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ABSTRACT

Appropriate Named Entity handling is important for Statistical Machine Translation. In this
work we address the challenging issues of generalization and sparsity of NEs in the context of
SMT. Our approach uses the source NE Recognition (NER) system to generalize the training
data by replacing the recognized Named Entities with place-holders, thus allowing a Phrase-
Based Statistical Machine Translation (PBMT) system to learn more general patterns. At trans-
lation time, the recognized Named Entities are handled through a specifically adapted trans-
lation model, which improves the quality of their translation. We add a post-processing step
to a standard NER system in order to make it more suitable for integration with SMT and we
also learn a prediction model for deciding between options for translating the Named Enti-
ties, based on their context and on their impact on the translation of the entire sentence. We
show important improvements in terms of BLEU and TER scores already after integration of
NER into SMT, but especially after applying the SMT-adapted post-processing step to the NER
component.
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1 Introduction

The correct handling of Named Entities is not an easy task for Statistical Machine Translation.
First, Named Entities — person names, organization names, dates, etc. — create a lot of
sparsity in the training data. Second, Named Entities of the same type tend to occur in the
same context, and thus, they should be treated in a similar way, but a phrase-based SMT model
has limited capacity to learn this purely out of data. Finally, Named Entities can be ambiguous
(eg. Bush in George Bush vs. blackcurrent bush), and a wrong NE translation can seriously
hurt the final quality of the translation.

We propose a framework for integrating Named Entities within SMT, which tries to address
all these issues at the same time. First, we try to generalize occurrences of Named Entities in
the training data, by replacing the identified named entities by a small number of typed place-
holders (one for each NE type: DATE, ORGANIZATION, ...) in order to reduce the sparsity
problem, but still preserving some context for the purpose of SMT (all the dates tend to occur in
similar contexts, different from the contexts in which person names occur). This generalization
allows us to learn a better translation model, and to re-use the generalized patterns for rare
(or unseen) Named Entities, in order to ensure a better translation for these NEs. Second, an
external NE-translator (or multiple NE-translators for different NE types) is integrated in this
framework, thus ensuring correct NE translation.

Third, we address the problem of adapting the NER system itself specifically for the pur-
pose of improving the SMT task. There are few works reporting significant improvements
over a baseline after Named Entities integration® (eg. from 8.7 to 13.3 of BLEU for Bangla-
English (Pal et al., 2010), from 47 to 48.7 of BLEU for Hindi-English (Huang, 2005)). Others
report rather low (sometimes negative) impact of Named Entity integration with SMT (0.3
BLEU gain for French-English in (Bouamor et al., 2012), 0.2 BLEU gain for Arabic-English in
(Hermjakob et al., 2008), 1 BLEU loss for Chinese-English in (Agrawal and Singla, 2010)).

This is a disappointing result given how important correct NE translation is for overall trans-
lation quality. Possible reasons for this result (some of them identified in (Hermjakob et al.,
2008)) include:

e Errors of the Named Entity Recognizer itself;

o The external NE-translator is often blind to the type of the NE; however, different treat-
ments can be necessary for different types (e.g. some entities may require transliteration,
others a specific kind of translation, and still others should not be translated);

o Often the integration of Named Entities is done by constraining a phrase-based model to
producing a single candidate translation for a NE (as generated by an external NE trans-
lator): this may prevent the phrase-based model from using known phrases containing
the same NE in a larger context, which might have led to more accurate translations.

We note that standard NER systems are designed for Information Extraction tasks and that the
Named Entity structure required for these tasks may be different from that required for SMT.
In this work we study how the NE structure may be adapted for integration within SMT and

INote that not all works explicitly report the gain due to NE integration, but rather the joint gains due to the
multiple factors involved. We only mention works in which the specific impact of the NER component is reported
explicitly.



propose a post-processing method for a standard NER system in order to adapt this structure.
We also propose a way to restrict the use of an external NE translator to those cases where
calling it is really useful for the SMT task. First, we apply a set of general rules in order to
make the NE structure more suitable for SMT. Next, we develop a prediction model which is
able to choose for each NE which translation model is the best to translate it: either an external
NE-translator (possibly chosen between multiple options), or the standard SMT model (in this
case no special treatment is done for this NE).

