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Abstract a source and a target sentence can be considered.
Nowadays, these models are strongly based on

This paper presents a finite-state approach phrases, i.e. variable-lengthgrams, which means
to phrase-based statistical machine translation ¢ they are built from some other lower-context
where alog-linear modelling framework is im- . . .
plemented by means of an on-the-fly com- models that, in this case, are defined at phrase level.
position of weighted finite-state transducers. P hrase-base(PB) models (Tomas and Casacuberta,
Moses, a well-known state-of-the-art system, ~ 2001; Och and Ney, 2002; Marcu and Wong, 2002;
is used as a machine translation reference in  Zens et al., 2002) constitute the core of the current

order to validate our results by comparison. state-of-the-art in SMT. The basic idea of PB-SMT
Experiments on the TED corpus achieve a  systems is:
similar performance to that yielded by Moses.

1. to segment the source sentence into phrases,

1 Introduction then

2. to translate each source phrase into a target

Statistical machine translatio(SMT) is a pattern )
(EMT) P phrase, and finally

recognition approach to machine translation which
was defined by Brown et al. (1993) as follows: given 3, to reorder them in order to compose the final
a sentence from a certain source language, a cor-  translation in the target language.

responding sentence in a given target language _

to be found. State-of-the-art SMT systems moddhe third step is omitted as the final translation is
the translation distributioRr(t|s) via the log-linear justgenerated by concatenation of the target phrases.

approach (Och and Ney, 2002): Apart frgm translation functions, the log-linear
approach is also usually composed by means of a
t = argmaxPr(t|s) (1) target language model and some other additional
t

elements such as word penalties or phrase penalties.
The word and phrase penalties allow an SMT sys-
tem to limit the number of words or target phrases,
respectively, that constitute a translation hypothesis.
whereh,, (s, t) is a logarithmic function represen- In this paper, a finite-state approach to a PB-SMT
ting an important feature for the translationsahto  state-of-the-art system, Moses (Koehn et al., 2007),
t, M is the number of features (or models), angd is presented. Experimental results validate our work
is the weight ofh,,, in the log-linear combination.  because they are similar to those yielded by Moses.
This feature set typically includes sevetens- A related study can be found in Kumar et al. (2006)
lation models so that different relations betweeror the alignment template model (Och et al., 1999).

M

A argmax Z AmBm (s, t) 2

t m=1
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2 Log-linear features for monotone SMT whose dependence @h is omitted for the sake of
n easier reading.

, : - a
As a first approach to Moses using finite-state Feature 1 is finally formulated as follows:

models, a monotone PB-SMT framework is adopted.
Under this constraint, Moses’ log-linear model is 181

usually taking into account the following 7 features: hi(s,t) =log n%ax P(t,[s,) (3)
Y ok=1

Translation features } }
1. Direct PB translation probability wheren (s, t) = P(t[s) is a set of PB probability
distributions estimated from bilingual training data,
2. Inverse PB translation probability once statistically word-aligned (Brown et al., 1993)
by means of GIZA++ (Och and Ney, 2003), which
Moses relies on as far as training is concerned.
This information is organized asteanslation table
where a pool of phrase pairs is previously collected.

3. Direct PB lexical weighting
4. Inverse PB lexical weighting

Penalty fealires Inverse PB translation probability

5. PB penalty Similar to what happens with Feature 1, Feature 2
6. Word penalty is formulated as follows:
|B2]
Language features ha(s, t) = log max H P(§,|t,) 4)
7. Target language model i
2.1 Translation features where 12(S,t) = P(3[t) is another set of PB

All 4 features related to translation are PB modelsl?rqbabi"ty distribgtions, which are simultarleously
that is, their associated feature functiong(s,t), trained together with the ones for Featurel|s),

which are in any case defined for full sentenceso,ve”he same pool of phrase pairs already extracted.
are modelled from other PB distributions,(3,t), Direct PB lexical weighting

which are based on phrases. Given the word-alignments obtained by GIZA++,
Direct PB translation probability it is quite straight-forward to estimate a maximum
likelihood stochastic dictionary’(t;|s;), which is
used to score a weiglik (3, t) to each phrase pair in
the pool. Details about the computation Bfs, t)

are given in Koehn et al. (2007). However, as far as
this work is concerned, these details are not relevant.

The first featurér, (s, t) = log P(t|s) is based on
modelling the posterior probability by using the seg
mentation betweern andt as a hidden variablg;.

