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ABSTRACT 

Dictionaries constructed using distributional models of lexical semantics have a wide range of 
applications in NLP and in the modeling of linguistic cognition. However when constructing such 
a model, we are faced with range of corpora to choose from. Often there is a choice between small 
carefully constructed corpora of well-edited text, and very large heterogeneous collections 
harvested automatically from the web. There may also be differences in the distribution of genres 
and registers in such corpora. In this paper we examine these trade-offs by constructing a simple 
SVD-reduced word-collocate model, using four English corpora: the Google Web 5-gram 
collection, the Google Book 5-gram collection, the English Wikipedia, and collection of short 
social messages harvested from Twitter. Since these models need to encode semantics in a way 
that approximates the mental lexicon, we evaluate the felicity of the resulting semantic 
representations using a set of behavioral and neural-activity benchmarks that depend on word-
similarity. We find that the quality of the input text has a very strong effect on the performance of 
the output model, and that a corpus of high quality at a small size can outperform a corpus of poor 
quality that is many orders of magnitude larger. We also explore the semantic closeness of the 
models using their mutual information overlap to interpret the similarity of corpus texts. 
 
KEYWORDS : VECTOR SPACE MODELS, DISTRIBUTIONAL SEMANTICS, CORPUS SIZE, CORPUS GENRE, 
CORPUS QUALITY, NEUROSEMANTICS, WORD SIMILARITY 

1 Introduction 

Distributional semantic models (DSM) or distributional similarity models (Landauer, 1997) are 
unsupervised models based on the assertion that the meaning of a word can be inferred to some 
extent based on its distribution in the text. They are high dimensional vector space representations 
that encode the semantics of words learnt from a statistical analysis of the context they appear in. 
Word level dictionaries constructed using DSMs find use in many computational linguistics and 
cognitive science applications (Leacock, 1993; Bellegarda, 2000; Mitchell, 2008). To build these 
models in a given language, there is typically a choice among several source corpora. Often there 
is a choice between small well-curated text of good composition, and very large easy to collect 
text that is of inferior composition. In addition, there are choices along the dimensions of language 
style, genre and register. What kind of   a   corpus   is   most   representative   of   a   person’s   language  
experience? Is colloquial text more preferable than the formal variety? How does corpus size 
affect the model learnt? In this paper we attempt to identify the trade-off between source corpus 
size and quality, measured based on their performance in modeling the mental lexicon. Multiple 
behavioural and neurosemantic tests are used for this evaluation. As additional explorations, we 
study the effects of dimensionality on model performance, and the mutual similarity by word 
categories among models derived from various corpora. 

53



There is ample literature analysing the effects of feature types, normalization, dimensionality, 
pruning, among other factors, on distributional semantics (Bullinaria and Levy 2007; Murphy, 
2012). Quantitative and qualitative comparison of corpora based on the surface text has been 
performed as well (Kilgariff 2001, 2012). But, to our knowledge, there is not any systematic 
analysis of the effect of the corpus quality on distributional semantics. Authors have expressed 
that it is not adequate to explore the effects of size on model quality, it is important to analyse the 
effects of corpus quality as well (Bullinaria and Levy 2007; Lindsey, 2007).  Although a wide 
range of corpora have been used to build DSMs, variation in modeling parameters, processing 
techniques and evaluation metrics used by the authors makes a direct comparison of corpus 
quality unfeasible. 

In this paper, we build simple SVD-reduced word-collocate models using four English corpora 
that differ considerably in quality, size and composition. We employ simple word co-occurrence 
based models rather than the more complex ones (such as dependency or document models) 
because it is possible to build word-collocate models for most languages and corpora that are 
available. More importantly, the goal of the paper is to arrive at general reliable performance 
trends to address the quality-quantity trade off, and not to obtain the very best performance 
possible. Thus, we employ more generic, commonly used methods and evaluation metrics in our 
experiments. We find that the quality of the input text has a very strong effect on the performance 
of the output model, and that a corpus of high quality at a small size can outperform a corpus of 
poor quality that is many orders of magnitude larger. And, we also explore the reasons for the 
relative performance of different corpora, in terms of the mutual similarity of the semantic spaces 
described by their corresponding models. 