The remainder of this paper is organized as follows. Section 2 describes our approach: we
first present the general framework we propose for NER integration within SMT, and we then
describe the post-processing and prediction steps for NER, which make NE integration more
suitable for SMT. Section 3 presents an overview of the related work. Section 4 describes the
experimental results and we conclude in Section 5.

2 Proposed Approach for the NE-enriched SMT model
2.1 Translation architecture

The framework that we propose can be summarized by the steps illustrated in the following
example:

Src: This paper illustrates the actions scheduled in Measure 6.2 " Co-operation in agriculture " of
the Programme of the European Initiative Interreg II Italy - Albania, being implemented in
Apulia since 1996.

(1) First, we detect Named Entities in the source sentence and replace them with place-
holders defined by the type of the NE (eg. DATE, ORGANIZATION, LOCATION): this
gives us two types of objects that we need to translate: reduced source sentences (source
sentences with place-holders) and original named entities;

Reduced Src: This paper illustrates the actions scheduled in Measure 6.2 " Co-
operation in agriculture " of the Programme of the European Initiative Interreg
II +NE_LOCORG_COUNTRY - +NE_LOCORG_COUNTRY , being implemented
in +NE_LOCORG_CITY since +NE_DATE .

NEs: Italy[LOCORG_COUNTRY], Albania [LOCORG_COUNTRY], Apu-
lia[LOCORG CITY], 1996 [DATE]

(2.1) The reduced translation model (able to deal with the place-holders) is applied to the
reduced source sentence and generates a reduced translation:

Reduced Translation: cet article illustre les actions prévues dans la mesure 6.2
" la coopération en agriculture " du programme de U initiative interreg
II +NE_LOCORG _COUNTRY - +NE_LOCORG_COUNTRY , mis en oeuvre a
+NE_LOCORG CITY depuis +NE_DATE .

(2.2) An external NE translator is used for translating the replaced NEs; In principle, multiple
NE translators can be used, depending on the nature of the Named Entity: a NE can stay



untranslated or be transliterated (eg. PERSON), or its translation can be based on hand-
crafted or automatically learned rules (eg. UNITS, 20°C = 68°F), or on an external
Named Entity dictionary (which can be extracted from Wikipedia or from the parallel
texts):

NE translation: Italy=Italie, Albania=Albanie, Apulia=Pouilles, 1996=1996

(3) Finally, Named Entity translations are re-inserted into the reduced translation (this uses
the alignment produced internally by the SMT system for deciding which target place-
holder corresponds to each source place-holder).

Complete Translation: cet article illustre les actions prévues dans la mesure 6.2 "
la coopération en agriculture " du programme de U initiative interreg II Italie -
Albanie , mis en oeuvre a Pouilles depuis 1996 .

This integration of NER into SMT already addresses several problems of NE translation:

e First, assuming that NER is able to detect named entities, the approach avoids wrongly
translating a NE as if it were a standard lexical expression;

e Second, the approach can translate NEs differently based on their identified type;

e Third, the reduced translation model is based on a generalization of training data which
reduces sparsity, and, as a consequence, is able to learn a better model: the generalized
patterns are helpful for dealing with rare or unseen Named Entities (eg. the bi-phrase
on +NE_DATE = le +NE_DATE can be used to translate any date, and not only those seen
in the training data).

2.2 NER adaptation for SMT

A weak point of our architecture is that the identification and processing of NEs is only loosely
dependent on the SMT task. To get a tighter integration, we apply a post-processing method to
the output of the NER system in order 1) to modify the NE structure for a better fit with SMT,
and 2) to choose the NEs that have a potential to improve the final translation. We propose a
hybrid post-processing, where:

o first, on each source sentence, a set of post-processing rules is applied to the NER output,
e second, a prediction model is applied to the NER output in order to choose only those

Named Entities for specific NE-translation that can actually be helpful for SMT purposes;
the prediction model is trained to optimize the final translation evaluation score.

We show empirically the importance of each of these steps in section 4.