In this mannerPr(tls) = Y Pr(tls, 51) is then

B1 . - )
approximated byP(t|s) by using maximization Feature 3 is then similarly formulated as follows:
instead of summationP(t|s) = r%aXP(t\s,Bl). 15|
1 ~
. . hy(s.t) = logmax [ [ Ds,.8)  (5)
Given a monotone segmentation betweemdt, Bs

P(tl]s, 51) is generatively computed as the product I e Ey
of the translation probabilities for each segment pa}/r\lheren?’(s’ t) = D(8,t) is yet another score to use

according to some PB probability distributions: with the pool of phrase pairs aligned during training.

Inverse PB lexical weighting

Similar to what happens with Feature 3, Feature 4
is formulated as follows:

|81
P(tls, p1) = HP(Ek‘ék)
k=1

|4l
where|3;| is the number of phrases thaaindt are ha(s,t) = log max 4 6.0 ©
9 kY Tk

segmented into, i.e. evesy andEk, respectively, Ba i
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whereny(5,t) = I(s,t) is another weight vector, 3 Data structures

which is computed by using a dictionafy(s;|t;), . . :
with which the translation table is expanded again-l,—hIS section show; hovy the fgatures from Section 2
re actually organized into different data structures

h i igh h ir in the pocf’
thus scoring a new weight per prase pair in the IOOOin order to be efficiently used by the Moses decoder,

2.2 Penalty features which implements the search defined by Equation 2

The penalties are not modelled in the same wa}? find_out the most likely translation hypothesis
The PB penalty is similar to a translation feature, i.OF & given source sentense

it is based on a monotone sentence segmentatiofly pg models

The word penalty however is formulated as a whole

being taken into account by Moses at decoding tim he PB distributions associated to Features 1 to 5
are organized in table form as a translation table for

PB penalty the collection of phrase pairs previously extracted.
The PB penalty scoraes= 2.718 per phrase pair, That builds a PB database similar to that in Table 1

thus modelling somehow the segmentation length.

Therefore, Feature 5 is defined as follows:

Source Target | m  7m2 n3 M4 N5

|85 barato lowcosf 1 03 1 06 2718
hs(s,t) = logmax [ ] (7) | megusta lIlke |06 1 09 1 2718
Bs i esdecir thatis | 0.8 05 0.7 09 2.718

por favor please | 0.4 0.2 0.1 04 2718

wherens (8, t) = e extends the PB table once again 2718

Word penalty o _ _
Word penalties are not modelled as PB penaltieéable 1. A Spanish-into-English PB translation table.

In fact, this feature is not defined from PB scores, ach source-target phrase pair is scored by eibdels.

but it is formulated at sentence level just as follows: - .
where each phrase pair is scored by all five models.
he(s, t) = log e 8)

3.2 Word-based models

Whereas PB models are an interesting approach
2.3 Language features to deal with translation relations between languages,

Language models approach the a priori probabili'éfnguage modelling itself is usually based on words.
that a given sentence belongs to a certain langua gature 6is a_Iength model of the target sentence,
In SMT, they are usually employed to guarantee thaﬂnd Feature 7 is a target language model.
translation hypotheses are built according to the p&yord penalty

culiarities of the target language.

where the exponent efis the number of words it.

Penalties are not models that need to be trained.
Target language model However, while PB penalties are provided to Moses

An n-gram is used as target language madg),  t© take them into account during the search process
where a word-based approach is usually considere§e€ for example the last column of Tablex),
Then, hz(s,t) = log P(t) is based on a model word penalties are internally implemented in Moses
where sentences are generatively built word by wor@S Part of the log-linear maximization in Equation 2,
under the influence of the last— 1 previous words, and are automatically computed on-the-fly at search.
with the cutoff derived from the start of the sentenceTarget n-gram model

t] Language models, angdgrams in particular, suf-

h(s,t) = log [T P(tiltint1---ti-1) (9 fer from a sparseness problem (Rosenfeld, 1996).

