Practical Finite State Optimality Theory

Dale Gerdemann
University of Tiibingen
dg@sfs.nphil.uni-tuebingen.de

Mans Hulden
University of the Basque Country
IXA Group

IKERBASQUE, Basque Foundation for Science

Abstract

Previous work for encoding Optimality The-
ory grammars as finite-state transducers has
included two prominent approaches: the so-
called ‘counting’ method where constraint vi-
olations are counted and filtered out to some
set limit of approximability in a finite-state
system, and the ‘matching’ method, where
constraint violations in alternative strings are
matched through violation alignment in order
to remove suboptimal candidates. In this pa-
per we extend the matching approach to show
how not only markedness constraints, but also
faithfulness constraints and the interaction of
the two types of constraints can be captured
by the matching method. This often produces
exact and small FST representations for OT
grammars which we illustrate with two practi-
cal example grammars. We also provide a new
proof of nonregularity of simple OT gram-
mars.

1 Introduction

The possibility of representing Optimality Theory
(OT) grammars (Prince and Smolensky, 1993) as
computational models and finite-state transducers,
in particular, has been widely studied since the in-
ception of the theory itself. In particular, construct-
ing an OT grammar step-by-step as the composition
of a set of transducers, akin to rewrite rule com-
position in (Kaplan and Kay, 1994), has offered
the attractive possibility of simultaneously model-
ing OT parsing and generation as a natural conse-
quence of the bidirectionality of finite-state trans-
ducers. Two main approaches have received atten-
tion as practical options for implementing OT with
finite-state transducers: that of Karttunen (1998)
and Gerdemann and van Noord (2000).! Both ap-

"Earlier finite-state approaches do exist, see e.g. Ellison
(1994) and Hammond (1997).

10

mhulden@email.arizona.edu

proaches model constraint interaction by construct-
ing a GEN-transducer, which is subsequently com-
posed with filtering transducers that mark violations
of constraints, and remove suboptimal candidates—
candidates that have received more violation marks
than the optimal candidate, with the general tem-
plate:

MarkCl .o.
MarkCN .o.

FilterCl ...
FilterCN

Grammar = Gen .oO.

In Karttunen’s system, auxiliary ‘counting’ trans-
ducers are created that first remove candidates with
maximally k violation marks for some fixed k, then
k — 1, and so on, until nothing can be removed with-
out emptying the candidate set, using a finite-state
operation called priority union. Gerdemann and van
Noord (2000) present a similar system that they call
a ‘matching’ approach, but which does not rely on
fixing a maximal number of distinguishable viola-
tions k. The matching method is a procedure by
which we can in many cases (though not always)
distinguish between infinitely many violations in a
finite-state system—something that is not possible
when encoding OT by the alternative approach of
counting violations.

In this paper our primary purpose is to both ex-
tend and simplify this ‘matching’ method. We
will include interaction of both markedness and
faithfulness constraints (MAX, DEP, and IDENT
violations)—going beyond both Karttunen (1998)
and Gerdemann and van Noord (2000), where only
markedness constraints were modeled. We shall also
clarify the notation and markup used in the matching
approach as well as present a set of generic trans-
ducer templates for EVAL by which modeling vary-
ing OT grammars becomes a simple matter of mod-
ifying the necessary constraint transducers and or-
dering them correctly in a series of compositions.

Proceedings of the 10th International Workshop on Finite State Methods and Natural Language Processing, pages 10-19,
Donostia—San Sebastidn, July 23-25, 2012. (©2012 Association for Computational Linguistics

We will first give a detailed explanation of the
‘matching’ approach in section 2—our encoding,
notation, and tools differ somewhat from that of
Gerdemann and van Noord (2000), although the core
techniques are essentially alike. This is followed by
an illustration of our encoding and method through
a standard OT grammar example in section 3. In
that section we also give examples of debugging OT
grammars using standard finite state calculus meth-
ods. In section 4 we also present an alternate en-
coding of an OT account of prosody in Karttunen
(20006) illustrating devices where GEN is assumed to
add metrical and stress markup in addition to chang-
ing, inserting, or deleting segments. We also com-
pare this grammar to both a non-OT grammar and an
OT grammar of the same phenomenon described in
Karttunen (2006). In section 5, we conclude with a
brief discussion about the limitations of FST-based
OT grammars in light of the method developed in
this paper, as well as show a new proof of nonregu-
larity of some very simple OT constraint systems.