2.2.1 Rule-based adaptation of NER systems for SMT purposes

Since numerous high-quality NER systems are ready to use, it is more reasonable to take
advantage of them for SMT than to develop a new NER system from scratch. NER systems are
usually developed for the purposes of information extraction, where the NEs are inserted in
a task-motivated template. This template determines the scope and form of NEs. In the case
of SMT the “templates” into which the NEs are inserted are sentences. This means that the
NEs should be defined according to sentence-translation oriented criteria, because this ensures
better quality of the model acquired from sentences containing place-holders for the named
entities. In other words, the place-holders should not introduce a similar sparsity factor into
the translation model to what the original NEs did. Thus existing NER systems may need some
adaptation for SMT.

We consider the following requirements for designing the scope and the form of the NEs for
SMT:

e The NEs extracted should not contain common nouns that might be relevant in an IE
system, but do not need special translation: titles (Mr, Vice-President, etc.) and various
other common nouns (street, road, number etc.). These elements should be removed
from the scope of the NEs for SMT, and should be translated as parts of the reduced
sentence, and not in the NE translation system.

e The NEs are embedded in various syntactic structures in the sentences, and often the
units labeled as named entities contain structural elements in order to yield semantically
meaningful units for IE. These structural elements are useful for training the reduced
SMT model, and thus they should not be part of the NE. E.g. le 1er janvier should rather
produce DATE(1er janvier) than DATE(le 1er janvier).

The adaptation is rule-based. Given an existing NER system, the adaptation is executed along
the following steps:

1 Extract NEs from a corpus relevant to the domain;

2 Either manually or automatically identify the list of common nouns within the NEs (titles,
geographical nouns, etc.);

3 Either manually or automatically identify the list of function words at the beginning of
NEs;

4a If the NER system is a black box:

— Define rules (e.g. POS tagging, list, pattern matching) to recognize the common
nouns and the function words in the output of the NER system;

— Post-process the NEs extracted so that the common nouns and the function words
are deleted;

4b If the source code of the NER system is available: Modify the source code so that the
common nouns and function words do not get extracted.



2.2.2 Machine Learning extension of NER adaptation

The previously defined rules allow us to deal with a segmentation of Named Entities that
is more suitable for SMT purposes: e.g. this segmentation may separate clearly the non-
translatable units composing a person name from its context (ex: Mr.[context] White[non-
translatable unit]). However, the importance of certain NEs or NE types for SMT may vary
across different domains and text styles. It may also be dependent on the SMT model itself:
simple Named Entities that are frequent in the data on which SMT was trained are already
well-translated by a baseline model, while the call for an external NE-translator will make the
process more complex, and in some cases, produce worse results (due to the lack of context).

The impact of one specific Named Entity on the final translation quality may depend on differ-
ent factors: NE context, NE frequency in the training data, the type of the NE, the reliability
of NE-translator, etc. The impact of each of these factors may be heterogeneous across differ-
ent domains and styles of the text, and a rule-based approach is not suitable to address this
problem in its generality.

We propose to learn a prediction model, based on the features that control these different
aspects, which will be able to predict the impact that the special treatment of a specific Named
Entity could potentially have on the final translation. The main objective of this model is to
select only NEs that can improve the final translation, and reject the NEs that can hurt or
make no difference for the final translation. In order to achieve this objective, we create an
appropriate training set as described below.

In what follows we refer to the baseline SMT model as SMT and to the NE-enriched SMT
model as SM Tyj. For the prediction training we create a labelled training set out of a set of
parallel sentences (s;, t;),i = 1..N.

e Foreachi=1..N:

- translate s; with the baseline SMT model: SMT(s;);
— For each NE ne, found by NER (and post-processed by a rule-based step) in s;:

* translate s;|,,, with the NER enriched SMT model: SM Tyg(s;lne,); nex is re-
placed by a place-holder in s;, and external NE-translator is used to translate
neg;

compare SMT(s;) and SMTyg(s;l,,) by comparing them to the refer-
ence translation t;: we denote the corresponding evaluation scores by
score(SM Tyg(silne,)), score(SMT(s;)) (we may use any standard MT evalu-
ation metric, suitable for sentence-level evaluation);

the label of the named entity ne, is based on the comparison between
score(SMTyg(siln.,)) and score(SMT(s;)): positive if score(SM Tyg(8;lye,)) >
score(SMT(s;)) (meaning that NE-enriched system produces a better transla-
tion than a baseline), and negative otherwise.

