A Procedural DTD Project for Dictionary Entry Parsing
Described with Parameterized Grammars

Neculai CURTEANU' Alex MORUZ?
(1) INSTITUTE of COMPUTER SCIENCE, ROMANIAN ACADEMY, IASI Branch;
(2) FACULTY of COMPUTER SCIENCE, UNIV. “AL. . CUZA”, IASI, ROMANIA

ncurteanu@yahoo.com, mmoruz@info.uaic.ro

ABSTRACT

The present paper continues the successful parsing experiments with the method of
Segmentation-Cohesion-Dependency (SCD) configurations, a breadth-first, formal grammar-free,
and optimal approach to dictionary entry parsing, proposed in the previous CogALex Workshops
and applied to the following five very large thesaurus-dictionaries: DLR (The Romanian
Thesaurus — new format), DAR (The Romanian Thesaurus — old format), TLF (Le Trésor de la
Langue Francaise), DWB (Deutsches Wérterbuch — GRIMM), and GWB (G6the-Waérterbuch).
In this work we report new results: (a) The lexicographic modeling and parsing experiments of
the sixth large DMLRL (Dictionary of Modern Literary Russian Language); (b) Outlining the
Enumeration Closing Condition (ECC) for solving the recursive calls between sense marker
classes situated on different nodes of a sense dependency hypergraph (SCD-configuration, i.e.
parsing level); (c) The central result we report here is the project of a new, procedural DTD
(Document Type Description) for dictionaries, based on the formalization of the SCD parsing
method, providing parameterized grammars to describe the dependency hypergraphs that
correspond to the main parsing levels in a dictionary entry. Here we give two parameterized
grammars for DLR, as a small sample from a larger package of combined grammars for the
above mentioned dictionaries. This package is constructed as the “least common multiple” of the
parameterized grammars written for the parsed dictionaries; it represents the DTD description of
a general parser for large dictionary entries, and thoroughly extends the current DTD in the
XCES TEI P5 standard.

KEYWORDS: SCD dictionary parsing method; procedural DTD for dictionary entry parsing.

1 Lexicographic Modeling of DMLRL

A pre-processing parsing stage can be added to the SCD (Segmentation-Cohesion-Dependency)
configurations for DMLRL homonymic entries, which are discriminated by indexing each of the
homonyms with Arabic numerals followed by dot, all in Arial font, Regular and Bold format.
These indexes are positioned in front of each homonym-word lemma, enumerating increasingly
all the homonyms of the same word-lemma. An example of four homonymic entries of the word
“BBIYOK?” is present in (DMLRL, :860-861), exposed in (Curteanu et al., 2012a :45).

The first SCD configuration has to recognize the lexicographic segments of a DMLRL entry.
DMLRL comprises (at least) five types of lexicographic packages / segments (Curteanu et al.,
2012a): (1) a morpho-lexical package/ segment; (2) the sense description segment; (3) a
TildaDef package or segment of definitions; (4) the morpho-syntactic variant segment; and (5)
the etymology segment of the word-lemma. The morpho-lexical definition package is obligatorily
present at the beginning of each entry, immediately after the word-lemma. The morpho-lexical

Proceedings of the 3rd Workshop on Cognitive Aspects of the Lexicon (CogALex-III), pages 127-136,
COLING 2012, Mumbai, December 2012.

127

package may occur also at the sense lower-levels of the entry sense tree. The TildaDef package
can be attributed not only to any (sub)sense description level of the entry but also to the root-
sense (zero-level sense hierarchy), when this package / segment begins at New_Paragraph.

The primary sense markers in DMLRL pointed out so far by the lexicographic analysis are:
Latin capital numerals followed by a dot (1., I1., I11.,... etc.), in bold (LatCapNumb_Mark), and
Arabic numerals followed by a dot (1., 2., 3.,... etc.), in bold (ArabNumb_Mark). The markers of
these classes are positioned at the beginning of the text row, in fact, at New_Paragraph (NewPrg)
marker, except for the first sense markers (1., 1.), which usually do not occur at NewPrg.

The sense markers of the class denoting Latin capital numerals followed by a dot (I., II.,
I11.,...etc. or simply, LatCapLet Enum) represent the top of the sense hierarchy in DMLRL.
These markers establish the lexicographic limits for the most general senses of the word-lemma.
They are the lexical-semantic equivalent of the sense marker class containing bolded Latin
capital letters A., B., etc. (abbreviated as LatCapLet_Enum) in DLR (Curteanu et al., 2008).

