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ABSTRACT

For automatic evaluation of machine translation, translation quality is commonly mea-
suredly counting the number of chunks (consecutive words) that match between reference
and candidate texts. For example, METEOR, GTM, ROUGE-W, and IMPACT all use
chunks. The length and nature of chunks affects the measured result. IMPACT, a system
that can determine the most suitable chunk, requires much processing time because it must
scan a regular two-dimensional dynamic programming table. In this paper, we propose a
new optimization method to determine chunks efficiently. Moreover, we developed a new
automatic evaluation system using lemmas as lexical knowledge. We designate this system
as Metric Using Lemma and Optimization for Chunk (MLOC). Through evaluation exper-
iments, we confirm that the processing time of MLOC is shorter than that of IMPACT for
reference and candidate text pairs with long sentences, although the lexical knowledge is
used in MLOC, and MLOC indicates the highest correlation with human judgment among
several automatic evaluation systems based on chunks.

KEYWORDS: Automatic evaluation, Chunk, Dynamic programming, Tree structure, Lex-
ical knowledge, Machine translation.
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1 Introduction

In the field of machine translation, various methods for automatic evaluation have been
proposed. The ULC(Giménez and Marquez, 2007), MaxSim(Chan and Ng, 2008), and
RTE(Pado et al., 2009) are known to produce high correlations with human judgment.
Nevertheless, these methods are not widely used in machine translation because it is difficult
to build the systems based on their methods. This problem might be solved when the
systems are released on a web site. In contrast, BLEU(Papineni et al., 2002), NIST(NIST,
2002), PER(Su et al., 1992), and WER (Leusch et al., 2003) are used widely because we
can build the systems easily based on their methods, and because their processing time
is very short. However, these methods produce lower correlations with human judgment.
Especially, the correlations assessed at the single-sentence level are quite low.

METEOR(Banerjee and Lavie., 2005), GTM(Turian et al., 2003), ROUGE-W (Lin and Och,
2004), and IMPACT (Echizen-ya and Araki, 2007), which are based on matching chunks
between the reference and candidate texts, are effective for sentence-level correlation with
human judgment. The chunk is a string of consecutive words considered for matching.
The system IMPACT yields the highest correlations among various automatic evaluation
methods in sentence-level correlations(Echizen-ya et al., 2009). IMPACT determines the
most suitable chunk using information related to chunk length and position. However,
IMPACT has a severe problem: it needs much process time to determine suitable chunks.
This problem becomes an obstacle to realization of a practical automatic evaluation sys-
tem using linguistic knowledge, although the quality of the system might improve when
linguistic knowledge is used. Therefore, we propose an optimization method to determine
the chunk efficiently in automatic evaluation based on chunks.

Our method generates a tree structure based on nodes corresponding to matching words.
Consequently, it uses no dynamic programming table that includes information about non-
matching words. Moreover, our method approximates the tree structure selecting the
nodes which are important to determine suitable chunks. We developed a new automatic
evaluation system based on our optimization method and use a lemma as lexical knowledge.
We designate this system as Metric Using Lemma and Optimization for Chunk (MLOC).
Our evaluation experiments indicate that the processing time of MLOC is shorter than
that of IMPACT in reference and candidate text pairs containing long sentences, even
though MLOC uses lemmas. Therefore, our optimization method is effective to decrease
processing time. Moreover, we confirmed that MLOC provided the highest correlation with
human judgments among several automatic evaluation systems based on chunks. Therefore,
our optimization method is effective to develop a higher-quality and practical automatic
evaluation system.

2 Problems of automatic evaluation method based on chunks

In METEOR, GTM, and ROUGE-W, no suitable chunk can be determined because the
systems depend only on chunk length. However, IMPACT can determine suitable chunks
using information about both chunk length and position. To do so, much processing time
is needed.