1.1 Notation

All the examples discussed are implemented with
the finite-state toolkit foma (Hulden, 2009b). The
regular expressions are also compilable with the Xe-
rox tools (Beesley and Karttunen, 2003), although
some of the tests of properties of finite-state trans-
ducers, crucial for debugging, are unavailable. The
regular expression formalism used is summarized in
table 1.

2 OT evaluation with matching

In order to clarify the main method used in this pa-
per to model OT systems, we will briefly recapitu-
late the ‘matching’ approach to filter out suboptimal
candidates, or candidates with more violation marks
in a string representation, developed in Gerdemann
and van Noord (2000).2

2.1 Worsening

The fundamental technique behind the finite-state
matching approach to OT is a device which we call
‘worsening’, used to filter out strings from a trans-
ducer containing more occurrences of some desig-
nated special symbol s (e.g. a violation marker),

2Also discussed in Jager (2002).

11

AB Concatenation
AlB Union
A Complement
? Any symbol in alphabet
% Escape symbol
Grouping brackets

A:B Cross product
T.1 Output projection of T
A -> B Rewrite A as B
A (->) B Optionally rewrite A as B
|lc.D Context specifier
[..] -—> A Insert one instance of A
A -> B ... C Insert B and C around A

C#. End or beginning of string

Table 1: Regular expression notation in foma.

than some other candidate string in the same pool
of strings. This method of transducer manipulation
is perhaps best illustrated through a self-contained
example.

Consider a simple morphological analyzer en-
coded as an FST, say of English, that only
adds morpheme-boundaries—+--symbols—to input
words, perhaps consulting a dictionary of affixes and
stems. Some of the mappings of such a transducer
could be ambiguous: for example, the words decon-
struction or incorporate could be broken down in
two ways by such a morpheme analyzer:

Output

d tructi de+construct+ion
econstruction <dec0nstruct+i0n

. int+corporate
incorporate < _
ncorporate

Suppose our task was now to remove alternate
morpheme breakdowns from the transducer so that,
if an analysis with a smaller number of morphemes
was available for any word, a longer analysis would
not be produced. In effect, deconstruction should
only map to deconstruct+ion, since the other al-
ternative has one more morpheme boundary. The
worsening trick is based on the idea that we can
use the existing set of words from the output side
of the morphology, add at least one morpheme
boundary to all of them, and use the resulting set
of words to filter out longer ‘candidates’ from the
original morphology. For example, one way of
adding a +-symbol to de+construction produces

de+construct+ion, which coincides with the orig-
inal output in the morphology, and can now be used
to knock out this suboptimal division. This process
can be captured through:

AddBoundary = [?*x 0:%+ ?2%]+;
Worsen = Morphology .o. AddBoundary;
Shortest = Morphology .o. "Worsen.l;

the effect of which is illustrated for the word de-
construction in figure 1. Here, AddBoundary is
a transducer that adds at least one +-symbol to the
input. The Worsen transducer is simply the origi-
nal transducer composed with the AddBoundary
transducer. The Shortest morphology is then
constructed by extracting the output projection of
Worsen, and composing its negation with the orig-
inal morphology.

Shortest Worsen

deconstruction

Morphology

de+construct+ion
deconstruct+ion

+deconstruct+ion

" de+construct+ion
dec+onsruct+ion
de+cto+tntstruct+ion

deconstruction

Morphology

de+construct+ion
deconstruct+ion

deconstruct+ion

Figure 1: Illustration of a worsening filter for morpheme
boundaries.