The sense marker class of Arabic numerals followed by dot (1., 2., 3... etc.), in bold
(ArabNumb_Enum), stands for the second level of primary sense representation in DMLRL. The
place of these two sense marker classes is displayed within the left side hypergraph of Fig. 1. The
sense marker classes LatCapNumb_Enum and ArabNumb_Enum are considered as DMLRL
primary senses, similarly to DLR-DAR lexicographic modeling (Curteanu et al., 2010).

We placed the two-oblique-bars »//” sense marker, which is specific to DMLRL, on the third
level of the hierarchical dependency structure of DMLRL senses. At the same time, the sense
marker ”//” is considered to be the first element of the two-markers set {//, ¢} denoting the
secondary senses in DMLRL. The sense marked by //” is in lexical-semantics subordination to
(or subsumed by) any other primary sense marked by an element in the marker classes
{LatCapNumb_Enum, ArabNumb_Enum}, when they exist in the entry text. Otherwise (when a
primary super-ordinated sense is missing), the secondary sense marker //” may occur
immediately under the topmost level of the DMLRL sense hierarchy. The marker ”//” is
embodied explicitly into the entry text, even for the case when this sense level is unique.

We notice that autonomous definitions in the //-marked subsenses to the primary senses can be
refined by the so-called DictExem, i.e. examples-to-definitions given by DMLRL authors.
Usually, DictExems are separated from DefExems that follows through the DMLRL-specific
marker ”0” called traverse. By analogy with the DLR hypergraph of sense dependencies, we
associate the DMLRL »//” marker with the DLR ”#” sense marker: they are both secondary
sense markers and subsume the similar secondary sense marker denoted in both dictionaries by
the empty-diamond ¢ (DMLRL, 1994), (Curteanu et al., 2012a, 2010).

The problem of literal enumeration in DMLRL is a challenging problem because one may find
entry samples that display a recursion between the literal enumeration and the secondary senses
“//” and 70 (at least these markers), a typical sample of this situation being the entry BbI
(DMLRL, :844). The same type of recursion can occur actually between primary, secondary, and
atomic senses, on one hand, and literal enumeration senses, on the other hand. The solution of
reducing these recursions to a finite number of cycles should be the consistent control of the
monotonic and sound closing of the literal enumeration development on higher or lower levels of
the DMLRL pre-established hypergraphs of sense marker class dependencies (Fig. 1 below)
(Curteanu et al., 2012a, 2012c).

128

The reverse situation, of the sense levels that could refine the literal enumeration sense
description is illustrated by the thick-tail arrows, oriented upwards and intersecting the thin-tail
arrows, in the first dependency hypergraph, SCD-config2 parsing level (Fig. 1).

[I I A B

L T

S
L]
— S
e
o~ Marker NO
= =

FIGURE 1 — The first dependency hypergraph (SCD-config2 of primary and secondary senses)
calling the second dependency hypergraph (SCD-config3 of atomic senses) in DMLRL

The lower-level parsing (SCD-config3) is represented in the right side hypergraph of Fig. 1, for
the atomic sense / definition markers in DMLRL. This hypergraph is interconnected with the
higher-sense parsing level represented by the left side (i.e. SCD-config2) hypergraph in Fig. 1.
This SCD-config2 hypergraph gives the dependency relationships among the higher-order sense
marker classes, handing down from the root-sense, through primary and secondary senses, to the
lower and atomic senses/ definitions. When structurally accomplished, DMLRL lower-level
senses are raising up, called by higher-level sense markers, until the structure of the entry sense
tree is completed.

2 The Enumeration Closing Condition: A Solution to Preserve the Soundness of
Sense Structure Definitions

The Enumeration Closing Condition (ECC) represents a deterministic, computational constraint
devoted to check the sound termination (i.e. in a deterministic, finite number of steps) of the
literal or numeral enumeration marker list, when higher-level sense markers break into the list.
When this happens, contextual look-ahead verifications are needed to obtain the correct closing
of the enumeration list. More precisely, ECC means that whether after a certain (let us say,
current) letter or numeral in the sense enumeration marker list occur higher-level sense markers