For example, Table 1 shows a regular two-dimensional dynamic program table computing
the Longest Common Subsequence (LCS) for two sequences as follows:

reference: glass guide of the plastic mounting panel P
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candidate:  a glass guide molded in panel member P made of resin

7 1 2 3 4 5 6 7 8 9 10 11 12

nj a glass guide mold in panel mem P made of  the resin
-ed -ber

7 m; 010 0 0 0 0 0 0 0 0 0 0 0
1 glass 010 1 1 1 1 1 1 1 1 2 2 2
2 guide 010 1 2 2 2 2 2 2 2 2 2 2
3 of 010 1 2 2 2 2 2 2 2 3 3 3
4 the 010 1 2 2 2 2 2 2 2 3 4 4

plas
5 _tic 010 1 2 2 2 2 2 2 2 3 4 4

mount
. 010 1 2 2 2 2 2 2 2 4

-ing
7  panel 010 1 2 2 2 3 3 3 3 3 4 4
8 P 010 1 2 2 2 3 3 4 4 4 4 4

Table 1: Example 1: A dynamic programming table.
In Table 1, the values (i.e., i and j) outside of the table respectively denote the word
positions in reference and candidate. The word number of the candidate is 12, which is the
maximum value of j, and the word number of the reference is 8, which is the maximum
value of i. The values in the table are obtained by Eq. (1).

0, i=0o0rj =0
D;;=q maz(Di-1j,Dij-1), mi#n, (1)
Difl‘jfl +1, m; = n;

The length of LCS is 4 by Eq. (1) in Table 1. Moreover, the number of LCS routes is
2. The LCS routes are the sequences of matching words between the candidate and the
reference. In Table 1, two LCS routes are obtained from the candidate and reference as
shown below.

LCS route No.1

reference: [glass guide| of the plastic mounting [panel] [P]

candidate: a [glass guide] molded in [panel] member [P] made of the resin
LCS route No.2

reference: [glass guide] [of the] plastic mounting panel P

candidate: a [glass guide|] molded in panel member P made [of the] resin

In LCS route No. 1, the matching words are “glass”, “guide”, “panel”, and “P”. In LCS route
No. 2, the matching words are “glass”, “guide”, “of”, and “the”. These matching words
correspond to bold values in Table 1. The consecutive matches form the chunk. Therefore,
the number of chunks is 3 (i.e., “glass guide”, “panel”, “P”) in LCS route No. 1, and the
number of chunks is 2 (i.e., “glass guide”, “of the”) in LCS route No. 2. In this example,
LCS route No. 1 must be selected because it has the most suitable chunk. In LCS route
No. 2, “of the” in the candidate does not correspond to “of the” in the reference. Therefore,
LCS route No. 1 has a more suitable chunk compared with LCS route No. 2.
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In the determination of chunks, ROUGE-W and METEOR select LCS route No. 2, focusing
only on chunk length. In LCS route No. 2, the quantities of words in two chunks (“glass
guide”, “of the”) are 2. Moreover, in LCS route No. 1, the quantities of words in three
chunks (“glass guide”, “panel”, “the”) are, respectively, 2, 1, and 1. Therefore, METEOR
selects LCS route No. 2, for which the number of chunks is small, because the penalty
becomes a small value in the calculation of the score, and ROUGE-W also selects LCS
route No. 2, for which the lengths of two chunks are 2.

In contrast, IMPACT selects LCS route No. 1 because it uses information of the position
of the chunk, not only the chunk length. In LCS route No. 2, the positions of “of the”
in candidate and reference are largely different. In IMPACT, the score is calculated using
the length and position of chunk in each LCS route when several LCS routes are obtained
following Eqgs. (2) and (3). Only one LCS route, which has the highest score, is selected.

score = Z (length(c)ﬂxpos) (2)
cec_num
C; Cj
=(10-|22 -2
pos = (10— |2 — L)) 3)

In Eq. (2), ¢ means the chunks, and g is the weight parameter based on the length of
each chunk (8 > 1.0). The pos signifies the difference of the relative position of the chunk
¢ between the candidate and reference. In Eq. (3), m and n respectively indicate the
quantities of words in the candidate and reference. In addition, ¢; and ¢; respectively
indicate the position of chunks of the candidate and reference. The score in LCS route No.
1is 3.4933(= 2"2x (L.0— |1 — &)+ 12 x (LO—|Z— S )+1'?x (1.0—|§— £|)) when Bis 1.2,
and the score in LCS route No. 2 is 3.4461(= 22 x (1.0— |3 = &) + 22 x (1.0— | — 12)).
Therefore, IMPACT selects LCS route No. 1, whose score is higher than that of LCS route
No. 2. As is clear, it is important for automatic evaluation based on chunks should use

information about both the length and position of chunks.

