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ABSTRACT

How abstract  knowledge  is  organised  is  a  key  question  in  cognitive  science,  and  has  clear  
repercussions for the design of artifical lexical resources, but is poorly understood. We present 
fMRI results for an experiment where participants imagined situations associated with abstract 
words, when cued with a visual word stimulus.  We use a multivariate-pattern analysis procedure 
to  demonstrate  that  7  WordNet style  Taxonomic  categories  (e.g.  'Attribute',  'Event',  'Social-
Role'), can be decoded from neural data at a level better than chance.  This demonstrates that 
category  distinctions  in  artificial  lexical  resources  have  some  explanatory  value  for  neural 
organisation.

Secondly,  we tested for  similarity in the interrelationship of the taxonomic categories  in our 
fMRI  data  and  the  associated  interrelations  in  popular  distributed  semantic  models 
(LSA,HAL,COALS).   Although distributed models have been successfully applied to predict 
concrete noun fMRI data (e.g. Mitchell et al., 2008), no evidence of association was found for 
our abstract  concepts.  This suggests  that  development  of  new models/experimental  strategies 
may be necessary to elucidate the organisation of abstract knowledge. 
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1 Introduction

Data about the organization of conceptual  knowledge in the brain coming from patients with 
semantic deficits (e.g. Warrington & Shallice, 1984, Caramazza & Shelton, 1998) or collected  
from healthy patients  using functional  Magnetic  Resonance  Imaging1 (fMRI)  (e.g.  Martin  & 
Chao, 2001) have proven an essential source of evidence for our understanding of conceptual 
representations, particularly when analyzed using machine learning methods (e.g.  Haxby et al  
2001, Mitchell et al., 2008). Most of this work has focused on a fairly narrow range of conceptual 
categories, primarily concrete concepts such as animals, plants, tools, etc., which represent only a 
small percentage of the range of conceptual categories that are part of human knowledge. Until  
recently only a few studies studied the representation in the brain of abstract concepts such as law 

1functional Magnetic Resonance Imaging measures blood flow in the brain, which reflects neural 
cells'  energy  consumption  which  in  turn  is  generally  regarded  to  relate  to  neural  activity.  
Comparative to other popular neuroimaging techniques (e.g. EEG, MEG) fMRI offers relatively 
high spatial resolution (data is measured as a 3D volume built from rectangular cuboids known as 
voxels, of side 1-5 mm, over the entire brain) at relatively low sampling frequency (commonly ≥  
1Hz).
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or freedom (Binder et al, 2005; Friederici et al, 2002; Grossman et al, 2002). Some recent studies 
have shown that fMRI data contain sufficient information to discriminate between concrete and 
abstract concepts (Binder et al, 2005; Wang et al, 2012) but meta-analyses such as (Wang et al, 
2010) also showed that fairly different results are obtained depending on the types of abstract  
concepts  under  study,  and  that  the  range  of  abstract  concepts  considered  tends  to  be  fairly 
narrow. 

This type of analysis is complicated by the fact that the representation and organization of human 
knowledge  about  abstract  conceptual  categories  is  much  less  understood  than  for  concrete 
concepts.  Human  intuitions  about  abstract  concepts  are  not  very  sharp:  e.g.,  studies  asking 
subjects to specify the defining characteristics of  abstract concepts find that this task is much  
harder than for concrete ones (Hampton 1981, McRae & Cree, 2002, Wiemer-Hastings & Xu, 
2005). On the theoretical side, as well, there is not much agreement on abstract concepts among 
psychologists,  (computational) linguists,  philosophers and other  cognitive scientists who have 
proposed theories about the organization of conceptual knowledge. Just about the only point of 
agreement among such proposals is that there is no such thing as an ‘abstract concept’ –human 
conceptual  knowledge  includes  a  great  variety  of   abstract  categories  of  varying  degrees  of 
abstractness ranging from knowledge about  space and time (e.g., day, country) to knowledge 
about actions and events (e.g., solo, robbery) to knowledge about inner states including emotions  
(fear) and cognitive states  (belief), to purely abstract concepts (e.g., art,  jazz, law). It is also  
known that many of these categories have their own distinct representation in memory (Binder & 
Desai, 2009). But there is a lot of disagreement among exactly which categories these different 
types of abstract concepts belong to, e.g.,  which category does the concept law belong to. These 
disagreements are clearly in evidence in the significant differences between the representation of 
such categories in the large-scale repositories of  conceptual knowledge that have been developed 
in the last twenty years, such as WordNet  (Fellbaum, 1998), CYC (Lenat, & Guha, 1990) and 
DOLCE (Gangemi et al, 2002). In WordNet, the top category ‘abstract concept’ covers attributes, 
events and actions, temporal entities, and highly abstract concepts such as law both in the sense 
of ‘collection of all laws’ and in the sense of ‘area of study’, whereas locations are considered 
concrete concepts. In DOLCE, actions and events, attributes, and highly abstract concepts such 
as  propositions are treated as completely unrelated conceptual categories, whereas both temporal 
and spatial locations are included in the quality category. 