(on the dependency hypergraph), then one should look forward in the sense marker sequence
until the next letter or numeral of the same enumeration type occurs. If such an item does exist
and follows monotonously (i.e. in lexicographic ordering) the current one in the enumeration list,
then the enumeration should continue. Otherwise, thus if the (letter or numeral) item does not
exist or it begins another enumeration, of the same or higher dependency level as the current one,
then the ECC holds and the literal enumeration must be closed. For instance, in the Romanian
DLR, with the filled and empty diamonds ¢, ¢ as secondary sense markers, the enumeration list
a) b) c) ¢ & 0 0e O d)... should continue, while the marker sequence a) b) c) ¢ ¢ 0 O¢ 0 a)...
should close the first literal enumeration (Curteanu et al., 2012a, 2012c). The same is true if non-
enumerable sense markers (such as ¢, ¢ in DLR) are replaced by another enumeration of sense
markers, be it of another numeral or literal type. Two different enumerations, a standard, literal
one, and a numeral one coming from transforming the New_Paragraphs into sense markers, are
illustrated by the following special entries bearing recursive-calls: “CAL” in DAR, “LUMINA”
in DLR, ”BbI” in DMLRL (DMLRL :844) (Curteanu et al., 2012c, 2012a).

Parsing with SCD configurations, we discovered the special role that the New_Paragraph
(NewPrg) typographic marker is playing in the disambiguation process, either for the
lexicographic segment recognition or to ECC verification. For an efficient use of NewPrg(s) as
lexicographic markers, in a preprocessing phase for parsing a dictionary entry, we decided to
transform all the NewPrg(s) occurring in the entry into Latin small numerals (LatSmaNumb) as
lexicographic segment markers or sense enumeration markers.

3 Parsing Experiments with DMLRL Entries on the SCD-config2 Level

We outline here the parsing results on the six thesauri: DLR, completely parsed (175,000 entries;
15,000 pages; 37 volumes) at 98.01% accuracy, DAR completely parsed (25,000 entries, 3000
pages, 5 volumes), but no gold standard was available for automatic evaluation, while for TLF,
DWB, GWB, and DMLRL, around 50 significant (including very large) entries have been
parsed with very sound outcomes but not gold standard available for the parsing evaluation. Also,
using ECC, we solved the following two difficult parsing problems, met not only in DMLRL,
but also in DLR, DAR (as specified above), and other thesauri: (a) sense dependencies of the
SCD second configuration (left side hypergraph in Fig. 1), and (b) the mutual calling between
literal enumeration and secondary senses. For 50 DMLRL entries (of all sizes, including very
large ones), the parser provided a really sound parsing percentage, at this level (Curteanu et al.,
2012b).

The special entry BbI (DMLRL, :844) contains the marker subsequence “3.a) 0 0 /0 0 6) 00 ¢
B) 1) ¢ 0”, which shows (in the partial excerpt below) the occurrence of DMLRL secondary
senses under the literal enumeration, whose sound parsing is based on ECC to hold (Curteanu et
al. (2012a, 2012c).

BbI (cokpamenHo B), wacmuya. B coderanuu ¢ rimaronamu B (opMme MPOIIEIIIEro BPEMEHH 00pasyeT
cocnaraTenbHoe HakinoHeHue. 1. YroTp. st 0603HaueH s NPEe/NoI0KHTENbHOM ...

3. OGo3Ha4aeT pa3IuyYHbIC OTTEHKH JKeTaeMOCTH AeicTBus; a) COOCTBEHHO JKEIAaeMOCThb. Yuuucs Obl CoiH.
Bvinu 661 demu 300posei. O Ecin Ob1, Korma Ob1, X0Tb Ob1 1 T. 1. O, ecu 6b1 ko20a-nubyos Covinace nosma
cnoeudenvs! Iymx. IMocn. k FOauny. [Huxonka:] Xome 661 oususuon naw 6vin ckopee 2omoe. bynraxos,
Jlan Typ6. ¢ C neomnp. . rnar. [loremems 661 nmaweuxe K cunio mopio; Yoesxucamo 6b1 Monooyy 6 iec
opemyyuii. Jlenss. Ilena, nena nrameuka.. [Hacts:] Ax, memenvka, conyb6ox! Bom 61 notimams! A. Octp.