However, IMPACT has a very severe problem. It requires much processing time to search
all LCS routes to determine the LCS route which has the most suitable chunks. Moreover,
in that case, IMPACT must scan all values of cells in the dynamic programming table
although almost all values do not correspond to words that match between the candidate
and reference texts. In ROUGE-W and METEOR, not much processing time is needed
because they do not consider all LCS routes to determine the chunks. However, they cannot
select the most suitable chunks. One way or the other, automatic evaluation systems based
on chunks present severe problems. To solve this problem, we propose an optimization
method to determine the most suitable chunk efficiently.

3 Optimization method for chunk determination

3.1 Mapping from the dynamic programming table to the tree
structure

Table 2 shows an example of the dynamic programming table generated to obtain matching
words for the following the candidate and reference fragments:
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reference: array rules determine the limits to designing wiring routes
candidate: for arrangement of restriction on the design rule, the wiring route is deter-
mined

J 1 2 3 4 5 6 7 8 9 10 11 12 13
ar re de wir de
nj -range of -stric on the -sign rule , the -ing route is -ter
-ment -tion -mined
i om; 0 0 0 0 0 0 0 0 (0] 0 0 0 0 0
larray | 0 0 0 0 0 0 0 0 (0] 0 0 0 0 0
2rules | 0 0 0 0 00 0 0 |]0] O 0 0 0 0
de
3 -ter 0 0 0 0 00 0 0 ]0] 0 0 0 0 0
-mine
4 the 0 0 0 0 0] 1 1 1 11 1 1 1 1
5 limit | 0 0 0 0 0 1 1 1 1)1 1 1 1 1
6 to 0 0 0 0 0 1 1 1 1)1 1 1 1 1
de
7 -sign | 0 0 0 0 0 1 1 1 1)1 1 1 1 1
-ing
8 of 0 0 1 1 1 1 1 1 1)1 1 1 1 1
9 the 0 0 1 1 1 2 2 2 |12] 2 2 2 2 2
wir
ing 0 0 1 1 1 2 2 2 12| 3 3 3 3 3
1lroutes | 0 0 1 1 1 2 2 2 |23 3 3 3 3

Table 2: Example 2: Dynamic programming table.

In IMPACT, LCS routes of three kinds are obtained from the dynamic programming table
of Table 2, scanning all values of cells as described below.

LCS route No.1

reference:  array rules determine the limit to designing [of] [the wiring] routes
candidate:  arrangement [of] restriction on the design rule , [the wiring] route is deter-
mined

LCS route No.2

reference:  array rules determine [the| limit to designing of [the wiring] routes
candidate:  arrangement of restriction on |the| design rule , [the wiring] route is deter-
mined

LCS route No.3

reference:  array rules determine the limit to designing [of] [the] [wiring] routes
candidate:  arrangement [of] restriction on [the] design rule , the [wiring] route is de-
termined

In the example given above, the LCS routes with the most suitable chunks are LCS route
No. 1 and No. 2. LCS route No. 2 is selected in IMPACT by the information of the
position of chunk “the”. However, IMPACT needs much processing time because it must
scan all values of cells that do not correspond to the matching words in Table 2.
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Our method replaces the information of the matching words in a dynamic programming
table with a tree structure. Therefore, our method can emphasize matching words without
scanning the values of cells that do not correspond to the matching words in the dynamic
programming table. This means that our method can decrease processing time.

