary. Relation Chk verifies thation phase. We will now assume, however, that

the inserted brackets are supported by dependerf§¢ number of parses is, in practice, substantially
rules that are represented by relation Rules. smaller than in the theoretica"y pOSSible worst case.

In order to allow generalizations in the specifi-Moreover, it is even more important to assume that
cation of morphological categories, the relation Inthe set of parses is compactly packed into a finite au-
tro does not match dependency rules directly, bi@maton. These two assumptions let us proceed by
through a filter. This filter, Match, optionally re- refining the parse forest without using weights such
places the middle part of each lexeme withnd ar- s in (Yli-Jya, 2012).
bitrary morphological feature labels with the empty In the following, we restrict the parse forest to
string. those parses that have the smallest number of ’linear

In addition to the dependency rules, we need tguccessor’ dependenciesX. The number of such
define the semantics of the root rules. [EEte the dependencies is compared with a finite-state relation
set of the categories having a root rule. The categofyP € (I'U{#})*x(I'U{#})" constructed as follows:
of the root word will be indicated in the dependency

/
bracketing as an unmatched bracket. Itis checked by =2 {ee) (28)
relation Root= Id(H#) that replaces Root Id(#) Cp = Map;o(Id(++>")(ex++>) ") oMap; !, (29)
in the composition formulas (1) . Map, = (Id(++>) U (Z'xe))*. (30)
3.5 An Efficient Implementation In practice, the reduction of the parse forest is pos-
The definition of Iface gives rise to a naive parsefible only if the parse forest PygParseér)) is rec-
implementation that is based on the formula ognized by a sufficiently small finite-state automa-
ton that can then be operated in Formula (33). The
Parsegr) = MI, o Chko Syn, _, (23) parses that minimize the number of 'linear succes-
Ml = Id(z) o Morpho Intro. (24) sor dependencies are obtained as the output of the

o e .__relation Parséér).
The naive implementation is inefficient in practice. &)

The main efficiency problem is that the state com- Parse$z) = MI,, o Chk, o Ty, 1, (31)
plexity of relation Chk can be exponential to the T,.0 = Proj,(Parseér)) (32)
number of rules. To avoid this, we replace it with ’ ’
Chk,, a restriction of Chk. This restriction is com-
puted lazily when the input is known.

Tw71 = TI70 — Prsz(TLO o Cpo TLQ). (33)

This restriction technique could be repeatedly ap-
Parseér) = MI, o Chk, o Syn,_1, (25) plied to further levels of specificity. For example,
Chk, — Proj, (Match,oRules (26) IeX|caIIy_ motivated complements c_ould be prgferred
_ over adjuncts and other grammatically possible de-
Match, = Proj,(Ml,) o Match (27) pendents.

113

5 Evaluation and Discussion 5.4 Computational Complexity

Thanks to dynamically applied finite-state opera-
tions and the representation of feature combinations
We have retained most of the elegancy in thas strings rather than regular languages, the depen-
contracting finite-state dependency parser (YlaJyr dency rules can be compiled quickly into the trans-
2012). The changes introduced in this paper amucers used by the parser. For example, the actual
modular and implementable with standard operaspecifications of dependency rules are now com-
tions on finite-state transducers. piled into a linear-size finite-state transducer, Chk.
Our refined design for a parser can be impleThe proposed implementation for the morphology-
mented largely in similar lines as the general apsyntax interface is, thus, a significant improvement
proach (Yli-Jya, 2012) up to the point when thein comparison to the common approach that com-
parses are extracted from the compact parse forespiles and combines replacement rules into a single
Parsing by arc contractions is closely relate@ransducer where the morphological conditions of
to the idea of reductions with restarting automat#e rules are potentially mixed in a combinatorial

5.1 Elegance

(Platek et al., 2003). manner.
Although we have started to write an experimental
5.2 Coverage grammar, we do not exactly know how many rules

a mature grammar will contain. Lexicalization of

The representation of the parses can be extendedp, 1 jes will increase the number of rules signifi-

handle word-internal token boundaries, which fac'l'cantly. The number of syntactic categories will in-

itates the adequate treatment of agglutinative 1aReage even more if complements are lexicalized.
guages, cf. (Oflazer, 2003).

The limit for nested brackets is based on the psy5.5 Robustness

cholinguistic reality (Miller, 1956; Kornai and Tuza, In case the grammar does not fully disambiguate or

éggii)ezrzﬁirt]hi;gbss' eé\ilse:e:e;:;g%tfﬁ rzsbhoog;t i?]er?aetgh”d a complete dependency structure, the parser
' ’ ’ should be able to build and produce a partial anal-
ural language.

ysis. (In interactive treebanking, it would be useful

The same general design can be used to p_mduﬁ%n additional knowledge source, e.g. a human, can
non-projective dependency analyses as required used to provide additional information to help the

many European languages. The crossing depend?ﬁ{rser carry on the analysis to a complete structure.)