1.1 Characterestics of a Textual Corpus 
Textual corpora vary along many dimensions. Microblogs are colloquial, abbreviated, have varied 
grammar, misspellings, and emoticons. Duplication of messages propagated by the social network 
(virality) is a phenomenon specific to this domain. On the other hand, books and news text are 
extremely formal, diligently edited content with superior use of the language. They are practically 
devoid of any spelling errors, adhere to conventional grammar and discuss a broad range of topics. 
Encyclopaedic sources contain factual accounts of entities in the world that go through the highest 
scrutiny by authors. They are well edited, and the use of language within an article is constrained 
to the subject of discussion, with pockets of rare terms within articles rather than a more even 
distribution across documents. Webpage characteristics generally are a mixture of all of the above. 
Content on the Internet is also skewed in its representation of topic and genre – for example 
computing topics may be over-represented.   

The most desirable corpus to learn a cognitively plausible semantic model would be the one that is 
representative of the language experience of a native speaker. But, every corpus in some way is an 
idiosyncratic sample of the language, with biases of grammar, style and vocabulary, which may 
affect the semantic model that can be derived from it. For our experiments we consider four 
widely used research corpora that represent the major characteristics described above. They are 
available in many languages and in considerable sizes. We use Twitter messages (or tweets), 
Google Web n-grams, Google Books n-grams and Wikipedia articles. Tweets are short snippets of 
microblog text exchanged within a social network. The content tends to be biased towards the 
most trending news events and personal conversations. Webpages are online documents that are 
intended to be information resources. They are composed of heterogeneous data sources ranging 
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from product pages to blog posts to news articles etc. Books are works of literature that are 
carefully created by authors and typically edited by reviewers. The high quality text spans 
multitude of genres, topics and writing styles. The rest of the paper is structured as such: Section 2 
describes the acquisition and pre-processing of corpora, process of building the semantic models 
and evaluating them. Section 3 details the experiments that vary the SVD dimensions and corpus 
sizes. Section 4 interprets those findings. 

2 Methods 

2.1 Collecting and Preprocessing Corpora 
The Google Web corpus (Web) (Brants, 2006) contains n-grams of length up to 5 generated from 
publicly accessible Web pages. The Google Books dataset (Books) containing n-grams up to 
length 5 is extracted from a combination of dialects and genres, including American and British 
English, and both fiction and non-fiction. The Wikipedia corpus (Wiki) is a recent version, the 
July 2012 dump of the English encyclopaedia. Only running article text was extracted for use, 
with editing records, navigational text and other meta-data removed. The tweets corpus (Twitter) 
is a collection of 207 million public tweets collected from the twitter firehose over a 16-month 
period ranging from May 2009 to August 2010, a subset of the corpus collected by O'Connor et 
al., (2010). Among these, only tweets with five or more standard English words were retained, to 
discard non-standard utterances (e.g. telegraphic speech), and messages in other languages. The 
English word list used to filter the tweets contains the top 100K words in the American National 
Corpus (ANC) .To avoid biases that reposting of messages may cause, duplicate posts were also 
discarded. All web links in the tweets were replaced with the token  “[LINK]”,  all  usernames  were 
replaced  with   “[PERSON]”   and   all   hash-tags were stripped   off   the   ‘#’   character   and   treated   as  
normal tokens. After tokenizing the running text based on whitespaces, the tokens in all corpora 
were converted to lower case and only tokens composed solely of letters and internal punctuation 
were considered. No stemming or spelling correction was performed in the interest of impartiality 
towards all corpora.  

 WIKIPEDIA TWITTER BOOKS WEB 

SIZE (ratios) 1 X ~1.2 X ~100 X ~200 X 

LEXICAL 
DIVERSITY 

483 k 736 k 135 k 206 k 

CURATION Very High, Peer 
Reviewed, Updated 

Frequently 

None. High rate 
of typos and non 

standard language 

Professionally 
edited. 

Mix 

REGISTER Very Formal, 
Reporting Fashion 

Very Informal, 
Colloquial 

Formal, 
Narrative style 

Mix 

OBJECTIVITY Completely Factual More Opinions More Fictional More 
factual 

TABLE 1 – Corpus facts and characteristics 
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After pre-processing, we found the Web, Books, Twitter and Wikipedia corpora to have 353.4 
billion, 199.4 billion, 2.1 billion and 1.7 billion tokens respectively (see  
Table 1 for the same sizes expressed as ratios). Since the Google Books and Web corpora are 
available only as n-grams with a maximum sequence length of five, all other corpora were also 
reduced to five grams. Hence, all textual statistics were gathered from a fixed text window of 4 
lower-case tokens either side of the target word of interest, which is in the mid-range of optimal 
values found by various authors (Lund and Burgess, 1996; Rapp, 2003; Sahlgren, 2006). Since the 
corpora are substantially different from each other, it is not feasible to use a common word-list as 
the vocabulary that would be equally suitable for all. As a result, we compiled a vocabulary 
specific to each corpus, taking all frequency-sorted tokens to achieve 99% token-coverage of that 
corpus (Table 1 shows the vocabulary size as lexical diversity).  