First, our method generates the dynamic programming table and extracts only Dy; ;) which
correspond to the matching words. In Table 2, the values shown in bold typeface correspond
to the matching words. Therefore, all Dy; ; of the matching words are Dyy 5), Dia9), Djs 2]
Dig 5]y Dig,e) and Dyyg10- Our method requires no dynamic programming table after
extraction of the matching words. Moreover, our method sorts Dy, ; from large to small
values. Each Dy; ;) corresponds to a node of the tree structure. Figure 1 presents an
example of the sort of Dy; j.

value D
3 D [10,10]
2 D (9.9 D (9.5
1 D [8,2] D [4,5] D 4,9

Figure 1: Example of the sorting of Dy; ;-

Our method generates a tree structure linking two Dy; ;. Figure 2 shows the algorithm for
linking between two nodes in a tree structure.

Start:
level_num = # of level in value

for(s = level_num; s > 1; s--)
num_1=#of D ;s
for(t =1; t > num_1; t++)
num_2 =#of D st
for(u = 1; u>num_2; u++)
IfiinDg;>iinDytandiin Dt >jin D¢

Dy >Dyj"  # generation of link

End:

Figure 2: Algorithm for a link in the tree structure.

In Fig. 2, the value of level num is 3 because the level of values of Dy; ;; is 1 3. Moreover,
the value of num_ 1 is 1 because Dy; ;) in the level of value 3 is only Dj1¢,10 and the value
of num _2 is 2 because D; ;) in level of value 2 is Djg o) and Djg 5). Our method compares
Di10,10) with Dig ). As a result, the link is generated because i = 10 in Dyyq 10 is larger
than i = 9in Djgg) and j = 10 in Dyyg 1] is larger than j = 9 in Dyg g. Therefore, Dj10,19)
and Dy g) can be connected as the matching word sequence. In also D1g,10) and Dig s,
the link is generated because i = 10 in Dy 10 is larger than i = 9 in Djg 5, and j = 10 in
D[lO,lO] is larger than ] =5in D[g)s].
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Moreover, our method specifically examines the level of values 2 and 1. As a result, for
Dyg 5) and Dy 5, the link is not generated because j = 5 in Dg 5] is not larger than j =5
in Dy In D5 and Dy, the link is not generated because j = 5 in Djg 5 is not
larger than j = 9 in Dy g). Therefore, Dg 5 is not connected with Dy 5) and Dy g as the
matching word sequence. Finally, the Dy g) is deleted as the node because it has no link
with other nodes. Figure 3 depicts the tree structure using the algorithm presented in Fig.
2. Our method does not require the scanning of those (many) cells that do not correspond
to the matching words in the dynamic programming table. Therefore, our method can
decrease the processing time.

value D
3 D [10,10]
/ T
2 Dg D5
e M
1 D 8,2] D [4,5] [4,

Figure 3: Example of the tree structure.

3.2 Approximation in tree structure

Our method approximates the tree structure using only nodes which are important from
the perspective of the length and position of chunks to decrease the processing time. Figure
4 shows the algorithm for selection of nodes in a tree structure.

In our method, the nodes selected are the ones that continue with other nodes, and those
for which the difference of relative position between ¢ and j is the smallest among all nodes
at one level of value. This means that our method effectively uses both length and position
of chunks. In the example of the tree structure in Fig. 3, Dj19,109, which is the node at
the top level, and Dig o) and Dy 5}, which are the nodes at a lower level, are selected first.
Next, our method selects only the most important node among Djg g) and Dig 5] of level 2.

By Fig. 4, the value of num_1is 2 (i.e., Dig o) and D[g 5)), and the value of num_ 2 is 2 (i.e,
Dig 9 and Dyy5)). Therefore, our method compares Djg o) respectively with Dig o], Dy s,
and Djg5) with Dig o). As a result, neither Digg) nor Dyg s is selected as a node at this
time because these nodes are not mutually continuous with D(g 2 and Dy 5. Moreover,
the value of num_3is 1 (i.e., Dj10,1]). Therefore, our method compares respectively Dig o)
with D[y0,10), and Djg 5; with Di10,10]. Results show that Dyg g is selected as a node because
i =9 in Dyg g becomes i = 10 in Djy0,109) by adding 1 and j = 9 in Djgg) also becomes
J =10 in Dyy0,19) by adding 1: Djg g is continuous with Di1q 1]