130

He 6bu10 1y rpowa...— JKapa, oedywixa Jlooviickun .. Hem nukaxozo mepnenus! Hekynamocs 6v1! Kynp.
Beu. myaenb. // YoTp. Juisi BBIPaXKEHHS ONACeHHs! 110 [OBOJY KAaKOTro-JI. HEXKeJIATeIbHOro JeicTBHs (¢
orpunanuem). He sabonen 6ur on. O C ueonp. ¢. riar., umeromeit nepea coboit orpuuanue. — I s0u, —
2060pio, — babouka, ne Kycamo vt mebe nokmsi! Tak-maxu ono éce na moe eviuino. Jleck. Bourensuuua. ¢
Tonbko Ol (6) He.... 6) [loxenauue. Venosue s 61 npeonoyen ne noonucvieams. J1. Toner. ITucsmo A. .
Mapkcey, 27 mapta 1899. 0 C wneomnp. ¢. ruar. [Tooxomumbscsi 661 no-nHacmosiuyemy, Ha KoHsi 6bl Oenee
000b1mb, — meuman cmapux. T'. Mapkos, CtporoBsl. ¢ B coueraHun ¢ npeiukaTHBHBIME HAPEUUSIMH CO
3Ha4. JIOJDKEHCTBOBAHUS, HEOOXOUMOCTH, BOBMOKHOCTH. 0 Tonbko 6l (6), muub Obl, YIOTp. CO
3HaY. KenateNbHOCTH JelcTBus. [Ckanosy6:] Mue monvko 661 docmanocw 6 eenepansi. I'pnb. Tope ot
yma. B) JKenanume-mpocbba, coBer wim mnpeiokenue (0O0bMHO mpu MecT. 2i.). [Mapuna:] X ueco
sacyemuncs? Cuden 6v1: Yex. [ans Baus.

The beginning of the parsing output shows the correct assignment of sense dependencies:

<entry>
<list>Bbl 1.0 00002.3.2) 00/ ¢ 0 6) 0090 B)r) ¢ 0 n-23</list>
<sense value="BbI" class="0">
<definition> (coxpamenno b), wactuia. B coueranun ¢ riaronamm B (hopMe HPOIIEIUIETO
BpeMeHH 00pa3syeT cocnaratesibHoe HakinoHeHue. </definition>
<sense value="1." class="4">

<sense value="3." class="4">
<definition> O6G03HauaeT pa3MuHbIe OTTEHKH XKeaaeMocTu neicTBus; </definition>
<sense value="a)" class="5">
<definition> CoGcTBeHHO enaeMocTb. Yumics Obl cbiH. bputn Ob1 et 310poBbl. </definition>
<sense value="0" class="8">
<definition> Ecin <spaced> 6 »i</spaced>, xorma <spaced> 6 bI</spaced>, xorb <spaced> ©
pI</spaced><spaced> u</spaced> T. m. O, ecnu 6b1 korma-HuGyap CObUTaCh 1MOdTa CHOBHAEHBs! ITymik.
IMocn. x HOmuny. [Huxonka:] Xors Obl auBM3MOH Ham Obul ckopee rortoB. bynrakos, uu Typ6.
</definition>
</sense>
<sense value="0" class="8">
<definition> C neonp. ¢. rnar. [Tonerers 661 nrameuke K cunio Mopio; Y6exars Obl MOJIOALYY B Jiec

npemyunii. Jlenss. Ilena, mena nrameuka.. </definition>
</sense>
<sense value="//" class="6">
<definition> YnoTp. /u1st BIpaXKEHUS ONIACCHUS 110 MOBOAY </definition>

<sense value="0" class="8">
<definition> C neonp. ¢. riar., umeromeii nepea co6oii orpunanue. - I'nsmu, - roBopio, -
6abouka, He KycaTb Obl Tebe JokTs1! Tak-Taku OHO Bce Ha Moe BbIILIO0. Jleck. Boutenbhuna. </definition>
</sense>

</sense>
</sense>
<sense value="0)" class="5">
<definition> Tloxenanue. YcnoBue st Ob1 mpeamouen He moamuckiBath. JI. Tomer. IMucemo A. .
Mapkcy, 27 mapra 1899. </definition>
<sense value="0" class="8">
<definition> C neomnp. ¢. ruar. ITooXxoTuTbecst Obl MO-HACTOSILIIEMY, HA KOHsI Obl JieHer JOObITb, -
Mmeutain crapuk. I'. Mapkos, Ctporossl. </definition>
</sense>
<sense value="0" class="8">