2.2 Worsening in OT

The above ‘worsening’ maneuver is what the
‘matching’ approach to model OT syllabification is
based upon. Evaluation of competing candidates
with regard to a single OT constraint can be per-
formed in the same manner. This, of course, pre-
supposes that we are using transducers to mark con-
straint violations in input strings, say by the sym-
bol *. Gerdemann and van Noord (2000) illustrate
this by constructing a GEN-transducer that syllabi-
fies words,> and another set of transducers that mark

3 Although using a much more complex set of markup sym-
bols than here.

12

violations of some constraint. Then, having a con-
straint, NOCODA, implemented as a transducer that
adds violation marks when syllables end in conso-
nants, we can achieve the following sequence of
markup by composition of GEN and NOCODA, for
a particular example input bebop:

bebop

Gen

be.bop
beb.op

be.bop*
beb*.op*

The above transducers could be implemented very
simply, by epenthesis replacement rules:

Insert periods arbitrarily inside words
Gen = [..] (=>) %. || \.#. _ \.#. 5
Insert x-marks after C . or C .#.
NoCoda = [..] => %x || C+ [%. | .#.]

— 7

Naturally, at this point in the composition
chain we would like to filter out the suboptimal
candidates—that is, the ones with fewer violation
marks, then remove the marks, and continue with
the next constraint, until all constraints have been
evaluated. The problem of filtering out the subopti-
mal candidates is now analogous to the ‘worsening’
scenario above: we can create a ‘worsening’-filter
automaton by adding violation marks to the entire
set of candidates. In this example, the candidate
be.bop* would produce a worse candidate be*.bop*,
which (disregarding for the moment syllable bound-
ary marks and the exact position of the violation) can
be used to filter out the suboptimal beb*.op*.

3 An OT grammar with faithfulness and
markedness constraints

As previous work has been limited to working with
only markedness constraints as well as a some-
what impoverished GEN—one that only syllabifies
words—our first task when approaching a more
complete finite-state methodology of OT needs to
address this point. In keeping with the ‘richness
of the base’-concept of OT, we require a suitable

GEN to be able to perform arbitrary deletions (eli-
sions), insertions (epentheses), and changes to the
input. A GEN-FST that only performs this task
(maps ¥* — X¥*) on input strings is obviously fairly
easy to construct. However, we need to do more than
this: we also need to keep track of which parts of
the input have been modified by GEN in any way
to later be able to pinpoint and mark faithfulness
violations—places where GEN has manipulated the
input—through an FST.

3.1 Encoding of GEN

Perhaps the simplest possible encoding that meets
the above criteria is to have GEN not only change
the input, but also mark each segment in its output
with a marker whereby we can later distinguish how
the input was changed. To do so, we perform the
following markup:

e Every surface segment (output) is surrounded
by brackets [...].

e Every input segment that was manipulated by
GEN is surrounded by parentheses (...).

For example, given the input a, GEN would pro-
duce an infinite number of outputs, and among them:

GEN did nothing
] GEN deleted the a
el GEN changed the a to e
] i GEN inserted a d and changed a to 1

This type of generic GEN can be defined through:

assuming here that S represents the set of segments
available.

3.2 Evaluation of faithfulness and markedness
constraints

As an illustrative grammar, let us consider a standard
OT example of word-final obstruent devoicing—as
in Dutch or German—achieved through the interac-
tion of faithfulness and markedness constraints. The
constraints model the fact that underlyingly voiced

13

obstruents surface as devoiced in word-final posi-
tion, as in pad — pat. A set of core constraints to
illustrate this include:

e *VF: a markedness constraint that disallows fi-
nal voiced obstruents.

e IDENTV: a faithfulness constraint that militates
against change in voicing.

e VOP: a markedness constraint against voiced
obstruents in general.

The interaction of these constraints to achieve de-
voicing can be illustrated by the following tableau.*

bed || *VF | IDENTV | VOP |
= bet * &
pet *k|
bed | *! o
ped *) * *

The tableau above represents a kind of shorthand
often given in the linguistic literature where, for the
sake of conciseness, higher-ranked faithfulness con-
straints are omitted. For example, there is nothing
preventing the candidate bede to rank equally with
bet, were it not for an implicit high-ranked DEP-
constraint disallowing epenthesis. As we are build-
ing a complete computational model with an unre-
stricted GEN, and no implicit assumptions, we need
to add a few constraints not normally given when
arguing about OT models. These include:

e DEP: a faithfulness constraint against epenthe-
sis.

e MAX: a faithfulness constraint against dele-
tion.

o IDENTPL: a faithfulness constraint against
changes in place of articulation of segments.
This is crucial to avoid e.g. bat or bap being
equally ranked with bet in the above example.’