2.2 Models of Semantics 
All the models described here were subjected to a common pre-processing pipeline. Raw lower-
case word co-occurrences were extracted in the +- 4-word window. In the case of n-gram models 
that include a pre-applied frequency cut-off for rare tuples, a smoothing strategy was used to 
approximately reconstruct these missing counts. The 99% token-coverage vocabulary, and a 
subsequent 99% co-occurrence cut-off discarded low-frequency noisy counts before frequency 
normalization with PPMI (positive pointwise-mutual-information). The dimensionality of each 
word/collocate matrix was then reduced with singular value decomposition (SVD), taking the 
resulting left-singular vector as the vector-space representation for each word in the vocabulary. 

Positive Pointwise-mutual-information (1,2) is used as an association measure to normalize the 
observed word co-occurrence frequency p(w,f) for the varying frequency of the target word p(w) 
and its features p(f). PPMI up-weights co-occurrences between rare words, yielding positive 
values for collocations that are more common than would be expected by chance, and discards 
negative values that represent patterns of co-occurrences that are rarer than one would expect by 
chance (i.e. if word distributions were independent). PPMI has been shown to perform well for a 
range of model types (Bullinaria and Levy, 2007; Turney and Pantel, 2010; Murphy, Talukdar and 
Mitchell, 2012). To filter out the noisy low frequency co-occurrences, we consider only those 
types that yield a 99% co-occurrence token coverage over all co-occurrence tokens. Filtering this 
Zipfian distribution also reduces the data to a manageable size.  

The n-grams found in the Web and Books corpora were pre-filtered to different extents based on 
their counts. We observed that the lower the n-gram order, the lower the cut-off counts. So, to get 
a more accurate estimate of the co-occurrences in the original unfiltered corpus, we calculate the 
co-occurrence count using n-grams of all orders (two to five) rather than using only the five-
grams. For a particular co-occurrence ab (where a and b are the co-occurring words), we calculate 
its scaled count cab (3) using NGab, the set of all n-grams that contain words a and b. o(x) is the 
order of the n-gram x and d(x,a,b) is the distance between words a and b in the n-gram. This 
scaled value is an approximation of the actual count a co-occurrence type would have when 
counted within five-grams from the original unfiltered corpus. This scaled count better 
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approximates the original count than the pre-filtered counts in the corpus five-grams. Preliminary 
evaluations on these corpora and the tests described later suggest that using these scaled counts to 
calculate the PPMI scores yields a better performance. 

 

Once the PPMI scores are obtained for all co-occurrences, every word has an associated vector 
containing the PPMI scores of that word with every word in the vocabulary. A singular value 
decomposition (SVD) is applied on the PPMI matrix to identify the k dimensions within each 
model with the greatest explanatory power, which also has the effect of combining similar 
dimensions (such as synonyms and inflectional variants) into common components, and 
discarding more noisy dimensions in the data. This gives us a vector of length k for every word in 
the vocabulary. We use these vector space models of word semantics (the word level dictionaries) 
produced by the SVD to perform behavioral tests and brain tests where we explore performance of 
models by varying the number of dimensions and the corpus size, one at a time.  