*

*

A classification model trained on a training set created in this way will be optimized (by con-
struction) to choose the NEs that improve the final translation quality; the features for this
classification model are detailed in section 4.2.2.

This method can also be extended for the case where multiple NE translation systems are
available: eg. do not translate/transliterate (person names), rule-based (eg. UNITS, 20°C =



68°F), dictionary based, etc. In this case the translation prediction model can be transformed
into a multi-class labelling problem, where each class corresponds to the model that should
be chosen for a particular NE translation model (including the model that do nothing and let
baseline the SMT model to deal with NE translation).

2.3 Training NE-enriched SMT

To apply he translation framework described above, first, we need to train a reduced trans-
lation model that is capable of dealing with the place-holders correctly. The training of the
reduced translation model requires a reduced parallel corpus (a corpus with both source and
target Named Entities replaced with place-holders). In order to keep consistency between
source and target Named Entities we project the source Named Entities to the target part
of the corpus using the statistical word-alignment model (obtained with GIZA++, similar to
(Huang and Vogel, 2002)).

Next, we train a phrase-based statistical translation model on the corpus obtained in this way,
which allows us to learn generalized patterns (eg. on +NE_DATE = le +NE_DATE) for better
NE treatment. The replaced Named Entity and its projection are stored separately in a Named
Entity dictionary that can then be re-used for NE translation.

When every source Named Entity that was correctly projected to the target sentence is system-
atically replaced by a place-holder, the translation model trained on such a corpus will not be
able to translate the original NEs (they will never or very rarely occur in the resulting training
data). This is in contradiction with our prediction model, which may choose to replace or not
a NE with a place-holder depending on its context, requiring the ability to translate both a
reduced and a non-reduced sentence.

In order to meet this requirement we train a hybrid NE-enriched model, which replaces a NE by
a place-holder with probability a: a model trained on a corpus created in this way will indeed
be able to translate the frequent NEs in their original form, but at the same time it allows
generalization (which is especially important for rare NEs). This hybrid model was inspired by
(Bisazza and Federico, 2012), where a hybrid LM was trained in a similar way.?

Possible models for the NE-translator include:

e NEs extracted out of parallel corpora by projection of source NEs on the target side can
be re-used as NE-translations at the translation step;

e another option is to create an adapted SMT model for NE translation: perform tuning
of the baseline PBMT on the subset of extracted NEs (such a model can be useful for
the Named Entities that should be translated, but are not directly available in the NE
dictionary, eg. General Division of Land Management, Housing and Patrimony [ORGANI-
ZATION] )

3 Related Work

The mainstream approach for Named Entity integration into an SMT framework is to detect a
NE (with an existing NER) and apply an external translation model (NE-translator) to translate
the detected NE. The translation proposed by the external model is then integrated into SMT

2In our experiments, we take a = 0.5.



a) as a default translation (Li et al., 2009; Huang and Vogel, 2002), b) added dynamically to
the phrase-based table to compete with other phrases (Turchi et al., 2012; Hermjakob et al.,
2008; Bouamor et al., 2012), c) replaced by a fake (non-translatable) value, which is replaced
by the initial Named Entity once the translation is done (applied for non-translatable NE in
(Tinsley et al., 2012)).

This approach mainly addresses the disambiguation issue when translating Named Entities
(given that NER is actually able to disambiguate properly), in order to guarantee a correct NE
translation.

The sparsity problem is partially addressed either by extracting bilingual Named Entities from
the parallel corpus and appending them to the training data, in order to improve the alignment
procedure (Bouamor et al., 2012; Okita et al., 2010). However, this approach does not allow
to generalize the information learned from the training data for new, unseen Named Entities.

Several "soft" integrations of the NE-translator were previously suggested (Turchi et al., 2012;
Hermjakob et al., 2008; Bouamor et al.,, 2012), where a translation proposed by the NE-
translator competes with other phrases of the phrase-table. This allows not to decrease the
final translation quality when a wrong NE is proposed by the NER system (either because it
is not suitable for an external NE-translator, or because of an error has been done by NER).
But this approach does not allow to correct the output of the NER system, and at best it allows
simply not to decrease the translation quality due to a wrongly-formed Named Entity, but there
is no possibility to improve the final translation in this approach.