“The illustration roughly follows (Kager, 1999), p. 42.

SNote that a generic higher-ranked IDENT will not do, be-
cause then we would never get the desired devoicing in the first
place.

Including these constraints explicitly allows us to
rule out unwanted candidates that may otherwise
rank equal with the candidate where word-final ob-
struents are devoiced, as illustrated in the following:

~ &9 A

bed B 1527|828

I bet * e

pet w3

bed *| ES

ped *| * ®

bat *| e &

bep | * *

be *| e
bede || *! e

Once we have settled for the representation
of GEN, the basic faithfulness constraint markup
transducers—whose job is to insert asterisks wher-
ever violations occur—can be defined as follows:

Dep = [..] > {x} |l (%) _;
Max = [..1 > {x} [I %[%1 _ ;
Ident = [..1 > {x} || 5(s %) %[S %] _;

That is, DEP inserts a *-symbol after ()-
sequences, which is how GEN marks epenthesis.
Likewise, MAX-violations are identified by the se-
quence [], and IDENT-violations by a parenthesized
segment followed by a bracketed segment. To define
the remaining markup transducers, we shall take ad-
vantage of some auxiliary template definitions, de-
fined as functions:

def Surf (X) [X .o. [0:%[2?2 O:
[
1

def Change (X,Y) [%

Here, Surf (X) in effect changes the language X
so that it can match every possible surface encod-
ing produced by GEN; for example, a surface se-
quence ab may look like [a][b], or a[b], etc.,
since it may spring from various different underly-
ing forms. This is a useful auxiliary definition that
will serve to identify markedness violations. Like-
wise Change (X, Y) reflects the GEN representa-
tion of changing a segment X to Y needed to con-
cisely identify changed segments. Using the above

14

we may now define the remaining violation markups
needed.

CvoI = [bldlgl;

Voiced = [bldlgl|V];

Unvoiced = [pltlk];

define VC Change (Voiced, Unvoiced) |

Change (Unvoiced, Voiced) ;
Change (p, ?-b) |Change (t, ?2-d) |
Change (k, ?-g) |Change (b, ?-p) |
Change (d, ?-t) |Change (g, ?-k) |
Change (a, ?) |Change (e, ?) |
Change (i, ?) |Change (0, ?) |
Change (u, ?);

define Place

VF = [..] => {x} || Surf(CvOoIl) _ .#. ;
IdentV = [..] —=> {x} || VC _ ;
VOP = [..] => {%} || Surf(CVOI) ;
IdentPl = [..] —=> {x} || Place _ ;

The final remaining element for a complete imple-
mentation concerns the question of ‘worsening’ and
its introduction into a chain of transducer composi-
tion. To this end, we include a few more definitions:

Addviol = [2x 0:%%x 2x]+;

Worsen = [Gen.i .o. Gen]/%* .o. Addviol;
def Eval(X) X .o. "[X .o. Worsen].l .o. %x—>0;
Cleanup = S[1%] => 0 .o. $(\%)*x %) -> 0;

Here, Addviol is the basic worsening method
discussed above whereby at least one violation mark
is added. However, because GEN adds markup to
the underlying forms, we need to be a bit more flex-
ible in our worsening procedure when matching up
violations. It may be the case that two different com-
peting surface forms have the same underlying form,
but the violation marks will not align correctly be-
cause of interfering brackets. Given two competing
candidates with a different number of violations, for
example (a)[b]* and [a], we would like the latter to
match the former after adding a violation mark since
they both originate in the same underlying form a.
The way to achieve this is to undo the effect of GEN,
and then redo GEN in every possible configuration
before adding the violation marks. The transducer
Worsen, above, does this by a composition of the
inverse GEN, followed by GEN, ignoring already ex-
isting violations. For the above example, this leads
to representations such as:

@
0)
=]
[
@
=]
i
Q.
Q.
<
=
o
=

[a] o2t 5 O

Figure 2: OT grammar for devoicing compiled into an
FST.

We also define a Cleanup transducer that re-
moves brackets and parts of the underlying form.