Moreover, our method selects the node for which the difference of word position is the
smallest. In this example, the value of differences of word position are, respectively 0.1259
(=|% — &) in Djg9) and 0.4336 (=|F — &) in Dy 5. Therefore, only Dig o) is selected as
the node of tree structure, and Djg 5}, which does not continue with other nodes and the
difference of word position is not the smallest, is deleted from the tree structure. Figure 5
depicts the final tree structure. Our method obtains the LCS route using only a final tree
structure.
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Start:
level_num = # of level in value
for(s = level_num-1;s > 1; s--)
num_1 = # of D ;5
LOOP:  for(t=1;t>num_1; t++)
num_2 =#of D ;5
for(u =1; u>num_2; u++)
IfiinDjy-1==iinDy*andiinD ;1 ==jinD
tree.node(D ; ;') # addition node to tree
go to LOOP
num_3 =#of D ;"
for(v = 1; v > num_3; v++)
IfiinDy;"1==iinD andiin D 4
tree.node(D ; ;') # addition node to tree
go to LOOP
min_D g ; = min_diff(D ; ;)

u
[i.1

+1==jinD

tree.node(min_D ;) # addition node to tree

End:

Figure 4: Algorithm for selection of nodes in a tree structure.

value D
3 D [10,10]
/
2 Dy g
/ \
1 D [8,2] b [4,5]

Figure 5: Example of the final tree structure.

As a result, our method can delete LCS routes that have no suitable chunk (i.e., LCS
route No. 3 described in Section 3.1): our method can decrease processing time using only
necessary Dy; ;-

4 MLOC: Automatic evaluation system using lemma

We developed a new automatic evaluation system for machine translation. Our system
uses the optimization method described in Section 3. Moreover, it uses a lemma as lexical
information to increase the matching words. We designate this system as Metric Using
Lemma and Optimization for Chunk (MLOC). Consider the following example, using
lemmas.

reference: array rule determine the limit to design of the wiring route
candidate: arrangement of restriction on the design rule, the wiring route be determine

MLOC calculates scores using all chunks. To do so, it uses the following Eqs. (4) and (5).
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Tl

Zgg (oﬁ Zcec_mm length(c)ﬁ)

mbB

S (0 Yo _uan length(c)’) \
P= ~ (5)

Egs. (4) and (5) respectively show the recall and precision. Figure 6 presents an example
of determination of all chunks between the reference and candidate.

(1) First process for determination of chunks :

reference :
array rule determine [the] limit to [design] of [the wiring route i=0:
candidate : |:>

- . . 12+12+32=11
arrangement of restriction on [the] [design] rule , [the wiring route’
be determine
(2) Second process for determination of chunks :
reference :
array [rule] [determine] [the] limit to [design] of [the wiring route] i=1:
candidate : I:> 12412=2
arrangement of restriction on [the] [design] [rule] , [the wiring route]
be [determine:
(3) Third process for determination of chunks :
reference :
array [rule] [determine] [the] limit to [design] [of] [the wiring route] i=2:
candidate : |:>
arrangement [of] restriction on [the] [design] [rule] , [the wiring route]
be [determine]

Figure 6: Example of determination of all chunks.

MLOC determines only one LCS route using the process described in Section 3. Moreover,
LCS routes are determined recursively for all matching words. In Fig. 6, “the”, “design”,
and “the wiring route” are selected as chunks in the first process for determination of
chunks. Therefore, the value of ¢, ,um length(c)? is 11(=120 4+ 120 4 320) when 8 is
2.0. In the second process for determination of chunks, “rule” and “determine” are selected
as chunks. The value of length(c)? is 2(=1204-120). Finally, “of” is selected as

a chunk in the third process for chunk determination. The value of ) length(c)? is
1(=12"9). Therefore, the value of the Reputation number for determination of suitable LCS
(i.e., RN ) in Eqgs. (4) and (5) becomes 2. The value of Zg\é (oﬂ Y ece num length(c)ﬁ)
is 12.25(=0.5° x 11 + 0.5' x 1+ 0.5% x 1) when « is 0.5. Moreover, the values of R and
P in Eqs. (4) and (5) are, respectively 0.3182 (=4/12%) and 0.2692 (:\/11?37{:’) MLOC
obtains the final score by Eq. (6) as

cEc__num

cEc_num
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1++%)RP
score = ﬁ (6)