131

<sense value="B)" class="5">
<definition> Xenauue-npocs0a, COBET WM MPEIOKEHHUE. </definition>
</sense>
<sense value="r)" class="5">
<definition> JKenaemocTs 1enecoobpa3Horo u nonesHoro aercreus. </definition>
<sense value="0" class="8">

4 The Parameterized Grammar of Dependency Hypergraph for the Second
Parsing Level (SCD-config2) of DLR

In the course of modeling the SCD configurations for the 6 large dictionaries discussed
previously, i.e. DLR, DAR, TLF, DWB, GWB, and DMLRL (Curteanu et al., 2008, 2010,
2012a, 2012b), we attempted to use the XCES TEI P5 (2007) dictionary standard for encoding
the SCD parsing method. While, at the basic level, this encoding is sufficient, a detailed
description of the sense marker classes and their dependency hypergraphs was not possible. We
have therefore examined ways to extend the dictionary encoding standard towards the “least
common multiple” for the representation of lexicographic structures and dependencies of the
dictionaries we have parsed. Since this extension is carried out incrementally, the addition of
further information, possibly absent from these dictionaries but present in others, is
straightforward. Since the XML format can be described with a DTD, which is, at heart, a
grammar representation, we have proposed the extensions given below as parameterized
grammars for the task at hand.

For the sake of simplicity and ease of understanding, we propose the creation of three grammar
types, one for each of the SCD configurations used for parsing. The current form of the
SCD-configl grammar for lexicographic segments is given below. The rules are split into groups,
according to the reason for their presence in the grammar: general rules, which are applied to all

dictionaries, rules added to represent DLR structures, rules ... BLR Ertry +
added to represent DAR structures, etc. (the order of the] EMZ___--—]
added rules is that of analyzing the dictionaries). If a rule is H
already present, it is not added again, as the desired result is A, B.,C., <+
a seamless package for the SCD-configl of all the six L FLOlo_____ i
dictionaries. We use the attribute type for the Body_sense '
variable in order to link the segment marker type to the s 1 11, =
actual rule for expanding the body of a segment (the link C__oroeln :
between SCD-configl and SCD-config2, as the al
SCD-config2 is specific to each segment it belongs to). In < 1.2.3, a—
this grammar we also show how we can reuse large parts of LA mEl o
the existing XCES TEI P5 dictionary encoding standard. :
The sense marker class dependency hypergraph of SCD- 8 ﬁ
config2 is (Curteanu et al.; 2010, p. 41): ___@'_'i}E_EL_--;____;—
General N o P
Eni)ryS;; Igoot_sense Seg S —— fl":bl'f’i'----@
S N
Seg — Mrk Root_sense Body_sense Tail_sense, type(Body_sense) foldDeiMark |

= type(Mrk) 0 NI O —
Mrk — "

132

Root_sense —
Body_sense —
Tail_sense —» "™

DLR

Mrk — newPrg, type(newPrg) = senseSeg

Mrk — newPrgDash, type(newPrgDash) = morphSeg

Root_sense — MorfDef

Body_sense — entry, if(type(Body_sense) = senseSeg)

Body_sense — MorphologicalPart, if(type(Body_sense) = morphSeg)
MorphologicalPart — Gram Etym

Gram — Gram TEI P5

Etym — Etym TEI P5

We propose the following parameterized grammar to describe the above dependency hypergraph
functioning (i.e. SCD-Config2 parsing level for DLR). The rules are grouped in packages
according to the direction of generation: descending rules go towards less general senses (e.g. A.
to 1.), ascending rules return to superior senses (e.g. I. to A.), describing the closing condition,
while splitting rules are calls to the enumeration partitioning. The enumeration procedure is
given in the enumeration package, as, although enumeration items are subsenses of their parents,
they must meet certain restrictions described in the production rule attributes.