Now we are ready to compile the entire system
into an FST. To apply only GEN and the first con-
straint, for example, we can calculate:

Eval (Gen .o. Dep) .o. Cleanup;

and likewise the entire grammar can be calculated
by:

Eval (Eval (Eval (Eval (Eval (Eval (
Gen .o. Dep) .o. Max) .o. IdentPl) .o.
VF) .o. IdentV) .o. VOP) .o. Cleanup;

This yields an FST of 6 states and 31 transitions
(see figure 2)—it can be ascertained that the FST
indeed does represent a relation where word-final
voiced obstruents are always devoiced.

3.3 Permutation of violations

As mentioned in Gerdemann and van Noord
(2000), there is an additional complication with the
‘worsening’-approach. It is not always the case that
in the pool of competing candidates, the violation
markers line up, which is a prerequisite for filtering
out suboptimal ones by adding violations—although
in the above grammar the violations do line up cor-
rectly. However, for the vast majority of OT gram-
mars, this can be remedied by inserting a violation-
permuting transducer that moves violations markers
around before worsening, to attempt to produce a
correct alignment. Such a permuting transducer can
be defined as in figure 3.

If the need for permutation arises, repeated per-
mutations can be included as many times as war-
ranted in the definition of Worsen:

15

Permute = [?2* [%*:0 2% 0:%*%[0:%% 2% %*x:0]* 2%]%;

Figure 3: Violation permutation transducer.

Permute
Worsen

[$%:0 2% 0:%%x|0:%% 2% %x:0]1%/72;
[Gen.i .o. Gen]/%* .o.

Permute .o.o. Permute .o.
Addviol;

Knowing how many permutations are necessary
for the transducer to be able to distinguish between
any number of violations in a candidate pool is pos-
sible as follows: we can can calculate for some con-
straint ConsN in a sequence of constraints,

Eval (Eval (Gen .o. Consl)o. ConsN) .o.

ConsN .o. \%x —> 0;

Now, this yields a transducer that maps every un-
derlying form to n asterisks, n being the number
of violations with respect to ConsN in the candi-
dates that have successfully survived ConsN. If this
transducer represents a function (is single-valued),
then we know that two candidates with a different
number of violations have not survived ConsN, and
that the worsening yielded the correct answer. Since
the question of transducer functionality is known
to be decidable (Blattner and Head, 1977), and
an efficient algorithm is given in Hulden (2009a),
which is included in foma (with the command test
functional) we can address this question by cal-
culating the above for each constraint, if necessary,
and then permute the violation markers until the
above transducer is functional.

3.4 Equivalence testing

In many cases, the purpose of an OT grammar is
to capture accurately some linguistic phenomenon
through the interaction of constraints rather than by
other formalisms. However, as has been noted by

Karttunen (2006), among others, OT constraint de-
bugging is an arduous task due to the sheer num-
ber of unforeseen candidates. One of the advantages
in encoding an OT grammar through the worsening
approach is that we can produce an exact represen-
tation of the grammar, which is not an approxima-
tion bounded by the number of constraint violations
it can distinguish (as in Karttunen (1998)), or by the
length of strings it can handle. This allows us to
formally calculate, among other things, the equiva-
lence of an OT grammar represented as an FST and
some other transducer. For example, in the above
grammar, the intention was to model end-of-word
obstruent devoicing through optimality constraints.
Another way to model the same thing would be to
compile the replacement rule:

Rule = b ->p, d > t, g ->k || _ .#. ;

The transducer resulting from this is shown in fig-
ure 4.

Figure 4: Devoicing transducer compiled through a rule.

As is seen, the OT transducer (figure 2) and
the rule transducer (figure 4) are not structurally
identical. However, both transducers represent a
function—i.e. for any given input, there is always
a unique winning candidate. Although transducer
equivalence is not testable by algorithm in the gen-
eral case, it is decidable in the case where one of
two transducers is functional. If this is the case it is
sufficient to test that domain(7;) = domain(72) and
that 75 1o 71 represents identity relations only. As
an algorithm to decide if a transducer is an identity
transducer is also included in foma, it can be used to
ascertain that the two above transducers are in fact
identical, and that the linguistic generalization cap-
tured by the OT constraints is correct:

regex Rule.i .o.
test identity

Grammar;

16

which indeed returns TRUE. For a small grammar,
such as the devoicing grammar, determining the cor-
rectness of the result by other means is certainly fea-
sible. However, for more complex systems the abil-
ity to test for equivalence becomes a valuable tool in
analyzing constraint systems.