The closest work to ours is the one by (Hermjakob et al., 2008), who addresses a problem of
NE transliteration for Arabic-English translation. Similar to our approach, the authors propose
to adapt the transliteration model for the translation task, and to "learn" when the translitera-
tion is actually helpful for SMT, rather than trust blindly the NER and transliterate every output
of the NER system (which may often introduce new errors). However, the way this adaptation
is done is very different from what we propose. It relies on annotations done on the parallel
training corpus, where each Arabic token/phrase is marked if its transliteration is found in the
corresponding English sentence. This annotated corpus is then used to train a transliteration
model. However it is not straightforward that the thus learned transliteration model is actu-
ally one that improves the final translation quality: the authors report similar results in terms
of BLEU to those of a baseline SMT, although the model appears to improve the Named En-
tities translation (measured in terms of NEWA (Hermjakob et al., 2008)). This indicates that
although overall NE translations were improved, probably the context in which they occurred
was less accurate, or in some cases the errors done by NER (or the transliterator) led to worse
translation. Our NER postprocessing approach optimizes explicitly the final translation score,
and can actually be complementary to the approach taken by (Hermjakob et al., 2008). More-
over, some heuristics used by (Hermjakob et al., 2008) (such as applying the transliteration
model only to NEs that occurred less than 50 times in training data) can be taken into account
in our approach in a more flexible way, at the same time as other important features (e.g. the
context in which NE occurs, the confidence of the proposed transliteration etc.).



Table 1: Statistics for the train and test data.

Data set Nb units | Nb tokens En | Nb tokens Fr
train 152525 3176875 2914542
extra monolingual data 118946 - 4331604
dev-set, MERT-tuning 1100 36484 40474
dev-set, NE prediction mode 1100 36672 41052
test-abstracts 426 45115 58549
test-titles 2000 23888 30786

4 Experiments
4.1 Data and baseline

The training set of parallel sentences was further extended with a subset of the JRC-Aquis®
corpus, based on the domain-related Eurovoc categories. Overall, the in-domain training data
consist of 3M tokens per language.

We have extracted two development sets containing both abstracts and titles. The first dev-set
was used for the MERT optimisation of the NE-reduced translation model. The second dev-set
was used for training the NE prediction model2.2.2. Both dev-sets were extracted from truly
in-domain data (INRA & FAO)

We tested our approach on two different types of texts extracted from in-domain data: 2000
titles (test-titles) and 500 abstracts (test-abstracts). Statistics about the train and test data are
given in table 1.

We used a phrase-based SMT model trained by Moses(Koehn et al., 2007) with standard Moses
settings (5-gramm LM, lexicalized reordering) on this data as the baseline translation system
for our experiments.

4.2 NER adaptation
4.2.1 Rule-based NER adaptation

As a baseline NER system we used the NER component of the Xerox Incremental Parser (XIP
(Ait-Mokhtar et al., 2002)) for English. The baseline NER system is rule-based and recognizes
a large number of different Named Entities: date, person, numerical expressions, location
names, organization names, events.

We ran XIP on a development corpus and extracted lists of NEs: PERSON, ORGANISATION,
LOCATION, DATE. We then identified a list of common names and function words that should
be eliminated from the NEs. In the XIP grammar NEs are extracted by local grammar rules as
groups of labels that are the POS categories of the terminal lexical nodes in the parse tree. The
post-processing consisted in re-writing the original groups of labels by ones that exclude the
unnecessary common nouns and function words (see section 2.2.1).