2.3 Evaluating the Semantic Models 

2.3.1 Neurolinguistic Decoding  

Since neurosemantic tests require models to test directly on the brain activity associated with 
language, we believe they are a good approach to test models of the lexicon. The dataset used here 
is that reported in Mitchell et al., (2008) and released publicly as part of the First Workshop on 
Computational Neurolinguistics (Murphy et al., 2010). The functional MRI (fMRI) data had been 
recorded from 9 participants while they performed a property generation task. The stimuli were 
line-drawings, accompanied by their text label, of 60 everyday concrete concepts such as ant, 
apartment, car, lettuce, hand, glass. Each participant's data contained a time-course for each of 
approximately 20 thousand voxels (three-dimensional pixels, or neural data points), and multiple 
presentations of the same concept had been averaged to yield a single brain image for each 
concept. Following the analytical paradigm of (Mitchell et al., 2008), we use a linear model to 
predict the brain activity for a particular concept (4). For each participant and selected voxel, we 
train a model where the level of activation of the latter in response to different concepts is 
approximated by a regularized linear combination of their semantic features where f is the vector 
of activations of a specific fMRI feature for different concepts, the matrix C contains the values of 
the semantic features for the same concepts, β   is the weight for each of those (corpus-derived) 
features, and λ  tunes the degree of regularization.  

The linear model is estimated with a least squared errors method and L2 regularization, selecting  λ 
over the range 0.0001 to 5000 using Generalized Cross-Validation (see Hastie et al., 2011, p.244). 
The activation of each fMRI voxel in response to a concept unseen during training is then 
predicted by the weighted sum of the values on each semantic dimension, building a picture of 
expected neural activity response for an arbitrary concept. We use the leave-2-out paradigm as 
used by Mitchell et al. (2008), in which a linear model for each neural feature is trained in turn on 
all concepts minus 2, having selected the 500 most stable voxels in the training set. For each of the 
2 left-out concepts, we try to match the predicted and observed activations, using the cosine 
distance between the model-generated estimate of fMRI activity and that observed in the 
experiment. The score reported is the classification accuracy over the 1770 comparisons (60 select 
2) by 9 participants. 
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2.3.2 Behavioral Measures 

Since behavioral tests of language semantics capture human judgments based on their language 
experience, we believe they are a reasonable way to benchmark the different word dictionaries we 
generate. We apply commonly used behavioral tests of semantic knowledge (see e.g. Bullinaria 
and Levy 2007, Baroni et al 2010) to measure the quality of the corpus-derived models. Figure 1 
depicts the distribution of the test vocabularies across the four corpora. All these tests involve 
pairwise comparison between two vectors, either corresponding to a pair of words, or between a 
word vector and a cluster centroid. We use the commonly used cosine geometric measure 
(Landauer and Dumais, 1997; Levy and Bullinara 2007) to calculate the distance between two 
vectors in the model’s  vector space, independent of scaling. The distance measure is one minus 
the cosine of the angle between the two vectors t and e (5).  

The TOEFL test, initially introduced by Landauer and Dumais (1997) consists of eighty multiple 
choice questions from the synonym portion of the TOEFL test. The test vocabulary consists of 
203 adjectives, 96 abstract nouns and 82 verbs. The questions consist of a target word and four 
other word choices, including a synonym, and three distracters. (e.g.   ‘Which  of   the  following   is  
closest in meaning to prominent: battered, ancient, mysterious or conspicuous?’).  To  evaluate  a  
semantic model, we choose the word with the smallest cosine distance as the answer. The score 
reported is the answer-accuracy over all 80 questions.  

The Rubenstein Goodenough (Rubenstein et al., 1965) and the WordSim (Finkelstein et al., 2002) 
datasets are comprised of word-pairs with corresponding a semantic-similarity score. R&G has 65 
concrete noun pairs and WordSim has a mix of 203 nouns (concrete and abstract) and adjectives. 
The similarity scores for the word pairs (e.g. gem - jewel, 3.940) are values averaged over 
similarity judgments provided by multiple human judges. Modeled similarity scores for each word 
pair are generated using the cosine distance between the vectors in the semantic space. The test 
scores reported are Spearman correlation coefficients ρ between the similarity estimates x 
generated by the model and the gold standard similarity measures y (7). 

The Battig (Battig and Montague, 1969) and AAMP (Almuhareb and Poesio, 2004) tests have 
pairs of a word and its immediate superordinate category (e.g. aeroplane – vehicle, anger – 
feeling). The Battig dataset is composed of 82 concrete words and AAMP has a mix of 402 
concrete and abstract words. The CLUTO clustering toolkit (Karypis 2003) is used to cluster the 
word vectors using cosine distance and the  toolkit’s  default  parameters  to  obtain  as  many  clusters  
as there are word-categories in the test. The score reported is the overall cluster purity P, the sum 
of the purities of individual clusters (Pr) calculated (8). The purity of a cluster is the fraction of its 
members that belong to the most representative (i.e. plurality) category c. 
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FIGURE 1 – Coverage per test-word as average word count per million corpus tokens (wpm) 