4 Variations on GEN: an OT grammar of
stress assignment

Most OT grammars that deal with phonological phe-
nomena with faithfulness and markedness gram-
mars are implementable through the approach given
above, with minor variations according to what spe-
cific constraints are used. In other domains, how-
ever, in may be the case that GEN, as described
above, needs modification. A case in point are gram-
mars that mark prosody or perform syllabification
that often take advantage of only markedness con-
straints. In such cases, there is often no need for
GEN to insert, change, and delete material if all
faithfulness constraints are assumed to outrank all
markedness constraints. Or alternatively, if the OT
grammar is assumed to operate on a different stra-
tum where no faithfulness constraints are present.
However, GEN still needs to insert material into
strings, such as stress marks or syllable boundaries.

To test the approach with a larger ‘real-
world’ grammar we have reimplemented a Finnish
stress assignment grammar, originally implemented
through the counting approach of Karttunen (1998)
in Karttunen (2006), following a description in
Kiparsky (2003). The grammar itself contains nine
constraints, and is intended to give a complete ac-
count of stress placement in Finnish words. Without
going into a line-by-line analysis of the grammar,
the crucial main differences in this implementation
to that of the previous sections are:

e GEN only inserts symbols (
to mark feet and stress

) A

e Violations need to be permuted in Worsen to
yield an exact representation

e GEN syllabifies words correctly through a re-
placement rule (no constraints are given in the
grammar to model syllabification; this is as-
sumed to be already performed)

kainostelijat —-> (ka“i.nos) . (te'.1l1).jat
kalastelemme -> (ka .las) .te. (le'‘m.me)
kalasteleminen -> «(ka’'.las).te.(le‘'.mi).nen
kalastelet -> (ka’.las) . (te'.let)
kuningas —> (ku”.nin) .gas
strukturalismi —-> (stru’k.tu) .ra. (li‘s.mi)
ergonomia -> (e ’'r.go).(no'.mi).a
matematiikka > (ma’.te) .ma. (ti‘ik.ka)

Figure 5: Example outputs of matching implementation
of Finnish OT.

Compiling the entire grammar through the same
procedure as above outputs a transducer with 134
states, and produces the same predictions as Kart-
tunen’s counting OT grammar.® As opposed to the
previous devoicing grammar, compiling the Finnish
prosody grammar requires permutation of the viola-
tion markers, although only one constraint requires
it (STRESS-TO-WEIGHT, and in that case, compos-
ing Wor sen with one round of permutation is suffi-
cient for convergence).

Unlike the counting approach, the current ap-
proach confers two significant advantages. The first
is that we can compile the entire grammar into an
FST that does not restrict the inputs in any way. That
is, the final product is a stand-alone transducer that
accepts as input any sequence of any length of sym-
bols in the Finnish alphabet, and produces an output
where the sequence is syllabified, marked with feet,
and primary and secondary stress placement (see fig-
ure 5). The counting method, in order to compile at
all, requires that the set of inputs be fixed to some
very limited set of words, and that the maximum
number of distinguishable violations (and indirectly
word length) be fixed to some k.” The second ad-
vantage is that, as mentioned before, we are able to
formally compare the OT grammar (because it is not
an approximation), to a rule-based grammar (FST)
that purports to capture the same phenomena. For
example, Karttunen (2006), apart from the count-
ing OT implementation, also provides a rule-based
account of Finnish stress, which he discovers to be
distinct from an OT account by finding two words

®Including replicating errors in Kiparsky’s OT analysis dis-
covered by Karttunen, as seen in figure 5.

7 Also, compiling the grammar is reasonably quick: 7.04s on
a2.8MHz Intel Core 2, vs. 2.1s for a rewrite-rule-based account
of the same phenomena.