In Eq. (6), v is determined as P/R. The value of v is 0.8460 when R is 0.2692 and P
22 4 .

is 0.3182. The final score is 0.2877(={ 0500 LASIS2X02092) 1y Fg. (6). MLOC can

obtain many matching words using lemmas. Moreover, it can obtain the score efficiently

determining the suitable LCS route using the optimization process.

5 Experiments

5.1 Experimental Procedure

References and candidates were obtained from patent data in NTCIR-7(Fujii et al., 2008).
Using these data, 14 machine translation systems translated 100 Japanese sentences into
100 English sentences. Therefore, the number of candidates is 1,400 (=14 x 100). Moreover,
four references are given to each candidate obtained by each machine translation system.
First, we compared MLOC, our system using only the optimization process (MLOC without
lemma) and IMPACT from the perspective of the process time.

Moreover, we calculated the correlation between the scores by the automatic evaluation
systems and scores by human judgment. In the scores by human judgment, the human
judge evaluated 1,400 candidates from the perspective of adequacy and fluency on a scale
of 1 to 5. We used the median value in the evaluation results of three human judges as
the final scores of 1-5. We calculated the Pearson’s correlation coefficient and Spearman’s
rank correlation coefficient between the scores obtained using the automatic evaluation
systems and the scores by human judgments at the sentence-level and system-level. In
the automatic evaluation systems for machine translation, three systems (i.e., MLOC,
IMPACT, and ROUGE-W, which are systems based on the chunk) are used. IMPACT
especially indicated high correlation coefficients in NTCIR-7 data(Echizen-ya et al., 2009).
In ROUGE-W, 1.2 was used as the value of weight parameter for the length of chunk in
preliminary experiments. In MLOC and IMPACT, 0.1 was used as the value of penalty
parameter (i.e., ) for the difference of chunk sequence and 1.2 was used as the value of
weight parameter (i.e., §) for the length of chunks in Eqgs. (4) and (5). The MLOC using
lemma replaced all words with the lemma in all references and candidates using output
obtained by TreeTagger(Schmid, 1994).

5.2 Experimental Results

all 1,400 pairs | selected 8 pairs
MLOC 202 sec 6 sec
MLOC without lemma 144 sec 5 sec
IMPACT 149 sec 7 sec

Table 3: Processing time.

In Table 3, the processing time of MLOC, MLOC without lemmas, and IMPACT were
respectively 202 sec, 144 sec, and 149 sec using all 1,400 pairs of four references and
candidates. The processing time of MLOC was the longest because of the use of lemma
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in creased the number of matches. The processing time of MLOC without lemmas is only
5 sec lower than that of IMPACT. The reason is that the number of LCS routes between
the references and candidates are almost invariably small: less than 100. Our optimization
method exhibits its strength for cases where the number of LCS routes are large. Therefore,
we selected eight pairs of four reference and candidate sentences with more than 300 LCS
routes as determined by IMPACT. For this test, IMPACT required 7 sec to process the
eight pairs of four references and candidates. However, the processing time was 5 sec for
MLOC without lemmas, and 6 sec for MLOC with lemmas. Here, even with the use of
lemmas, the processing time of MLOC was shorter than that of IMPACT. These results
indicate that our optimization method is effective for decreasing the processing time in the
sentences which the number of LCS routes is large.

Table 4 and Table 5 respectively portray Pearson’s correlation coefficient in adequacy and
fluency. Table 6 and Table 7 respectively portray Spearman’s rank correlation coefficient
in adequacy and fluency.