The attributes used are parent and item. The parent of a node is the sense from which that node is
generated, and the item of an element is its position in the list of sister elements. In order to jump
over sense levels, as most dictionaries do (e.g. A. to 1.), we have used a dummy node for each
skipped level, as the grammar is built so that it cannot generate a lower sense level without the
superior level (this is a correctness restriction). The dummy nodes derivate to the empty string
and are not itemized (the item attribute is not incremented for them).

entry — newPrg e LatCapLet; parent(LatCapLet) = e; item(LatCapLet) =0
entry —> e

LatCapLet — LatCapLet_Mrk LatCapNum; parent(LatCapLet_Mrk) = parent(LatCapLet);
item(LatCapLet_Mrk) = item(LatCapLet) + 1; parent(LatCapNum) = LatCapLet_Mrk;
item(LatCapNum) =0

LatCapLet — LatCapLet_Dummy LatCapNum; parent(LatCapLet_Dummy) = parent(LatCapLet);
item(LatCapLet_Dummy) = item(LatCapLet); parent(LatCapNum) = LatCapLet_Dummy;
item(LatCapNum) = 0

LatCapLet — LatCapLet_Mrk; parent(LatCapLet_Mrk) = parent(LatCapLet);
item(LatCapLet_Mrk) = item(LatCapLet) + 1

==descending==

LatCapNum — LatCapNum_Mrk ArabNum; parent(LatCapNum_Mrk) = parent(LatCapNum);
item(LatCapNum_Mrk) = item(LatCapNum) + 1; parent(ArabNum) = LatCapNum_Mrk;
item(ArabNum) =0

LatCapNum — LatCapNum_Dummy ArabNum; parent(LatCapNum_Dummy) = parent(LatCapNum);
item(LatCapNum_Dummy) = item(LatCapNum); parent(ArabNum) = LatCapNum_Dummy;
item(ArabNum) =0

LatCapNum — LatCapNum_Mrk; parent(LatCapNum_Mrk) = parent(LatCapNum);
item(LatCapNum_Mrk) = item(LatCapNum) + 1

==asending==

133

LatCapNum — LatCapLet; parent(LatCapLet) = parent(parent(LatCapNum));
item(LatCapLet) = item(parent(LatCapNum))

==descending==

ArabNum — ArabNum_Mrk RombP; parent(ArabNum_Mrk) = parent(ArabNum); item(ArabNum_Mrk) =
item(ArabNum) + 1; parent(RombP) = ArabNum_Mrk; item(rombP) = 0

ArabNum — ArabNum_Dummy RombP; parent(ArabNum_Dummy) = parent(ArabNum);
item(ArabNum_Dummy) = item(ArabNum); parent(RombP) = ArabNum_Mrk; item(rombP) = 0

ArabNum — ArabNum_Mrk; parent(ArabNum_Mrk) = parent(ArabNum);
item(ArabNum_Mrk) = item(ArabNum) + 1;

==ascending==

ArabNum — LatCapLet; parent(LatCapLet) = parent(parent (ArabNum));
item(LatCapLet) = item(parent(ArabNum))

==splitting==

ArabNum — ArabNum_Mrk LatSmalet; parent(ArabNum_Mrk) = parent(ArabNum);
item(ArabNum_Mrk) = item(ArabNum) + 1; parent(LatSmaLet) = ArabNum_Mrk; item(LatSmalLet) = 0

ArabNum — ArabNum_Dummy RombP; parent(ArabNum_Dummy) = parent(ArabNum);
item(ArabNum_Dummy) = item(ArabNum); parent(LatSmaLet) = ArabNum_Mrk; item(LatSmaLet) = 0

==descending==

RombP — ¢ RombG; parent(4) = parent(rombP); item(#) = item(RombP) + 1; parent(RombG) = ¢;
item(RombG) =0

RombP — RombP_Dummy RombG; parent(RombP_Dummy) = parent(rombP); item(RombP_Dummy) =
item(RombP); parent(RombG) = RombP_Dummy; item(RombG) = 0

RombP — ¢; parent(4) = parent(rombP); item(#) = item(RombP) + 1

==ascending==

RombP — ArabNum; parent(ArabNum) = parent(parent(RombP)); item(ArabNum) = item(parent(RombP))

==splitting==

RombP — ¢ LatSmaLet; parent(#) = parent(rombP); item(#) = item(RombP) + 1; parent(LatSmaLet) = ¢;
item(LatSmaLet) =0

RombP — RombP_Dummy LatSmaLet; parent(RombP_Dummy) = parent(rombP); item(RombP_Dummy)
= item(RombP); parent(LatSmalLet) = RombP_Dummy; item(LatSmaLet) = 0

==descending==

RombG — ¢ Atom; parent(¢) = parent(rombG); item(¢) = item(RombG) + 1; parent(Atom) = 0;
item(Atom) =0