=1 The n-gram probability distributions are smoothed
whereP(t;|t;—,+1...t;—1) are word-based proba- to be able to deal with the unseen events out of train-
bility distributions learnt from monolingual corpora.ing data, thus aiming for a larger language coverage.
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This smoothing is based on thackoffmethod, defines a set of edges between pairs of states in such
which introduces some penalties for level downa way that every edge is labelled with an input string
grading within hierarchical language modelsin X*, with an output string iM\*, and is assigned a
For example, letM be a trigram language model, transition weight.
which, as regards smoothing, needs both a bigram\yhen weights are probabilities, i.e. the range of
and a unigram model trained on the same datfynctions f and P is constrained between 0 and 1,
Any trigram probability,P(c|ab), is then computed and under certain conditions, a weighted finite-
as follows: state transducer may define probability distributions.

Then, it is called &tochastic finite-state transducer

if abc € M:  Ppy(c|ab)
elseif bce M: BOa(ab)Pr(c|b)
elseif ce M: BOp(ab) BO(b)Pa(c) Here, we show how the SMT models described in
else . BOa(ab) BOa(b)Ppm(unk)  Section 3 (that is, the five scores in the PB trans-
(10) lation table, the word penalty, and tegram lan-
_ 3 ' guage model) are represented by means of WFSTSs.
whereP), is the probability estimated byt forthe gt of all, the word penalty feature in Equation 8

correspondingi-gram, B0, is the backoff weight s equivalently reformulated as another PB score,
to deal with the unseen events out of training data, i, Equations 3 to 7:

and finally, Py((unk) is the probability mass re-
served for unknown words.

4.1 WEFSTs for SMT models

. Be|
The P(t;|t;—n41...t;—1) term from Equation 9 6] ]
. . . h t)=1 =1 k 11
is then computed according to that algorithm above, 5(s,t) = loge 8 r%%xkl:[l c (11)

given the model data organized again in table form

as a collection of probabilities and backoff we|ghtsWhere the length ot is split up by summation

for the n-grams appearing in the training corpus, _. . .
This model displays similarly to that in Table 2. using the length of each phrase in a segmentation

Actually, this feature is independent @, that is,

wgram [ P BO any segmentation produces the expected valiiie
please | 0.02 0.2 and therefore the maximization It is not needed.
lowcost| 0.05 0.3 However, the main goal is to introduce this feature as
I like 01 07 another PB score similar to those in Features 1 to 5,
thatis | 0.08 0.5 and so it is redefined following the same framework.
The PB table can be now extended by means of

n6(8, t) = €lfl, just as Table 3 shows.
Table 2: An English word-based backeffgram model.
The likelihood and the backoff model score for each

gram.

Source Target |91 72 73 M4 M5 76
barato low cost
me gusta | like
es decir that is
por favor please

[S I G I e
o 0

4 Weighted finite-state transducers

@

Weighted finite-state transducer@lohri et al.,
2002) (WFSTs) are defined by means of a tuple

(2,A,Q, q, f, P), whereX is the alphabet of in- Table 3: A Word-_pena_lty-extended PB translgtion table.
put symbols,A is the alphabet of output symbols,The exponent of in 7 is the number of words in Target.

Q is a finite set of stateg, € Q is the initial state,

f : Q@ — R is a state-based weight distribution to Now, the translation table including 6 PB scores
guantify that states may be final states, and finallgnd the target-language backaefigram model can

the partial functionP : @ x ¥* x A* x @ — R be expressed by means of (some stochastic) WFSTSs.
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Translation table Bigram Q cost / cost
Each PB model included in the translation table, edges Pur(cost | low)

i.e. any PB distribution in{n; (8, t),...,7(8, )}, @ Bigram
can be represented as a particular case of a WFST. layer
Figure 1 shows a PB score encoded as a WFST, BO(q,) /BO(g,)

using a different looping transition per table row l;g'gg;:m BO(q,) BO(g,) llé)S({Of;L

within a WFST of only one state.

Unigram
layer

Figure 2: A WFST example for a backoff bigram model.
Backoff (BO) is dealt with failure transitions from the bi-
gram layer to the unigram layer. Unigrams go in the other
direction and bigrams link states within the bigram layer.

barato/ low cost

To sum up, our log-linear combination scenario
considers 7 (some stochastic) WFSTs, 1 per feature:
6 of them are PB models related to a translation table
while the 7th one is a target-languaggram model.

Source Target

barato low cost z; tal | lik ) .

me gusta | like Lo me gusty/ | like Next in _Sectlo_n 42 we show how these WFSTs
are used in conjunction in a homogeneous frame-
work.