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 | No. 7 No. 8

MLOC 0.7770 | 0.5405 | 0.4821 | 0.5680 0.5477 | 0.6310 | 0.6800 | 0.7348

MLOC with

-out lemma

0.7625 0.5307 0.4704 0.5566 | 0.5518 | 0.6295 0.6516 | 0.7375

IMPACT 0.7625 0.5307 0.4704 0.5566 | 0.5518 | 0.6295 0.6516 0.7374

ROUGE-W | 0.7648 0.5044 0.4615 | 0.5765 | 0.5482 0.6257 0.6415 0.7336

No. 9 | No. 10 | No. 11 | No. 12 | No. 13 | No. 14 | Avg. | System

MLOC 0.7058 0.5691 0.7007 | 0.6490 | 0.7669 | 0.5488 | 0.6358 | 0.9271

MLOC with

-out lemma

0.7113 | 0.5813 0.7095 0.6251 0.7677 0.5321 0.6298 0.9266

IMPACT 0.7113 | 0.5813 0.7097 0.6251 | 0.7685 | 0.5321 0.6299 0.9264

ROUGE-W | 0.7072 | 0.5938 | 0.7131 | 0.6099 0.7643 0.5402 0.6275 | 0.9400

Table 4: Pearson’s correlation coefficient in adequacy.

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8

MLOC 0.5768 | 0.3880 | 0.3999 | 0.5857 | 0.4728 0.5630 | 0.5383 | 0.7112

MLOC with

-out lemma

0.5543 0.3765 0.3705 0.5548 | 0.4737 | 0.5786 0.5168 0.6968

IMPACT 0.5543 0.3765 0.3705 0.5548 | 0.4737 | 0.5786 0.5168 0.6968

ROUGE-W | 0.5566 0.3501 0.3504 0.5715 0.4693 | 0.5791 | 0.5006 0.6941

No. 9 | No. 10 | No. 11 | No. 12 | No. 13 | No. 14 | Avg. | System

MLOC 0.5517 0.5243 0.6272 | 0.3803 | 0.6129 | 0.3897 | 0.5223 | 0.9382

MLOC with

-out lemma

0.5564 | 0.5514 0.6333 0.3727 0.6081 0.4012 0.5175 0.9382

IMPACT 0.5564 | 0.5514 0.6333 0.3728 0.6081 0.4012 0.5175 0.9381

ROUGE-W | 0.5480 | 0.5520 | 0.6410 | 0.3568 0.6003 | 0.4078 | 0.5127 | 0.9426

Table 5: Pearson’s correlation coefficient in fluency.

In Tables 4-7, Nos. 1-14 denote the respective machine translation systems in NTICR-
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No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8

MLOC 0.7513 | 0.4609 | 0.5196 | 0.5738 | 0.4902 | 0.6395 | 0.6530 | 0.6539

MLOC with

-out lemma

0.7468 | 0.4618 | 0.4923 0.5666 0.4877 0.6280 0.6196 0.6464

IMPACT 0.7468 | 0.4618 | 0.4923 0.5666 0.4877 0.6280 0.6196 0.6460

ROUGE-W | 0.7379 0.4494 0.4943 | 0.5786 | 0.4785 0.6166 0.5902 0.6375

No. 9 | No. 10 | No. 11 | No. 12 | No. 13 | No. 14 | Avg. | System

MLOC 0.6882 | 0.5510 0.6982 | 0.6195 | 0.7439 | 0.5864 | 0.6164 | 0.9824

MLOC with

-out lemma

0.6859 0.5478 0.7171 0.5960 0.7433 0.5836 0.6088 | 0.9912

IMPACT 0.6859 0.5478 0.7171 0.5971 0.7442 0.5836 0.6089 | 0.9912

ROUGE-W | 0.6734 | 0.5653 | 0.7195 | 0.5737 | 0.7448 | 0.5682 0.6020 | 0.9912

Table 6: Spearman’s rank correlation coefficient in adequacy.