RombG — 0; parent(0) = parent(rombG); item(0) = item(RombG) + 1

==ascending==

RombG — RombP; parent(RombP) = parent(parent(RombG)); item(RombP) = item(parent(RombG))

==splitting==

RombG — ¢ LatSmalLet; parent(0) = parent(rombG); item(0) = item(RombG) + 1; parent(LatSmaLet) = O;
item(LatSmaLet) = 0

RombG — RombG_Dummy LatSmaLet; parent(RombG_Dummy) = parent(rombG);
item(RombG_Dummy) = item(RombG); parent(LatSmalLet) = RombG_Dummy; item(LatSmaLet) =0

==descending==
DefAtom — DefAtom_Mrk DefAtom; parent(DefAtom_Mrk) = parent(DefAtom); item(DefAtom_Mrk) =
item(DefAtom) + 1; parent(DefAtom) = parent(DefAtomSt); item(DefAtom) = item(DefAtom_Mrk)
DefAtom — DefAtom_Mrk; parent(DefAtom_Mrk) = parent(DefAtom);
item(DefAtom_Mrk) = item(DefAtom)+1

134

==ascending==

DefAtom — RombG; parent(RombG) = parent (parent(DefAtom)); item(RombG) = item(parent(DefAtom))

==splitting==

DefAtom — DefAtom_Mrk LatSmalet; parent(DefAtom_Mrk) = parent(DefAtom); item(DefAtom_Mrk) =
item(DefAtom) + 1; parent(LatSmalet) = DefAtom_Mrk; item(LatSmaLet) = 0

==enumeration==

==descending==

LatSmalet — LatSmalet_Mrk RombP, if parent(LatSmaLet) > RombP; parent(LatSmaLet_Mrk) =
parent(LatSmaLet); item(LatSmaLet_Mrk) = item(LatSmalet) + 1; parent(RombP) = LatSmalLet_Mrk;
item(RombP) = 0;

LatSmaLet — LatSmaLet_Mrk RombP, if parent(LatSmalLet) > RombG; parent(LatSmaLet_Mrk) =
parent(LatSmaLet); item(LatSmaLet_Mrk) = item(LatSmaLet) + 1; parent(RombG) = LatSmaLet_Mrk;
item(RombG) = 0;

LatSmalet — LatSmaLet_Mrk LatSmalLet; parent(LatSmaLet_Mrk) = parent(LatSmaLet);
item(LatSmalLet_Mrk) = item(LatSmalLet) + 1

==ascending==

LatSmalLet — ArabNum, if parent(parent(LatSmalLet)) > ArabNum; parent(ArabNum) =
parent(parent(LatSmalLet)); item(ArabNum) = item(parent(LatSmaLet))

LatSmalLet — RombP, if parent(parent(LatSmalLet)) > RombP; parent(RombP) =
parent(parent(LatSmaLet)); item(RombP) = item(parent(LatSmaLet))

LatSmaLet — RombG, if parent(parent(LatSmaLet)) > RombG; parent(RombG) =
parent(parent(LatSmaLet)); item(RombG) = item(parent(LatSmaLet))

LatSmalLet — DefAtom, if parent(parent(LatSmalLet)) > DefAtom; parent(DefAtom) =
parent(parent(LatSmaLet)); item(DefAtom) = item(parent(LatSmaLet))

We highlight the following particular and interesting new lexicographic units during the SCD
lexicographic modeling: the intricate recognition and organization of DWB segments; the
recursive “Rem.”, “Dér.” (and other) segments in TLF; the “TildaDef” segment / package in
DMLRL, with similar syntactic behavior as the “Nest” segment / package in DAR; the sense /
definition inheritance “long-dash” marker and rules in TLF and GWB; the dictionary authors’
examples in DLR and DMLRL (the latter, specially marked); the indexed examples-to-
definitions package, specially marked and met only in TLF; various species of “sigles” (i.e. text
source references) etc. While many lexicographic structures are similar or identical in their
syntactic or semantic behavior over several dictionaries, the above mentioned examples should
be integrated carefully within their appropriate SCD configuration, i.e. dependency hypergraph,
described by corresponding parameterized grammars within the unitary procedural DTD.