It follows that there is joint motivation from cognitive science and computational linguistics to 
extend our understanding of abstract knowledge representation.  The objectives of the present 
work are two fold, (1) to broaden the range of abstract concepts studied using neuroimaging; (2) 
to examine whether artificial knowledge representation strategies can be used to interpret fMRI 
data.

We adopt an fMRI paradigm, where stimuli were presented in the form of words on the screen 
and  participants  were  required  to  imagine  a situation associated  with the word.  We used  as 
stimuli concepts belonging to seven distinct  WordNet style taxonomic categories, ranging from 
concrete  to  more  abstract  (tool,  location,  social  role,  event,  communication,  attribute,  and  a 
category we called urabstract of highly abstract words) and two different domains (music and 
law).  Domain membership is not important to this paper and will be addressed in future work 
(this point is returned to in section 4).  Firstly a Multivariate Pattern Analysis (MVPA) procedure 
was used to test whether single stimulus trials could be classified by their taxonomic class.  On 
demonstrating that classifications can indeed be made at a level better than chance (section 3.1),  
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we further examined whether there are similarities between concept representations in the fMRI 
data and popular distributed semantic models used in computational linguistics (section 3.2).  

Three  semantic  models  were  selected:  Hyperspace  Analogue  to  Language  (HAL)  (Burgess,  
1998), Correlated Occurrence Analogue to Lexical  Semantics (COALS) (Rohde, et  al.,  2005) 
which is a refinement of HAL and Latent Semantic Analysis (LSA) (Landauer et al, 1998).  All 
three  models  express  meaning  in  terms  of  a  multidimensional  statistical  model  of  a  word's  
context.  HAL models meaning as a function of the number of times a word occurs in close  
proximity to a each of a large set of feature words, within a large body of text.  LSA counts the 
occurrences of words in individual documents and subsequently reduces the dimensionality (in 
documents)  through  singular  value  decomposition.   COALS  incorporates  a  number  of 
algorithmic modifications to the HAL, including data reduction by singular value decomposition.  
The important conceptual difference is that LSA attempts to bind words to topic (assumed to be 
derived from the general themes of the documents), whereas HAL and COALS captures meaning 
through word inter-relations.  All models have been applied with success in one way or other to 
interpret  human  cognition  in  a  variety  of  semantic  tasks  and  psychological  experiments, 
including synonym test, word relatedness judgment, semantic priming, semantic categorization,
(Lund & Burgess, 1996; Burgess, 1998; Landauer et al., 1997, 1998; Rohde et al., 2005). Despite  
their  success  in  explaining behavioural  tasks,  by using representational  dissimilarity  analysis  
(section 3.3) we found that none of the models provide a good general match for the structure of 
the abstract fMRI data.

2 Methods

2.1 Participants
Seven right handed native Italian speakers (3 female), aged between 19 and 38, were recruited to 
take  part  in  the  study.  All  had  normal  or  corrected-to-normal  vision.  Participants  received  
compensation of €15 per  hour.  The studies were  conducted under the approval  of the ethics 
committee of the host University, and participants gave informed consent.

2.2 Data Acquisition
fMRI  images  were  recorded  on  a  4T  Bruker  MedSpec  MRI.  An  EPI  pulse  sequence  with 
TR=1000ms, TE=33ms, and 26° flip angle was used.  A 64 * 64 acquisition matrix was used and  
seventeen slices were imaged with a between slice gap of 1mm.  Voxels had dimensions 3mm *  
3mm * 5mm.