3http://langtech.jrc.it/JRC-Acquis.html



4.2.2 Prediction model for choosing NE translation model

The prediction model for SMT adaptation relies on the following features:

Named Entity frequency in the training data;

confidence in the translation of NE dictionary; (if ne,: source named entity, ne,: transla-
tion suggested for ne, by NE dictionary, we measure confidence as p(ne,|ne,) estimated
on the training data used to create NE dictionary );

a collection of features defined by the context of the Named Entity: the number of fea-
tures in this collection corresponds to the number of trigrams that occur in the training
data of the following type: a named entity place-holder extended with its 1-word left
and right context (eg. the +NE_DATE,);

the probability of the Named Entity in the context, estimated from the source corpus
(3-gram Language Model);

the probability of the place-holder replacing a Named Entity in the context (3-gram
reduced Language Model);

The corpus used to train the prediction model contains 2000 sentences (a mixture of titles and
abstracts). A labelled training set is created out of a parallel set as described in 2.2.2. We
used the TER (translation edit rate) score for measuring individual sentence scores. Overall,
we obtain 461 labelled samples, with 172 positive examples, 183 negative examples, and 106
neutral examples (the samples where both SM Ty and SMT provide the same translation).
We learn a 3-class SVM prediction model and we choose to replace only the NEs that are
classified as positive at test time.

4.3 NE-enriched SMT training
We train a hybrid reduced translation model replacing a Named Entity by a place-holder with
probability @ = 0.5 as described in section 2.3. The NE-translator performs as follows:

o First, it checks whether a NE translation is available in the NE dictionary extracted from

the parallel corpus (which contains 11347 entries);

o If no translation is found in the NE dictionary, a baseline SMT model, with weights tuned
on a subset of NEs extracted from the parallel corpus, is used as a back-off.

4.4 Evaluation
We evaluate the performance of different translation models using both BLEU (Papineni et al.,
2001) and TER (Snover et al., 2006) metrics. We compare the following translation models:
e SMT: abaseline phrase-based statistical translation model without Named Entity treat-
ment;

® SMTyg_pasetine: NE-enriched SMT (described in 2.1) where the baseline NER is used
(no NER post-processing is done);
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e RB-adapted SM Typ_gg : SMTyg where only the first post-processing step (rule-based
NE structure modification described in 2.2.1) is applied to the baseline NER;

® SMTyg_y1: SM Ty where only the second post-processing step (prediction model de-
scribed in 2.2.2) is applied to the baseline NER;

® SMTyg_pu: SMTyg relying both on rule-based and machine learning post-processing
steps for NER.

We also compare the results of our NE-enriched system to the approach used by (Turchi et al.,
2012) where the NE translations provided by an external dictionary (the NE dictionary ex-
tracted from the parallel corpus in our case) are suggested as dynamic bi-phrases (using Moses
XML tagging mechanism) to the decoder. We refer to the approach used in (Turchi et al., 2012)
as SM Typ_rurenis this is the soft NE integration into the model (soft XML tagging option of
Moses), which may choose the NE translation between the one suggested by the NE dictionary
and the one suggested by the baseline SMT during the decoding process. In principle, this NE
integration is more flexible than the pipeline approach we adopt. However, this approach does
not have the generalization capability of our NE-enriched model.

Table 2: Results for NER adaptation for SMT

Model test-titles test-abstracts

BLEU TER BLEU TER
SMT (baseline) | 0.3135 0.6566 | 0.1148 0.8935
SMTyp_rwen: | 0.3135 0.6565 | 0.1149  0.8934
SMTyp_pasetine | 0-3213  0.6636 | 0.1211  0.9064
SMTyg_rs 0.3258 0.6605 | 0.1257 0.8968
SMTyg_py | 0.3371  0.6523 | 0.1228  0.9050
SM Tyg_fui 0.3421 0.6443 | 0.1341 0.8935

The translation results for the models described above are reported in Table 2.

First, we abstract from NER adaptation, and compare two approaches relying on the non-
adapted NER, to evaluate our NE-enriched SMT model. We show that our approach
SM Tyg—pasetine Performs better than SM Tyg_1yrcni- We believe that this gain is due to the
generalization capacity of our model. Indeed, since the training data we used is relatively
small, the sparsity issue is very important in this setting, and the capacity to generalize the
observed NE occurrences helps our model. We see that SM Typ_ry.cni Performance is very
close to the baseline SMT. This is probably due to the fact that the only NEs that are integrated
are those that are already present in the training corpus, and no external knowledge was in-
jected. This is, however, also the case for our model, and we believe that adding an external
NE dictionary might improve both models.