5 Conclusion

The current DTD for dictionaries in the standard XCES TEI P5 (2007) represents dictionary entry
data types, described with context-free grammars. For the recursive sense dependencies
embodied into the dependency hypergraph of a parsing level, the challenge was to provide a
formal tool for procedural description, and we delivered the parameterized grammars that
describe the functioning of the first and second SCD-configurations (i.e. parsing levels) for DLR.
This is the first phase of the newly proposed, procedural DTD, and there is still a lot of work to
accomplish the project of such a general, procedural DTD. We will describe the dependency
hypergraphs of SCD configurations for the six largest dictionaries we have already parsed (DLR
completely, the other ones, partially) and augment the parameterized grammars on each level of
SCD configuration, such that to obtain a least common multiple description for all the six
considered dictionaries. The procedural DTD does not overlap the currently existing DTD for

135

dictionaries in the TEI P5 standard, but effectively extends it from the detailed, static description
of dictionary entry data types, to the procedural, hierarchically organized of all the component
lexicographic structures, SCD-modeled, in the largest dictionaries.

We provided here the parameterized grammars for the first two SCD configurations of DLR, and
achieved only one atomic sense dependency hypergraph (for DMLRL) from the six dictionaries
involved. There are necessary (at least) 18 (6 dictionaries x 3 SCD-configurations) grammars,
combined into their three least common multiple grammars on the synthesized three parsing
levels of SCD configurations. Any new dictionary parsing experiments could possibly bring (or
not!) novelties, incrementally integrated into the final version of the new procedural DTD for
dictionaries, made up of (at least) three packages of parameterized grammars.

These are the dimensions of the project (which may also be called Document Structural
Description — DSD, as the procedural completion to the current DTD for dictionaries). This
project constitutes the formal (and incremental) description framework of a general parser for
large thesaurus-dictionaries, proved to be optimal, portable, and robust (Curteanu et al.; 2010).

References

Curteanu, N., Moruz, A., Trandabaf, D. (2008): Extracting Sense Trees from the Romanian
Thesaurus by Sense Segmentation & Dependency Parsing, Proceedings of CogAlex-1 Workshop,
COLING-2008, Manchester, UK, pp. 55-63, http://aclweb.org/anthology/W/W08/W08-1908.pdf

Curteanu, N., Trandabag, D., Moruz, A. (2010): An Optimal and Portable Parsing Method for
Romanian, French, and German Large Dictionaries, Proceedings of COGALEX-1I Workshop,
COLING-2010, Beijing, China, pp. 38-47, http://www.aclweb.org/anthology-new/W/W10/W10-

3407.pdf

Curteanu, Neculai, Svetlana Cojocaru, Eugenia Burca (2012a): Parsing the Dictionary of Modern
Literary Russian Language with the Method of SCD Configurations. The Lexicographic
Modeling. Comp. Science Journal of Moldova, Academy of Sciences of Moldova, Vol. 20,
No.1(58), pp. 42-81, http://www.math.md/files/csjm/v20-n1/v20-n1-(pp42-82).pdf

Curteanu, Neculai, Svetlana Cojocaru, Alex Moruz (2012b): Lexicographic Modeling and
Parsing Experiments for the Dictionary of Modern Literary Russian Language, ConsILR-2012
Proceedings, Bucharest, The Editorial House of ”Al. I. Cuza” University, lasi, pp. 189-198.

Curteanu, Neculai, Alex Moruz (2012c): Toward the Soundness of Sense Structure Definitions in
Thesaurus-Dictionaries. Parsing Problems and Solutions. Computer Science Journal of
Moldova, Academy of Sciences of Moldova, Vol. 20, No.3(60), pp. 275-303,
http://www.math.md/files/csjm/v20-n3/v20-n3-(pp275-303).pdf.

DWB (2010): Das Woerterbuch-Netz (2010): http://germazope.uni-
trier.de/Projects/WBB/woerterbuecher/

DMLRL (1994): Dictionary of Modern Literary Russian Language (20 volumes, 1994): CioBaps
COBPEMEHHOT'0 PYCCKOT0 JMTEepaTypHOro sizbika. B 20 Tomax. U3narensctBo: M.: Pycckuii s3bIK;
Usnauue 2-¢, nepepad. u gon. 864 crpanmi; 1991-1994 r. ISBN: 5-200-01068-3 (in Russian).

TLF (2010): Le Trésor de la Langue Francaise informatisé (2010) : http://atilf.atilf.fr/tIf.htm
XCES TEI Standard, Variant P5, (2007): http://www.tei-c.org/Guidelines/P5/

136