2.3 Experimental Paradigm
The names of 70 concepts were presented to participants in the form of written words on the 
screen. The stimuli were displayed using bold Arial-Black size 20 font on a grey background. 
Each stimulus was presented five times, for a total of 350 trials, split in five blocks with the order 
of  presentation  being  randomized  in  each  block.  Participants  had  the  opportunity  to  pause 
between blocks and the overall task time did not exceed 60 minutes.  Each trial began with the  
presentation of a blank screen for 0.5s, followed by the stimulus word of dark grey on a light  
grey background for 3s, and a fixation cross for 6.5s. Participants were asked to keep still during 
the task and during breaks.
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With concrete concepts,  participants are often asked to think actively about  the properties of the 
object named (see, e.g., Mitchell et al, 2008) but eliciting properties is not so easy for abstract 
concepts. On the other hand, participants to studies such as (Hampton, 1981; McRae & Cree, 
2002; Wiemer-Hastings & Xu, 2005) appeared able to produce situation-related  objects.  Our 
participants  were therefore instructed to “think about situations that  exemplify the object  the 
word refers to”. 

The list of concept words were supplied to participants in advance of the experiment, so that they 
could  prepare appropriate situations to simulate consistently.

2.4 Materials
Our objective was  to  obtain  a  list  of  words representative  of  the full  range  of  non-concrete  
concepts.  The  list  of  categories  was  produced  by  associating  WordNet  (Fellbaum,  1998) 
categories to the terms with highest abstractness ranking in an abstractness norm for Italian. We 
identified  the  6  WordNet  categories  that  occurred  most  frequently  in  the  norms.  Finally, 
WordNet  Domains  (Pianta  et  al,  2002) was  used  to  select  70 words  whose  unique  or  most 
preferred sense belonged to these categories.

More in detail, our starting point was the set of behavioural norms by Barca et al (2002) listing  
Italian words ranked by perceived abstractness.   These words were next looked up in the Italian 
WordNet contained in MultiWordNet (Pianta et al, 2002) to determine the taxonomic category of  
their dominant sense(s). The authors edited this list down to a set of six taxonomic categories of  
concepts found in Barca et al’s norms plus a category of concrete concepts, tool, for comparison 
purposes. The six non-concrete categories are: 

Locations, including concepts such as court, jail and theatre. Locations are considered as concrete 
objects  in  WordNet  but  belong  to  the  separate  category  `qualities’  in  DOLCE,  and  could 
therefore be considered concepts in between concrete and abstract.

Four non-concrete categories of arguably increasing levels of abstractness: event, communication 
(covering concepts such as accusation or symphony),   attribute,  and  urabstract (our term for 
concepts such as law or jazz which are fairly common in abstractness norms, are classified as  
abstract  in  WordNet,  but  do not  belong to a  clear  subcategory  of  abstract  such  as  event  or 
attribute)

Finally,  the category  social-role,  containing concepts such as judge or tenor which are fairly 
common in abstractness norms and are typically associated with scenarios but whose status as  
concrete or abstract is not very clear.  The complete word list including English translations of 
the Italian stimuli is in TABLE 1.

2.5 Preprocessing
Preprocessing  was  undertaken  using  the  Statistical  Parametric  Mapping  software  (SPM99, 
Wellcome Department of Cognitive Neurology,  London, UK).  Data were corrected for head 
motion, unwarped (to compensate for geometric distortions in the image interacting with motion) 
and spatially normalised to the MNI template image and resampled at 3mm * 3mm * 6mm.  Only 
voxels estimated to be grey matter were included in the subsequent analysis.  For each participant 
the data, per voxel,  in each session (presentation cycle of 70 words) was corrected for linear  
trend and transformed to z-scores.
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A single volume was computed to represent each stimulus word, by taking the voxel-wise mean  
of  the  four  seconds  of  data  offset  by four  seconds  from the  stimulus  onset  (to  account  for  
hemodynamic response).