C|est Cgr.] be;(?stgnZgltg twg olr mori plal?etg as Tug'The current grammar system indeed assumes that
gested in (Yli-Jya,)- 2-planar bracketing al-;; . p iiq complete trees for all input sentences.

ready achieves very high recall in practiceof@ez- This assumption is typical for all generative gram-

Rodiiguez and Nivre, 2010). mars, but seems to contradict the requirement of ro-
bustness. To support robust parsing, we have now
proposed a simple technique where partial analyses
Oflazer (2003) uses the lenient composition oper@re connected into a tree with the “linear succes-
tion to compute the number of bottom-up fragment§or” links. The designed parser tries its best to avoid
in incomplete parses. The current solution improveiese underspecific links, but uses the smallest pos-
above this by supporting gapped fragments and ugible number of them to connect the partial analyses
restricted counting of the graph components. into a tree if more grammatical parses are not avail-
Like in another extended finite-state approacRPl€-
(Oflazer, 2003), the ambiguity in the output of our
parsing method can be reduced by removing parsg
with high total link length and by applying filters Although Oflazer (2003) does not report significant
that enforce barrier constraints to the dependengroblems with long sentences, it may be difficult to
links. construct a single automaton for the parse forest of a

5.3 Ambiguity Management

S6 Future Work

114

sentence that contains many words. In the futur®avid Elworthy. 2000. A finite state parser with de-

a more efficient method for finding the most spe- pendency structure output. Rroceedings of Sixth In-

lelc parse from the forest can be Worked out us- tematlonal WorkShOp on ParS|ng TeChnq|0g|eS (IWPT

ing weighted finite-state automata. Such a method 2000 Trento, Italy, February 23-25. Institute for Sci-
. . entific and Technological Research.

would combine the approaches of the companion alh

Coa aim Gaifman. 1965. Dependency systems and
per (Yli-Jyra, 2012) and the current paper. phrase-structure systemdnformation and Contrgl

It seems interesting to study further how the speci- g:304-37.
ficity reasoning and statistically learned weightarlos G@mez-Rodiguez and Joakim Nivre. 2010. A
could complement each other in order to find the transition-based parser for 2-planar dependency struc-
best analyses. Moreover, the parser can be modifiedtures. InProceedings of the 48th Annual Meeting of
in such a way that debugging information is pro- the Association for Computational Linguistigzages
duced. This could be very useful, especially when 1492—1501, Uppsala, Sweden, 11-16 July.

: . . avid G. Hays. 1964. Dependency theory: A formalism
learning contractions that handle the crossing depeR and some observationsanguage 40:511-525.

dencies of non-projective trees. _ Fred Karlsson, Atro Voutilainen, Juha Heikki and
A dependency parser should enable the building arto Anttila, editors. 1995. Constraint Grammar:

of multiple types of analyses, e.g. to account for a Language-Independent System for Parsing Unre-
syntactic and semantic dependencies. Also addingstricted Textvolume 4 ofNatural Language Process-
more structure to the syntactic categories could be ing. Mouton de Gruyter, Berlin and New York.

useful. Andras Kornai and Zsolt Tuza. 1992. Narrowness, path-
width, and their application in natural language pro-
6 Conclusions cessing.Discrete Applied Mathematic86:87—-92.

Dekang Lin. 1995. A dependency-based method for
The current theoretical work paves the way for a full evaluating broad-coverage parsers. Rroceedings
parser implementation. The parser should be able toOf the Fourteenth International Joint Conference on

; - _ Artificial Intelligence, IJCAI 95, Mong&al Quebec,

cope with Iar_ge grammars tq enable efficient devel Canada, August 20-25, 1996olume 2, pages 1420—
opment, testing and application cycles. 1425

The current work has sketched an expressive aghorge A. Miller. 1956. The magical number seven,
compact formalism and its efficient implementation pjus or minus two: Some limits on our capacity
for the morphology-syntax interface of the contract- for processing information. Psychological Review
ing dependency parser. In addition, the work has 63(2):343-355.
elaborated strategies that help to make the grammiggmal Oflazer. 2003. Dependency parsing with an ex-
more robust without sacrificing the optimal speci- tended finite-state approaci@omputational Linguis-

ficity of the analysis. tics, 29(4):515-544. , :
Martin Platek, Marleta Lopatkod, and Karel Oliva.

2003. Restarting automata: motivations and applica-
tions. In M. Holzer, editoWWorkshop 'Petrinetze’ and

: : 13. Theorietag 'Formale Sprachen und Automaten’
The research has received funding from the . . ; .
9 pages 90-96, Institutif Informatik, Technische Uni-

Academy of Finland under the grant agreement # versitat Minchen.
128536 and the F_IN-'CL’ARIN project, and from theAnssi Yli-Jya. 2005. Approximating dependency
European Commission’s 7th Framework Program grammars through intersection of star-free regular lan-

Acknowledgments

under the grant agreement # 238405 (CLARA). guagesInternational Journal of Foundations of Com-
puter Sciencel6(3).
Anssi Yli-Jyra. 2012. On dependency analysis via con-
References tractions and weighted FSTs. In Diana Santos, Krister

Lindén, and Wanjiku Ng’'ang’a, editorShall we Play

Jason Eisner and Noah _A‘ Smith. 2005. Parsing with the Festschrift Game? Essays on the Occasion of Lauri
soft and hard constraints on dependency length. In Carlson’s 60th BirthdaySpringer-Verlag, Berlin.
Proceedings of the International Workshop on Parsing ’

Technologies (IWPT)pages 30—41, Vancouver, Octo-
ber.

115