Figure 1: Equivalent WFST representation of PB scores.
Table rows are embedded within as many loopingt 2 Search
transitions of a WFST which has no topology at all; ) ) )
n-scores are correspondingly stored as transition weightgguation 2 is a general framework for log-linear ap-
proaches to SMT. This framework is adopted here in
: : o rder to combine several features based on WFSTs
Itis straight-forward to see that the application OI\g/)vhich are modelled as their respective Viterbi score |
the Viterbi method (Viterbi, 1967) on these WFSTS _ P . '
As already mentioned, the computation of

rovides the corresponding feature va t :
b ponding teat higi(s. ) dim(s,t) for each PB-WFST, let us saf;, (with
for all Features 1 to 6 as defined in Equations 3 to 8. . .
1 < m < 6), provides the most likely segmenta-
tion 3,, for s andt according to7,,. However, a
Language model constraint is used here so that @}, models define

Itis well known thatn-gram models are a subclassthe same segmentatigh

of stochastic finite-state automata where backoff 18] >0
can also be adequately incorporated (Llorens, 2000).
Then, they can be equivalently turned into trans-
ducers by means of the concept of identity, that is,
transducers which map every input label to itself. _
Figure 2 shows a WFST for a backoff bigram model‘.Nher? the PB scqres correspono!mg to Features 1. to 6
Itis also quite straight-forward to see thia{s, t) are directly applied ~on~that partlculfar segmentatlon
(as defined in Equation 9 for a targetgram model for ea(;h phrase pag,, t,) mono‘Fonlc.a'\IIy aligned.
where backoff is adopted according to Equation 10l§quat|ons 3to 7 and 11 can be simplified as follows:

S =

t =

o U

is also computed by means of a parsing algorithm, Ym=1,...,6

which is actually a process that is simple to carry 18

out g_iv_en_ that these backaffgram WFSTs are de- hum(s, t) = log max H mm(5,t)  (12)
terministic. Pt
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Then, Equation 2 can be instanced as follows: using then-gram scores inC on the target hypo-
theses frony as soon as they are partially produced.
Equation 13 represents a Viterbi-based compo-
sition framework where all the (weighted) models
contribute to the overall score to be maximized,
provided that the set of,,-weights is instantiated.
Using a development corpus, the set\gf-weights
can be empirically determined by means of running
several iterations of this framework, where different
A7 ; log P(tifti—n+1---tic1)  alies for the\,,,-weights are tried in each iteration.

8l 6 5 Experiments

= argmax maxz Z)\mlognm(ék,fk)
t p k=1m=1 Experiments were carried out on the TED corpus,

1t which is described in depth throughout Section 5.1.
+Z Arlog P(t;[ti_ns1...t;_q) Automatic evaluation for SMT is often considered
and we use the measures enumerated in Section 5.2.

) ) ) Results are shown and also discussed, in Section 5.3.
as logarithm rules are applied to Equations 9 and 12.

The square-bracketed expression of Equation 181 Corpora data

is a Viterbi-like score which can be incrementally-l-he TED corpus is composed of a collection of
built through the contribution of all the PB-WFSTSggjish_French sentences from audiovisual content

(along with their respective,, -weights) Over Some | qse main statistics are displayed in Table 4.
phrase pai(s, , t, ) that extends a partial hypothesis.

7

t = argmax Z Am b (8, 1) (13)

¢ m=1

6 18I
= argmax Z Am mﬂaleog Nm(3,,%,)
t m=1 k=1

It]

i=1

As these models share their topology, we implement Subset English  French

them jointly including as many scores per transi- - Sentences 47.5K

tion as needed (Goatez and Casacuberta, 2008). ‘© Running words| 747.2K  792.9K

These models can also be merged by means of union :_ Vocabulary 246K 317K

once their\,,-weights are transferred into them. S Sentences o271

That allows us to model the whole translation table > Running words 9.2K 10.3K
. A Vocabulary 1.9K 2.2K