17

where their respective predictions differ. However,
by virtue of having an exact transducer, we can for-
mally analyze the OT account together with the rule-
based account to see if they differ in their predictions
for any input, without having to first intuit a differ-
ing example:

regex RuleGrammar.i .o.
test identity

OTGrammar;

Further, we can subject the two grammars to the
usual finite-state calculus operations to gain possible
insight into what kinds of words yield different pre-
dictions with the two—something useful for linguis-
tic debugging. Likewise, we can use similar tech-
niques to analyze for redundancy in grammars. For
example, we have assumed that the VOP-constraint
plays no role in the above devoicing tableaux. Using
finite-state calculus, we can prove it to be so for any
input if the grammar is constructed with the method
presented here.

5 Limits on FST implementation

We shall conclude the presentation here with a brief
discussion of the limits of FST representability, even
of simple OT grammars. Previous analyses have
shown that OT systems are beyond the generative
capacity of finite-state systems, under some assump-
tions of what GEN looks like. For example, Frank
and Satta (1998) present such a constraint system
where GEN is taken to be defined through a trans-
duction equivalent to:®

’Gen = [a:blb:alx | [alblx;

That is, a relation which either maps all a’s to b’s
and vice versa, or leaves the input unchanged. Now,
let us assume the presence of a single markedness
constraint *a, militating against the letter a. In that
case, given an input of the format a*b* the effective
mapping of the entire system is one that is an identity
relation if there are fewer a’s than b’s; otherwise the
a’s and b’s are swapped. As is easily seen, this is not
a regular relation.

One possible objection to this analysis of non-
regularity is that linguistically GEN is usually as-
sumed to perform any transformation to the input

8The idea is attributed to Markus Hiller in the article.

whatsoever—not just limiting itself to a proper sub-
set of ¥* — X*. However, it is indeed the case
that even with a canonical GEN-function, some very
simple OT systems fall outside the purview of finite-
state expressibility, as we shall illustrate by a differ-
ent example here.

5.1 A simple proof of OT nonregularity

Assume a grammar that has four very basic con-
straints: IDENT, forbidding changes, DEP, for-
bidding epenthesis, *ab, a markedness constraint
against the sequence ab, and MAX, forbidding dele-
tion, ranked IDENT,DEP > *ab > MAX. We as-
sume GEN to be as general as possible—performing
arbitrary deletions, insertions, and changes.

It is clear, as is illustrated in table 2, that for all in-
puts of the format a”b" the grammar in question de-
scribes a relation that deletes all the a’s or all the b’s
depending on which there are fewer instances of, i.e.
a"b™m™ — a™ if m < n, and a™0™ — V" if n < m.
This can be shown by a simple pumping argument
to not be realizable through an FST.

aaabb | IDENT | DEP | *ab | MAX |
aaaaa ko
aaacbb B
aaabb ! *|
aaab | *1 &
bb : Hokok |
I aaa ! H

Table 2: Illustrative tableau for a simple constraint sys-
tem not capturable as a regular relation.

Implementing this constraint system with the
methods presented here is an interesting exercise
and serves to examine the behavior of the method.

We define GEN, DEP, MAX, and IDENT as be-
fore, define a universal alphabet (excluding markup
symbols), and the constraint *ab naturally as:

s =2 - %(-3%) - 3%0-5%] - %% ;
[

]
NotAB .1 => {x} || Surf(a b)

—

Now, with one round of permutation of the viola-
tion markers in Worsen as follows:

Gen]/{*} .o.
Permute;

Worsen = [Gen.1 .o.

AddViol .o.

18

we calculate

define Grammar Eval (Eval (Eval (Eval (
Gen .o. Ident) .o. Dep) .o.
Max) .o. Cleanup;

NotAB) .o.

which produces an FST that cannot distinguish be-
tween more than two a’s or b’s in a string. While
it correctly maps aab to aa and abb to bb, the
tableau example of aaabb is mapped to both aaa
and bb. However, with one more round of permu-
tation in Worsen, we produce an FST that can in-
deed cover the example, mapping aaabb uniquely
to bb, while failing with aaaabbb (see figure 6).
This illustrates the approximation characteristic of
the matching method: for some grammars (proba-
bly most natural language grammars) the worsening
approach will at some point of permutation of the vi-
olation markers terminate and produce an exact FST
representation of the grammar, while for some gram-
mars such convergence will never happen. How-
ever, if the permutation of markers terminates and
produces a functional transducer when testing each
violation as described above, the FST is guaranteed
to be an exact representation.