3 Results 

Our goal is to compare the performance of the models learnt from the four corpora in an impartial 
manner. Hence, we learn models on the corpora subsampled at the same size, at a particular 
dimensionality that is suitable to all corpora. To determine the appropriate number of SVD 
dimensions for the corpora, we compile test scores for the corpus models at the original sizes, 
varying the number of SVD dimensions (Section 3.1). This helps us study the impact of extra 
dimensions on the corpus model performance, and the top performance obtainable when the 
dimensionality is adapted to the corpus (Section 3.2). By looking at the trend of these performance 
curves, we determine the widely stable and well performing dimensionality. Once the optimal 
dimensionality is found, we compile test scores for the models with the optimal dimension count, 
varying the size of the corpus subsets (Section 3.3). This helps us quantify the corpus quantity-
quality trade off in terms of the test performances. 

3.1 Effect of Dimensionality 
To explore the number of dimensions that is optimal for the different corpora and tasks, we run 
the behavioural and brain tests at different dimensionalities. We vary the number of SVD 
dimensions for the behavioural tests in steps of 25 over the range 25 to 1250 and we considered 
the SVD dimensions 75, 125, 250, 375, 500, 750 and 1000 for the neurosemantic decoding test 
(this less exhaustive search is due to the increased computational complexity of this task). Figure 
2 shows the performance plots for the corpora across all six tests. 

From Figure 2, we notice a general trend that all behavioural tests tend to improve as the number 
of dimensions increases. But, most of these tests flatten out after a particular point. In some case, 
at higher dimensions, we notice that the curve dips, presumably as noisy or irrelevant SVD 
dimensions are encountered. We find that the TOEFL test follows a very strong linear trend for 
most corpora. Extra dimensions seem to aid performance in this test. Books seems to have a 
substantial advantage in this test.  
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FIGURE 2 – Performance of corpus models over a range of SVD dimensions 

The stability of the Twitter curves is lower than the others irrespective of the test. From the 
behavioural tests involving concrete nouns (Battig, R&G and WordSim), we notice that Twitter 
requires more SVD dimensions to attain peak performance, or reach a more stable score. The tests 
based on clustering (Battig and AAMP) appear to have unstable curves relative to the similarity 
and classification based tests. This has more to do with the nature of the tests than the corpus 
behaviour. The word clusters tend to vary greatly with dimensionality.  
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The Brain test is discriminating only at lower dimensions. Contrasting to the behavioural tests, 
extra dimensions do not affect the performance of the models noticeably. At lower dimensions, we 
find Books to perform best, and Twitter the worst. Model performances above 375 dimensions are 
all comparable. It is interesting that the Brain test peaks at such low dimensionality while tests like 
TOEFL and AAMP need a lot more dimensions. This could be because the top few SVD 
dimensions are more likely to be the important ones that encode the more common attributes (such 
as   ‘living’  or   ‘non-living’),  which  can  help  distinguish  concrete  nouns.  On   the  other  hand,  a   lot  
more dimensions are required to distinguish the more subtle differences between the TOEFL 
choices.  

3.2 Peak Performances for Whole Corpora 
As we saw in Figure 2, model performance is somewhat unstable, and varies in value and trend for 
different tests. To estimate the peak performance that is possible with each model, we aggregate 
over the top few points in the plots, reporting the average of the top 3 values rather than the very 
best value (Table 2). These results represent peak performances when dimensionality is tailored to 
each model/test pair. The best score among the corpora is highlighted in bold.  

 Wikipedia Twitter Books Web 

Brain 0.81 0.81 0.82 0.82 

Battig 0.89 0.94 0.94 0.96 

R&G 0.78 0.69 0.80 0.66 

WordSim 0.72 0.73 0.73 0.69 

AAMP 0.61 0.54 0.66 0.63 

TOEFL 0.74 0.67 0.89 0.76 

TABLE 2 – Average of the top three scores over a range of dimensions 

Overall, we find the performance of Books to be superior to the other corpora. It scores higher 
than the others in everything but the Battig test on which it is very close to the higher value 
achieved by the Web corpus. The Books model also has a substantial lead in the TOEFL and 
AAMP tests. This may be due to an advantage in capturing the meaning of adjectives, abstract 
nouns and verbs better. We explore the reasons for this performance gap later (Section 4). On the 
other hand, the Twitter model seems to perform very poorly over these two tests. Although the 
performances in the Brain test are very much similar, they exhibit the general performance trend 
observed in the other tests. As noted by Levy and Bullinara (2012) and Murphy et al (2012), the 
Brain test appears to have a performance ceiling, possibly due to noisiness in data. On close 
inspection of the Table, a trend emerges that Books is the best corpus model, followed by Web 
and Wikipedia, followed closely by Twitter.  
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3.3 Effect of Corpus Size  