Second, we note that each of the NER adaptation post-processing steps (SMTyg_zg and
SMTyg_p) brings improvements compared to the case when non-adapted NER is used
(SM Tyg—_paseline)- Finally, we see that the combination of both steps gives the best results,
which proves that these two steps complement each other and are both important for the final
translation quality.
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Table 3: Named Entity density in the test data

NE type test-titles test-abstracts
NEs detected NEs selected | NEs detected NEs selected
DATE 191 48 (25%) 121 32 (26%)
LOCATION 127 28 (22%) 61 20 (32%)
LOCORG 614 190 (30%) 189 44 (23%)
ORGANISATION 132 38 (28%) 210 33 (15%)
PERSON 95 44 (46%) 79 31 (39%)
EVENT 3 1 (33%) 3 0
UNIT 6 0 82 3 (3%)
PERCENT 2 1 (50%) 84 20 (23%)
Total 1170 350 (29%) 823 183 (22%)

4.4.1 Error analysis

We have performed some error analysis to find out the interaction between various aspects of
our model with the final translation performance.

First, we carried out a small-scale manual evaluation of NER over around 500 entities for
English. The recall of for all the NEs ( including non-detectable NE types) was 53% and the
precision was 86%. The types of NEs not detected but potentially relevant were projects, titles
and biological entities. The worse performance among detectable NE types was observed for
the organization names (precision: 80%, recall: 68%). This performance can be explained by
the domain specificity of our data which is very different from the one (news articles) which
was used for NER development.

Second, we looked at the NE density in the corpus and how the integration of the prediction
model impacts it. Table 3 reports the number of different NEs (by type) detected in total in
each test set, and the number of NEs that were selected by the prediction model (meaning
that the integration of these NEs has the potential to improve the final translation). First, we
see that we select only 29% of the total entities detected in the titles test set, and even fewer
(22%) in the abstracts test set. We also observe that NEs density is lower in the abstracts than
in the titles, and that the frequency of NE types differs between titles and abstracts: abstracts
contain more UNIT and PERCENT types, which are less ambiguous and easier to handle for the
baseline SMT. The above mentioned points may also explain lower impact after NE integration
on the abstracts test.

We see that the NEs most frequently retained by the prediction model are the PERSON names
which are probably the most sparse entities, which can be translated independently of the
context. We also see that we retain much fewer ORGANISATION types in the abstracts test
compared to the titles test: this is due to the fact that the organization names that occur in
the titles are frequent acronyms (eg. FAO, ONU, INRA) which are well handled by NER, while
abstracts contain more ambigous and difficult to detect organization names (eg. table 4, ex.3:
Confederation of Agricultural Workers).

Finally, table 4 shows some examples extracted from each of the tests on how NE integration
impacts the final translation. We see some cases where it is important to have a separate
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Table 4: Examples of English-French translations with and without NE integration.

test-titles
Src: Comparison of the morphometric indexes of the grasshopper tippet Schistocerca gre-
1 | garia Forskael, 1775 at Adrar and at Tamanrasset (Sahara, Algeria) in 1995
Baseline: Comparaison de ’étude de l'index grasshopper tippet Schistocerca gregaria,
Forskael 1775 sur tomate et a Tamanrasset (Sahara algérien) en 1995
NE-full: Comparaison des indices morphometriques de la grasshopper tippet Schistocerca
gregaria Forskael, 1775 sur le terrain a Adrar et a Tamanrasset (Sahara algérien) en 1995

Src: Decisions in favour of the future generations. Proceedings of the Conference, Brussels, 8
2 | May 1996 [with contributions of George, S.; Rahman A.; Alders, H.; Platteau, J.P]

Baseline: Les décisions en faveur des générations futures. Compte rendu de la conférence,
bruxelles, 8 peut 1996 [ avec les apports de George, S.; Rahman A.; 'aulne, H.; Platteau, J.P ]
NE-full: Les décisions en faveur des générations futures. Compte rendu de la conférence,
bruxelles, le 8 mai 1996 [ avec les apports de George, S.; Rahman A.; aulne, H.; Platteau, J.P