Figure 6: An non-regular OT approximation.

It is an open question if it is decidable by exam-
ining a grammar whether it will yield an exact FST
representation. We do not expect this question to be
easy, since it cannot be determined by the nature of
the constraints alone. For example, the above four-
constraint system does have an exact FST represen-
tation in some orderings of the constraints, but not
in the particular one given above.

6 Conclusion

We have presented a practical method of implement-
ing OT grammars as finite-state transducers. The ex-
amples, definitions, and templates given should be
sufficient and flexible enough to encode a wide vari-
ety of OT grammars as FSTs. Although no method
can encode all OT grammars as FSTs, the funda-
mental advantage with the system outlined is that
for a large majority of practical cases, an FST can
be produced which is not an approximation that can
only tell apart a limited number of violations. As
has been noted elsewhere (e.g. Eisner (2000b,a)),
some OT constraints, such as Generalized Align-
ment constraints, are on the face of it not suitable
for FST implementation. We may add to this that
some very simple constraint systems, assuming a
canonical GEN, and only using the most basic faith-
fulness and markedness constraints, are likewise not
encodable as regular relations, and seem to have the
generative power to encode phenomena not found
in natural language. However, for most practical
purposes—and this includes modeling actual phe-
nomena in phonology and morphology—the present
approach offers a fruitful way to implement, ana-
lyze, and debug OT grammars.

References

Beesley, K. R. and Karttunen, L. (2003). Finite State
Morphology. CSLI Publications, Stanford, CA.

Blattner, M. and Head, T. (1977). Single-valued a-
transducers. Journal of Computer and System Sci-
ences, 15(3):328-353.

Eisner, J. (2000a). Directional constraint evaluation
in optimality theory. In Proceedings of the 18th
conference on Computational linguistics, pages
257-263. Association for Computational Linguis-
tics.

Eisner, J. (2000b). Easy and hard constraint ranking
in optimality theory. In Finite-state phonology:
Proceedings of the 5Sth SIGPHON, pages 22-33.

Ellison, T. M. (1994). Phonological derivation in op-
timality theory. In Proceedings of COLING’ 94—
Volume 2, pages 1007-1013.

Frank, R. and Satta, G. (1998). Optimality theory
and the generative complexity of constraint viola-
bility. Computational Linguistics, 24(2):307-315.

19

Gerdemann, D. and van Noord, G. (2000). Approx-
imation and exactness in finite state optimality
theory. In Proceedings of the Fifth Workshop of
the ACL Special Interest Group in Computational
Phonology.

Hammond, M. (1997). Parsing syllables: Modeling
OT computationally. Rutgers Optimality Archive
(ROA), 222-1097.

Hulden, M. (2009a). Finite-state Machine Construc-
tion Methods and Algorithms for Phonology and
Morphology. PhD thesis, The University of Ari-
zona.

Hulden, M. (2009b). Foma: a finite-state compiler
and library. In EACL 2009 Proceedings, pages
29-32.

Jager, G. (2002). Gradient constraints in finite state
OT: the unidirectional and the bidirectional case.
More than Words. A Festschrift for Dieter Wun-
derlich, pages 299-325.

Kager, R. (1999). Optimality Theory. Cambridge
University Press.

Kaplan, R. M. and Kay, M. (1994). Regular mod-
els of phonological rule systems. Computational
Linguistics, 20(3):331-378.

Karttunen, L. (1998). The proper treatment of op-
timality theory in computational phonology. In
Finite-state Methods in Natural Language Pro-
cessing.

Karttunen, L. (2006). The insufficiency of paper-
and-pencil linguistics: the case of Finnish
prosody. Rutgers Optimality Archive.

Kiparsky, P. (2003). Finnish noun inflection. Gener-
ative approaches to Finnic linguistics. Stanford:
CSLI.

Prince, A. and Smolensky, P. (1993). Optimality
theory: Constraint interaction in generative gram-
mar. ms. Rutgers University Cognitive Science
Center.

Riggle, J. (2004). Generation, recognition, and
learning in finite state Optimality Theory. PhD
thesis, University of California, Los Angeles.