FIGURE 3 – Performance of corpus models over a range of data sizes 
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The corpus models analysed in the previous sections are on corpora of different sizes. Although it 
helps us establish trends in peak performance, this is not a fair comparison of the corpus types, 
given that there is enormous disparity in their original sizes (Table 1). To be able to compare the 
quality of the semantic models across corpora, we need to build them from corpora of similar 
sizes, at a dimensionality that is favourable to all these corpus types. From Figure 2 we notice that 
the performance for all corpora are stable and close to their peak values at 750 SVD dimensions. 
Although 750 dimensions may not be the most optimal dimensionality for these corpus models at 
different corpus sizes, we keep the dimensionality constant at 750, and vary the data sizes the 
models are learnt from. We under-sample (by random selection) the four different corpora to the 
5-gram sizes of 12.5% Wiki, 25% Wiki, 50% Wiki, 100% Wiki, 100% Twitter, 12.5% Books, 
50% Books and 100% Books. Also, at the sizes 50% Wiki and 100% Wiki we generate Hybrid 
corpora that have equal proportions of the randomly sampled five-grams from Wikipedia, Books, 
Web and Twitter. Figure 3 contains the performance plots of the corpus types across the above-
mentioned data sizes, at 750 SVD dimensions. These new models are built similar to the old ones, 
as described in Section 2.2. 

In many cases, we find an approximately log-linear trend in the performance with the corpus size 
for the behavioral test. We find models at smaller data sizes to be less stable, with more deviations 
from log-linearity. Although averaging scores over multiple randomly drawn samples may give a 
better approximation, it is extremely expensive and does not guarantee any bounds on the 
approximation. Regardless, all the original corpora considered are random samples of text of that 
nature to begin with. For this reason, we believe this approach is satisfactory to draw broad 
conclusions on the effects of corpus size, even if there exist local deviations from linearity. 

In the behavioral tests, we notice that at smaller sizes, the Books and Web models generally have 
a considerable drop in performance. Wiki outperforms the others or achieves competitive scores at 
data sizes within 1.7 billion tokens. We notice that Books still retains its advantage in the TOEFL 
test at all data sizes. A similar advantage is observed to some extent for the Web corpus in the 
Battig test. The performance curves for Wiki are the most stable across all behavioral tests. The 
Brain test, unlike the behavioral tests does not seem to be affected by the sizes above 423 million 
five-grams. The curves stay flat across larger data sizes, with little increase in accuracies. 
Performance of the Hybrid set varies relative to the component corpora from which it is 
assembled. In some cases it is close to peak performance, but in others it underperforms 
considerably. This suggests that there is not beneficial complementarity among the corpora. 

4 Discussion 

4.1 What is the quality-size trade off? 
Although we can see in detail how the corpus models perform in the six tests at different data 
sizes, we are primarily interested in how the corpora compare against each other. To understand 
the general quality of the corpus types, which is some function of the performances in the six tests, 
we compare them by their performances at a particular data size. We assign a rank to every result 
in the plot for a particular test, based on the score. Once this is done for all the tests, we compile 
the average rank for a corpus across all tests scores for a particular corpus size, which serves as a 
summarization of the 6 plots in Figure 3. Figure 4 shows the ranked model plots we obtain over 
different corpus sizes. 
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Corpus quality does have a considerable impact on the model performance. Although we see that 
the more the data, the better the performance, we clearly see that a corpus of high quality at a 
small size can perform better than a corpus of poor quality that is many orders of magnitude 
larger. At all corpus sizes up to 1.7 billion five-grams, Wikipedia is the best choice. The next best 
option in this size range is Books. Performance of Twitter and Web is comparable, although at 
very small sizes, Twitter performs better. The Hybrid corpus does not give us any advantage over 
the models that can be built from the constituent corpora. Above 2 billion five-grams, Books is the 
best choice, followed by Web.  