(see Table 3) by means of just 1 WFST_ structiire — Sentences 641

Therefore, the search framework for single models 8 Runningwords| 12.6K  12.8K

can also be used for their log-linear combination. = Vocabulary 2 4K 2.7K

As regards the remaining term from Equation 13,
i.e. the target-gram language model for Feature 7,Table 4: Main statistics from the TED corpus and its split.
it is seen as a rescoring function (Och et al., 2004)
which is applied once the PB-WFST is explored. As shown in Table 4, develop and test partitions
The translation model returns the best hypothesese statistically comparable. The former is used
that are later input to the-gram language modél, to train the\,,-weights in the log-linear approach,
where they are reranked, to finally choose the bestin the hope that they can also work well for the latter.
However, these two steps can be processed at once
if both the WFSTT and the WFSTL are merged _
by means of their compositiofi o £ (Mohri, 2004). -2 Evaluation measures
The product of such an operation is another WFS$ince its appearance as a translation quality mea-
as WFSTs are closed under a composition operatiosure, the BLEU metric (Papineni et al., 2002), which
In practice though, the size @fo £ can be very large stands forbilingual evaluation understughas be-
so composition is done on-the-fly (Caseiro, 2003;ome consolidated in the area of automatic evalua-
which actually does not build the WFST f@ro £ tion as the most widely used SMT measure. Never-
but explores botff and. as if they were composed, theless, it was later found that its correlation factor
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with subjective evaluations (the original reason fob.3 Results

fts success) is actually not so high as first thoughlthe goal of this section is to assess experimentally

(Callison-Burch et al., 2006)'. Anyw_ay, itis still the the finite-state approach to PB-SMT presented here.
most popular SMT measure in the literature. . . o .
First, an English-to-French translation is considered,

However, thewor_d error rate (WER) is a very .then a French-to-English direction is later evaluated.
common measure in the area of speech recognition _ _
On the one hand, our log-linear framework is

which is also quite usually applied in SMT (Och et

al., 1999). Although it is not so widely employed aStuned on the basis of BLEU as the only evaluation

BLEU, there exists some work that shows a bette] €aSU"® in ordgrto select the best set,piweights.
correlation of WER with human assessments (PaJIhat is accomplished by means ofdev_elopmentdata,
etal., 2007). Of course, the WER measure has Sonq‘gwever, once the.,,-weights are esfumated, thgy
bad reviews as well (Chen and Goodman 1996\€ extrapolated to test data for the final evaluation.
Wang et al., 2003) and one of the main cri',[icismgable 5 shows: a) the BLEU translation results for
that it receives in SMT areas is about the fact th&péRdevelclJpr?enthdata; a;d b) IthethEU, V\GEE a?]d
there is only one translation reference to compar-g resu ts fort e_test ata. In both a) and b), t €
with. The MWER measure (Niel3en et al., 2000) ig\m-welghts are trained on the development parti-

an attempt to relax this dependence by means of éilqn. These results are according to different feature

average error rate with respect to a set of multiplgombmat'ons_ inour Iog-Ilnear-approach.to PB-SMT.
references of equivalent meaning, provided that they AS Shown in Table 5, the first experimental sce-
are available. nario is not a log-linear framework since only one
Another measure also based on the edit distanfgature, (a direct PB translation probability model)
concept has recently arisen as an evolution of WER considered. The corresponding results are poor
towards SMT. It is theranslation edit rate(TER), and, judging by the remaining results in Table 5,
and it has become popular because it takes into d@€y reflect the need for a log-linear approach.
count the basic post-process operations that profes-The following experiments in Table 5 represent
sional translators usually do during their daily work& 10g-linear framework for Features 1 to 6,
Statistically, it is considered as a measure highly cot-€- the PB translation table encoded as a WHST
related with the result of one or more subjective evaihere different PB models are the focus of attention.

uations (Snover et al., 2006). Only the log-linear combination of Features 1 and 2
The definition of these evaluation measures is as
follows: Log-linear Develop Test

features BLEU | BLEU WER TER
BLEU: It computes the precision of the unigrams; 1 (baseline) 8.5 7.1 1029 101.5
bigrams, trigrams, and fourgrams that appear in1+2 4.0 3.0 1166 115.6
the hypotheses with respect to thegrams of 131;4 g;; 12-‘5‘ gg-g gj-g
the same grder that occur in the translation re1-1+2+3+4+5 927 188 652 632
erence, with a penalty for too short sentence 5.1 41243444546 231 191 659 638
Unlike the WER measure, BLEU is not an erro 1+7 546 505 651 629
rate but an accuracy measure. 1+2+7 255 21.3 63.7 616
. . 1+2+3+7 25.9 22.2 625 60.4
WER: This measure computes the minimum num-4 45,3447 26.3 220 634 613
ber of editions (replacements, insertions Of 14+2+3+4+5+7 26.4 221 63.1 610

deletions) that are needed to turn the systemi+2+3+4+5+6+7| 27.0 218 644 622
hypothesis into the corresponding reference. | Moses (1+. .+7) 27.1 220 640 6138