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 | No. 7 No. 8

MLOC 0.5715 | 0.3732 | 0.3799 | 0.5829 | 0.4101 | 0.6169 | 0.4880 | 0.6590

MLOC with

-out lemma

0.5520 0.3518 0.3643 0.5488 | 0.4119 | 0.5995 0.4691 0.6321

IMPACT 0.5520 0.3518 0.3643 0.5488 | 0.4119 | 0.5995 0.4691 0.6325

ROUGE-W | 0.5426 0.3359 0.3472 0.5482 0.4066 0.5898 0.4497 0.6275

No. 9 | No. 10 | No. 11 | No. 12 | No. 13 | No. 14 | Avg. | System

MLOC 0.5436 0.4339 0.6469 | 0.3689 | 0.6363 0.4117 | 0.5089 | 0.9165

MLOC with

0.5452 | 0.4661 0.6548 0.3590 | 0.6371 | 0.4437 | 0.5025 | 0.9253
-out lemma

IMPACT 0.5452 | 0.4661 0.6544 0.3586 0.6359 | 0.4437 | 0.5024 | 0.9253

ROUGE-W | 0.5277 | 0.4738 | 0.6686 | 0.3423 0.6283 0.4241 0.4937 | 0.9253

Table 7: Spearman’s rank correlation coefficient in fluency.

7. Their values are correlation coefficients at the sentence level. In the tables, “Avg.”
signifies the average values of 14 correlation coeflicients. “System” stands for the correlation
coefficients at the system level. Bold values show the highest correlation coefficient among
four automatic evaluation systems.

5.3 Discussion

We describe the influence of the optimization method from the perspective of the scores.
In Tables 4 7, the difference between MLOC without lemmas and IMPACT depends on
whether the optimization method described in Section 3 is used or not. Therefore, in
MLOC without lemmas and IMPACT of Tables 4-7, we can confirm the influence of the
optimization method on scores. Results show that the influence of the optimization method
is very slight because the difference of values for the correlation coefficient of “Avg.” and
“System” between MLOC without lemmas and IMPACT is 0.0001 or 0.0002 in Tables 4—
7. The scores of MLOC without lemmas are almost identical to the scores of IMPACT.
Therefore, we confirm that the influence of the optimization method is very slight on scores.
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In the correlation coefficient, MLOC indicated the highest values among four systems.
Table 8 presents the average values of “Avg.” and “System” in Tables 4-7. In Table 8, the
total average value of correlation coefficient of MLOC is the highest among four systems.
The reason is that MLOC is extremely effective at the sentence level. The numbers for
which MLOC obtained the highest correlation coefficient among four systems in 14 machine
translation systems (i.e., the quantities of bold values in MLOC) are, respectively, 7, 8, 9,
and 8 in Tables 4, 5, 6 and 7. These results show that MLOC is extremely effective for
sentence-level evaluation.

Pearson Pearson Spearman | Spearman
. . . - Avg.
in adequacy | in fluency | in adequacy | in fluency
MLOC 0.7815 0.7303 0.7994 0.7127 0.7560
MLOC with
0.7782 0.7279 0.8000 0.7139 0.7550
-out lemma
IMPACT 0.7781 0.7278 0.8001 0.7138 0.7550
ROUGE-W 0.7838 0.7277 0.7966 0.7095 0.7544

Table 8: Average values of “Avg.” and “System”.

6 Conclusion

In this paper we propose an optimization method for the efficient determination of chunks
for automatic evaluation of machine translation output using chunk-based matching, and
developed MLOC as a new automatic evaluation system. The experimentally obtained
results demonstrate that the processing time of MLOC is shorter than that of IMPACT
for the pairs of reference and candidate fragments in which the number of LCS route is
more than 300, even though lemmas are used in MLOC. These results indicate that our
optimization method is effective to decrease the processing time.

Moreover, we performed experiments to confirm the quality of MLOC from the perspective
of the automatic evaluation system. Our evaluation experiments confirm that MLOC can
obtain the highest correlation coefficients among other systems based on chunks. This
means that our optimization method is effective to realize higher quality automatic evalu-
ation for machine translation.

Future studies will use a part-of-speech as effective lexical knowledge to improve MLOC
quality. Moreover, we plan to use MLOC for parameter tuning in SMT.
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