 

FIGURE 4 – Average rank over corpus size (in five-grams) 

4.2 What is the quality-dimensionality trade off? 
Working with a large number of dimensions can be expensive in certain applications. To 
determine the optimal number of dimensions for the corpora, we plot average corpus ranks across 
SVD dimensionalities (Figure 5) for the models built from the original corpus sizes. The response 
to dimensionality is not considerably different among these corpora. All of them perform better 
with extra dimensions up till a point after which they either fall in performance or flatten out. 
Although, Twitter in particular needs more dimensions than the other corpora to reach a similar 
rank. Also, Wikipedia tends to benefit more from extra dimensions than Web does. 
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FIGURE 5 – Average rank across SVD dimensions 

4.3 How different are the corpus models ? 
To try to explain why we see these differences, we can explore whether the information encoded 
in the semantic models are in fact substantially different. Here we perform a follow-on analysis 
that measures the informational overlap between the corpus-derived models. We use the method 
introduced by Murphy et al (2012) to measure how much a model can explain the information 
contained by another model with the same vocabulary. We use the semantic models of 750 
dimensions learnt from the full sized corpora. Besides analyzing the overlap for the common 
vocabulary among the corpus models, we also perform analyses for selected concrete nouns, 
abstract nouns, adjectives and verbs. From the MRC Psycholinguistic Norms (Coltheart.M, 1981), 
we first select nouns with the top 1000 concreteness score for the concrete-nouns list and those 
with the least 1000 concreteness scores for the abstract nouns list. From the American National 
Corpus (ANC) (Macleod et al. 2002) we include the top 1000 words that are adjectives 80% or 
more of the times into the adjectives list. We include the top 600 ANC words that are verbs 40% 
or more of the times into the verbs list. After calculating the information overlap values, we create 
a cosine similarity based isomap of the corpus-types for the five word groups by reducing the 4 
dimensions of information overlap (with every corpus-type) down to 2 dimensions (Figure 6). In 
these corpus maps, the lesser the distance between two corpora, the more the common-information 
that is present, the more their semantic similarity.  

As a general pattern, we notice that Twitter is the most semantically dissimilar among all corpora. 
This might be explained by its minimal lexical overlap and distinct language use. In the common-
words and abstract-nouns plots, Web is equidistant from the other corpora. This is interesting 
since we assume the general-coverage Web to have a mix of the characteristics of the others. We 
find that the semantic information contained by the corpora for verb vectors has very high 
similarity. i.e. all corpora model verbs in a similar way. There is far lesser information overlap for 
adjectives, with Books and Twitter containing very different information compared to Wiki and 
Web. Books encodes very dissimilar information for abstract nouns as well. This could explain its 
differentiating performance in the TOEFL test.  
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FIGURE 6 – Isomapped Corpora for different word-groups 

4.4 Conclusions and future work 
Given the wide array of corpus choices to build dictionaries based on distributional semantics, and 
their ubiquity, it is important to understand the contribution of corpus size and quality. From our 
experiments, it is evident that corpus choice does matter. Massive quantity is required to match the 
quality advantage. It is clear that Wikipedia is the corpus of choice for the data size in which it is 
available. The next most competitive corpus, Google-Books, must be an order of magnitude larger 
than Wikipedia before it can provide superior performance; and Google-Web must be two order of 
magnitude larger to match Wikipedia. 

We speculate that the impressive performance of Wikipedia can be attributed to the balance in 
topics and cleanliness. While Books, a corpus roughly half the size of Web, is not as carefully 
balanced by topics, it presumably draws its advantage from its cleanliness and superior use of the 
language. On the other hand, the Twitter and Web do not exhibit any of these characteristics. 
Although the tweets have been heavily pre-filtered for our experiments, they probably still suffer 
from the colloquial nature of text, imbalance in topics and high rate of lexical errors. Web text 
also suffers from formatting errors, informal language use and imbalance in topics. These 
characteristics may have hampered their performance. 

The advantage of quality over quantity for modeling word meaning, and the distinguishing 
performance of Wikipedia is a very interesting since the open-source encyclopedia is available in 
many languages at considerable sizes. As a next phase of this research, we plan to perform this 
analysis on similar corpora of other languages to study the generalizability of these results. We 
also plan to study the impact of different model types (directional, part of speech, dependency 
etc.) on corpus-derived model performance. 
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