]

test-abstracts
Src: The Author , E Mellozzini , carries out an in - depth analysis of the objectives of agricul-
3 | tural policy which have arisen during a meeting on " Which kind of agriculture for the 1980 ’s?
" held in Rome by the Confederation of Agricultural Workers on 18 - 19 October .
Baseline: Lauteur, E, Mellozzini exerce une analyse des objectifs de la politique agricole qui
ont ainsi présentée au cours de la réunion, sur " dont la nature de l'agriculture de la 1980 ? "
tenue a Rome par la mobilité des salariés agricoles sur 18 - 19 octobre.
NE-full: L'auteur, E Mellozzini, exerce une analyse approfondie des objectifs de la politique
agricole qui ont ainsi présentée au cours de la réunion sur " qui la nature de I'agriculture pour
1980 ? " tenue a Rome par la confédération des travailleurs agricoles en 18 - 19 octobre.

Src: These studies allowed the drawing up of a balance of its qualities and limits observed , its
5 | effectiveness in natural conditions and provide the opportunity to share some ideas on the use
in Africa of the South American auxiliary .

Baseline: ces études ont permis I'établissement d’un bilan de ses qualités et limites observés,
son efficacité en conditions naturelles et prévoir la possibilité d’action des idées sur l'utilisation
en Afrique du Sud auxiliaires américaine.

NE-full:Ces études ont permis I'établissement d’un bilan de ses qualités et limites observés,
son efficacité en conditions naturelles et de prévoir la possibilité a part quelques idées sur
I'utilisation en Afrique des auxiliaires d’Amérique du Sud.

Src: Farmers are willing to pay between 13.5 percent and 14.5 percent of the value of the
3 | premium rate demanded by insurance companies .

Baseline: les agriculteurs sont préts a payer pour cent entre 13.5 et 14.5 pour cent de la
valeur de la prime taux exigées par les sociétés d’assurance.

NE-full: les agriculteurs sont préts a payer entre 13,5 pour cent et 14,5 pour cent de la valeur
de la prime taux demandées par les compagnies d’assurance.

translation model for the NE itself (ex. 1, 2, 3 and 5). At the same time, we see that although
the NE translation did not change, the surrounding context was better translated: ex. 3 "sur
DATE" vs "en DATE", ex.4 : auxiliary was better placed in the translation.
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Finally, we would like to note that our test set is rather difficult both for NER, and for MT
translation. We believe that application of the same NER integration on an easier data set
(with higher NER performance) may lead to higher improvements.

5 Discussion and Perspectives

In this work we have addressed the main problems of Named Entities integration into an SMT
framework. We have proposed an approach that is able to generalize the Named Entity context
observed in the training data and re-use it for new (unseen) NE translations. Our approach
can also integrate one or several external NE-translators, and allows to choose an adapted NE-
translator for each NE. The choice of the adapted NE-translator model is done via a prediction
model that relies on features specific to the NE itself, the context in which it occurs and also
the baseline SMT model which is enriched with NER. In addition, we propose a set of NER
post-processing rules that allow to modify the NE structure in order to produce better NE
segmentation for integration within SMT. We have shown empirically that each aspect of our
model is important, and that the combination of all of them leads to the best results (2-3 BLEU
points improvement over a baseline for two different test sets).

This framework opens several possible future research directions. First, NER-SMT integration
pipeline can be replaced by a confusion network representation, where the best NE translation
model will be chosen internally by the decoder. The prediction model scores can serve a basis
for assigning a score for each alternative path in the confusion network.

Second, the procedure of creating an annotated training set for learning the prediction model
which optimizes the MT evaluation score (described at 2.2.2) can be applied to other tasks
than NER adaptation. More generally it can be applied to any pre-processing step done be-
fore translation (eg. spell-checking, sentence simplification, reordering, or any other source
modification which might help to produce a better translation). The advantage of applying a
prediction model to these steps is to make the pre-processing model more flexible and better
adapted to the SMT task it is applied to.

Finally, in our experiments we have only used three options for the NE-translator: a NE dic-
tionary extracted out of parallel data, a SMT model tuned for NE translation and a baseline
SMT model. There are many other options that need to be explored, among them integrating
an external NE dictionary mined from Wikipedia or LinkedData or creating specific translation
models for each NE type.
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