tool manette handcuffs violino violin
toga robe tamburo drum
manganello truncheon tromba trumpet
cappio noose metronomo metronome
grimaldello skeleton key radio radio

location tribunale court/tribunal palco stage
carcere prison auditorium auditorium
questura police station discoteca disco
penitenziario penitentiary conservatorio conservatory
patibolo gallows teatro theatre

social-role giudice judge musicista musician
ladro thief cantante singer
imputato defendant compositore composer
testimone witness chitarrista guitarist
avvocato lawyer tenore tenor

event arresto arrest concerto concert
processo trial recital recital
reato crime assolo solo
furto theft festival festival
assoluzione acquittal spettacolo show

communication divieto prohibition canzone song
verdetto verdict pentagramma stave
ordinanza decree ballata ballad
addebito accusation ritornello refrain
ingiunzione injunction sinfonia symphony

attribute giurisdizione jurisdiction sonorita' sonority
cittadinanza citizenship ritmo rhythm
impunita' impunity melodia melody
legalita' legality tonalita' tonality
illegalita' illegality intonazione pitch

urabstracts giustizia justice musica music
liberta' liberty blues blues
legge law jazz jazz
corruzione corruption canto singing
refurtiva loot punk punk

TABLE 1. Italian stimuli words and English translations, Taxonomic category is indicated in the 
left column.  Taxonomic categories are ordered in terms of increasing abstractness.

2.6 Cross validation analysis procedure
Broadly the same cross-validation procedure was followed for each analyses.  Input and target  
data pairs were partitioned into training and testing sets (using a leave-n-out approach) to support  
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a number of cross validation iterations.  Target patterns were binary vectors with a single field set 
to one to uniquely specify the category.  Input was a masked version of the fMRI grey-matter 
data,  retaining  the  1000  most  stable  voxels  in  the  training  set  according  to  the  following 
procedure, similar to that used by Mitchell et al. (2008).  For each voxel, the set of 70 words 
from each unique pair of scanning sessions in the training set were correlated, and the mean of 
the six resulting correlations (from 4 scanning sets) was taken as the measure of stability.  The 
1000 voxels with highest mean correlations were selected for analysis.

Pattern  classification  used  a  single  layer  neural  network  with  logistic  activation  functions 
(MATLAB 2009B, Mathworks, Neural Network toolbox).  Weights and biases were initialized 
using the Nguyen-Widrow algorithm and training used conjugate gradient decent, continued until 
convergence,  with  performance  evaluated  using  mean  square  error,  with  a  goal  of  10 -4 or 
completion of 2000 training epochs.  In each cross-validation iteration the network was trained 
using the masked fMRI data and binary target codes in the training set and subsequently tested on 
the previously unseen masked fMRI data.  The Euclidean distance between the network output 
vectors and target codes was computed, and the target code with the minimum distance selected 
as the network output.

3 Results

Leave-out-session cross validation analyses were undertaken for each participant to recognize 
taxonomic distinctions from the fMRI data.  There were 5 scanning sessions, therefore training in 
each of the five cross-validation iterations was on 280 words (4 replicates of each of the 70 
stimulus words) and testing was on the remaining 70 words.  Figure 1 shows a confusion matrix  
averaging results across all 7 participants (and cross-validation iterations within participant).  

3.1 Can taxonomic distinctions be recognized within participant?
Mean classification accuracy for the 7-way taxonomic distinctions was ~0.3 with chance level at 
0.143.  Accuracy is greatest for location, tool and attributes and there is a visible diagonal in  
Figure  1,  suggesting  all  classes  can  be  discriminated.   This  claim  is  however  statistically  
unsubstantiated,  and  indeed  until  recently  the  question  of  how  to  rigorously  interpret  the 
classification performance of multiway classifiers had not been directly addressed.   Binomial 
tests are often applied to test whether a classifier is predicting randomly, however in the multi-
class  case  this  leaves  many questions  unanswered.   For  instance,  here  there  were  730/2450 
correct classifications, and the probability of achieving this by chance is p=2.2*10 -16 (2-tailed 
Binomial test), however this does not answer whether the classifier capable of distinguishing 
between all test categories, or just between subsets of categories.  Motivated by these concerns, 
and drawing from the statistical literature of contingency tables, Olivetti et al (2012) developed a 
test exploiting Bayesian hypothesis testing to evaluate the posterior probability of each possible 
partitioning of distinguishable subsets of test classes.  For example taking three classes, possible 
distinguishable test class partitions are [1][2][3]; [1,2][3]; [1,3][2]; [1][2,3]; [1,2,3], and each of 
these would be assigned a posterior probability, where as a general rule of thumb a probability in 
excess of 1/K, where K is the number of hypotheses, (i.e., 5 in the 3 class example) would be 
seen as informative evidence. (Olivetti pers. comm.)
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FIGURE 1. Leave-out-one-session Taxonomic category classification confusion matrix. Rows 
are the target labels and columns are predictions.  Numbers overlaid on each cell indicate the 
proportion of predictions per law and music respectively (as indicated on the right y-axis) for that 
row, averaging over 7 participants.  The numbers on the bottom line of each cell are the mean 
and standard deviation of predictions.  Cell shading is scaled to the range 0 to 0.41 (0.41 is the 
maximum mean accuracy per cell displayed).  