TER: Itis computed similarly to WER, using an ad-Table 5: English-to-French results for development and
ditional edit operation. TER allows the move-test data according to different log-linear scenarios.

ment of phrases, besides replacements, insdre set ofA,,-weights is learnt from development data
tions. and deletions for every feature combination log-linear scenario defined.
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is worse than the baseline, which feeds us bag¢K-og-linear Develop Test
on the fact that the,,,,-weights can be better trained,|_features BLEU | BLEU WER TER
that is, the log-linear model for Features 1 and Zifgase“”e) Zi ;g ﬂ%g i‘igg
can pe upgraded until bgsellne s results with= 0. 14943 24.2 211 589 565
This battery of experiments on Features 1 t0 67,9.344 24 .4 208 580 557
allows us to see the benefits of a log-linear approachs +2+3+4+5 24.9 212 569 548
The baseline results are clearly outperformed now,1+2+3+4+5+6 25.2 212 571 55.0
and we can say that the more features are includedi+7 24.7 225 600 577
the better are the results. 1+2+7 26.0 23.2 588 565
The next block of experiments in Table 5 always 1t2+3+7 285 | 230 561 540
include Feature 7, i.e. the target language matiel 1r2+3+a+q 28.4 231 560 538
’ . . 1+2+3+445+7 28.8 23.4 56.0 53.9
Features 1 to 6 are progressively introduced ito | 1.5, 2.41516+47] 287 | 238 558 537
These results confirm that the target language mod&{joses (1+..+7) | 28.9 235 558 53.6

is still an important feature to take into account,
even though PB models are already providing a sufable 6: French-to-English results for development
rounding context for their translation hypotheses pend test data according to different log-linear scenarios.
cause translation itself is modelled at phrase Ieve+
These results are significantly better than the one%]
where the target language model is not considere . )
Again, the more translation features are included he word penalty can alsq b? equwalentl_y redefined
the better are the results on the development daf® _another PB model, _5|m|Iar o the_ five others,
hich allows us to constitute a translation model

However, an overtraining is presumedly occurrin dofsi llel WESTS that trained
with regard to the optimization of thg,,-weights, omposed ot sixparaflel Wi-> 1S that are constraine
share the same monotonic bilingual segmentation.

as results on the test partition do not reach their toﬁg
the same way the ones for the development data do,A Eackoffn-grim;model _f((j)r tt:_(te t?/\rlgljzest’_lranguige
i.e. when using all 7 features, but when combinin an be represented as an identity wiefe)

Features 1, 2, 3, and 7, instead. These differenc%moiel:edl onl_the basis of tr:](te \K/I'terb' a_llgo:tlthm.d
are not statistically significant though. € whole log-linear approach to VIoses IS attaine

Finally, our finite-state approach to PB—SMTby means ofthe on the.fly WFST compositiph.L.
. . : i X Our finite-state log-linear approach to PB-SMT
is validated by comparison, as it allows us to achieve . . )

L . . IS validated by comparison, as it has allowed us

similar results to those yielded by Moses itself. ) L .

On the other hand. a translation direction wher(teo achieve similar results to those yielded by Moses.

. .’ ] Monotonicity is an evident limitation of this work,

French is translated into English gets now the focu?

ese models can also be implemented by means
WFSTs on the basis of the Viterbi algorithm.

Thei di it ted in Tabl 's Moses can also feature some limited reordering.
€ircorresponaing results are presented in 1able 'owever, future work on that line is straight-forward

f‘ stlr:nllar _beha;v;our (;]ap ll)Ee cl)_bierved_ n lTabIeIt since the framework described in this paper can be
orthe series ot French-lo-English émpinicalresu Seasily extended to include a PB reordering model

6 Conclusions and future work by means of the on-the-fly compositigho R o L.

In this paper, a finite-state approach to Moses, Whicﬁcknowledgments
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a direct and an inverse PB lexical weighting modelFEDER, FSE), the Spanish government (MICINN,
PB and word penalties, and a target language mod&lTyC, “Plan E”, grants MIPRCV “Consolider In-
Five out of these models are based on PB scorgenio 2010” and iTrans2 TIN2009-14511), and the
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