Applying Olivetti et al.s’ (2012) test to the taxonomic confusion matrix in Figure 1 and sorting  
all subset partitions in descending order of posterior probability, finds the top ranking partition 
(posterior probability=0.93) to be that all test classes are discriminable.  The highest ranked three 
partitions are below (posterior probabilities rapidly diminish in the remaining 874 partitions that 
are not displayed).  

[1=tool][2=location][3=social-role][4=event][5=communication][6=attribute][7=urabstracts]

Partition: [[1][2][3][4][5][6][7]], postP: 0.93

Partition: [[1][2][3][4  5][6][7]], postP: 0.04

Partition: [[1][2][3][4  7][5][6]], postP: 0.02
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Tool, Location and Attribute are most clearly distinguished, whereas  prediction of taxonomic 
category  is  weakest  for  categories  toward  the  middle  of  the  concreteness  scale  (Event  and 
Communication) and in the second partition of Olivetti et al.s’ (2012) analysis these categories 
aggregate (although the posterior probability for this partition at 0.04 is much lower than the  
first).  

3.2 Representational dissimilarity analysis between fMRI data and distributed 
semantic models

Representational dissimilarity analyses (Kriegeskorte, 2008) between the fMRI data and the three 
distributed semantic models (LSA, HAL, COALS) identified in the introduction were run to test 
for association in inter-representations of taxonomic classes between modalities. Each semantic 
model was built using the corpus itWaC. This corpus is from WaCky, a collection of very large 
(>1 billion words) corpora built by web crawling, and annotated with Part-of-Speech tagging and 
lemmatisation.  itWaC is the largest publicly documented Italian language resource (Baroni et al., 
2008).  

Representational dissimilarity analysis  was as follows.  For each participant, all fMRI 
representations within each of the seven taxonomic categories were voxel-wise averaged.  Then 
the pairwise difference between each unique taxonomic category pairing was computed (n=21) 
using 1-rho as a distance metric, where rho is Spearman's rank correlation coefficient.  Likewise, 
for LSA, HAL and COALS, semantic representations of all word models within each taxonomic 
category were averaged, and pairwise differences between all unique category pairs taken.  The 
list of respective category pair differences for imaging data and each of the semantic models 
were correlated using Spearman's rank correlation to give a correlation coefficient for each. 
Following this the 7 per participant lists of 21 category pair differences were collapsed (by 
averaging) and the resulting list of average differences correlated with the 3 semantic models. 
Significance was tested using a permutation test as follows.  The seven taxonomic condition 
labels were shuffled in every possible way to construct a null distribution that the two 
dissimilarity lists are not correlated.  The p-value is calculated as the proportion of random 
correlation coefficients that are greater than or equal to the observed coefficient.  Results are in 
Table 2.  

Although there are two participants who show signs of a correlation with the HAL, HAL/COALS 
models, it is clear that this is not a general pattern across participants.  Correlations range from 
positive to negative, and if p-values are corrected for multiple comparisons using Bonferroni 
correction (where the conventional significance threshold becomes p=0.05/21), results that 
individually are significant disappear.  There is additionally no correlation between the fMRI 
dissimilarity matrices averaged over participants and the three semantic models.

4 Discussion

We have collected evidence that fMRI recordings contain sufficient information to discriminate 
between all Taxonomic categories that we tested.  In other words, the distinctions between types 
of non-concrete concepts proposed in state-of-the-art models of conceptual knowledge such as 
WordNet are supported to a certain extent by brain data. 
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TABLE 2. Representational dissimilarity analysis between neural data and semantic models.

Whereas a number of studies have demonstrated a connection between distributional semantic 
models and neuroimaging data for concrete concepts (e.g. Mitchell et al, 2008; Murphy et al. 
2009; Murphy et al., 2011; Chang et al., 2011), representational similarity analysis failed to find 
a systematic association between the inter-relationship of categories in the fMRI data and the  
inter-relationship of categories in distributional semantic models.  There could be a number of 
reasons for this.  Firstly, it may be that the neural organisation of abstract knowledge is in fact  
entirely different to the distributed semantic representations in common usage.  Given that the 
semantic models show some explanatory power for human behavioural data, it would be unwise 
to discount them too quickly.   Alternatively it could be that the experimental/fMRI protocol used 
is unfit for the challenge.  As concerns the experimental protocol, abstract concepts generally 
speaking are  more  difficult  to  imagine  than concrete  objects,  and the  richness  of  the neural 
representations  invoked  in  our  experiment  may  consequently  be  comparatively  weak. 
Additionally we have no guarantee that   participants  were compliant  with the task (the only 
gauge on this being the ability to detect systematic patterns in a participants data).  It  will be 
valuable  to  consider  modifying  the  task and  if/where  possible,  to  develop  tasks  that  require 
mental manipulation of the concept in a more realistic context, where the performance of the 
participant can be evaluated.  As concerns fMRI, it  is possible that abstract concepts may be 
represented on a smaller spatial scale than concrete concepts, especially if they are not grounded  
in sensorimotor mechanisms and associated neural maps (as frequently thought to be the case for 
concrete concepts).  Thus our whole brain analysis using large voxels may overlook pertinent  
features.  However given the success of taxonomic category classification with the current fMRI 
setup, it should not be dismissed to quickly either.

This  paper  has  thus  far  not  directly  addressed  an  important  competing  theory  of  concept 
organisation.  Gentner (1981), Hampton (1981), and others found that unlike concrete concepts, 
abstract  concepts  are mostly characterized in terms of relations to other  entities present  in a  

Participant HAL COALS LSA
19730713 rho 0.3571 0.1416 -0.1649

P-value 0.0206 0.2061 0.7502
19820508 rho 0.0662 -0.0896 0.0156

P-value 0.346 0.6987 0.4465
19830625 rho 0.5455 0.5312 -0.1091

P-value 0.0347 0.0407 0.6909
19850913 rho 0.0364 -0.1169 0.2169

P-value 0.4083 0.7744 0.17
19861211 rho -0.2494 -0.2649 -0.1805

P-value 0.9288 0.9683 0.7756
19891011 rho -0.2338 -0.0805 -0.039

P-value 0.8931 0.6568 0.5299
19920102 rho 0.1273 0.1051 0.0156

P-value 0.2581 0.2767 0.4469
Collapsed dissimilarity rho 0.2455 0.1481 -0.013
matrix correlation P-value 0.1351 0.2437 0.5281
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situation. Wiemer-Hastings & Xu (2005) provided further support for this finding and proposed 
that abstract concepts are “anchored in situations” (Wiemer-Hastings & Xu 2005, p. 731); in a 
similar fashion, Barsalou (1999) argued  that the representation of abstract concepts is ‘framed by 
abstract  event  sequences’.   This  suggests  a  scenario-based organization for  non-concrete 
concepts. In this type of organization, non-concrete concepts are defined in terms of their role 
with respect to a scenario: e.g., law is defined with respect to the court scenario, whereas jazz is 
defined with relation to a music scenario.  In fact our experimental data set was carefully selected 
to allow us to begin to target this question (50% of our words are associated with Law and 50% 
with  Music).   Our  preliminary  analyses  suggest  that  law  and  music  scenarios  can  also  be 
successfully decoded from the neural data.  Complete results will be presented in future work.

Conclusion
Conclusions are:   (1)  WordNet style  taxonomic categories  for  abstract  concepts,  are at  least 
cognitively  relevant  in  that  they  can  be  distinguished  from neural  data;   (2)  In  contrast  to 
previous findings for concrete concepts, we were unable to detect a relationship between inter-
representation of abstract concept categories in fMRI data and inter-representations in popular 
distributed semantic models.  

The question of how abstract knowledge organised remains murky, however given the taxonomic 
classification success we are optimistic that advances are  possible with current technology and 
methods.
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