
Proceedings of the Second Workshop on Advances in Text Input Methods (WTIM 2), pages 107–114,
COLING 2012, Mumbai, December 2012.

Invited Talk: 

Quillpad Multilingual Predictive Transliteration System 

Ram Prakash H 

Tachyon Technologies P Ltd, Bangalore, India 

ramprakash@tachyon.in 

ABSTRACT 

Transliteration has been one of the common methods for multilingual text input. Many earlier 

methods employed transliteration schemes for defining one to one mapping of input character 

combinations to output character combinations. Though such well defined mappings made it 

easier to write a transliteration program, the end user was burdened with learning the mappings. 

Further, though transliteration schemes try to map the character combinations phonetically, it is 

unavoidable to introduce non intuitive combinations into the scheme. An alternative is to use 

predictive transliteration, where user can input a word, by intuitively combining the input 

alphabet phonetically and the predictive transliteration system correctly converts it to the target 

language. This paper presents the challenges that must be addressed to build such a system, and 

describes how Quillpad can be trained for performing predictive transliteration between any two 

scripts.  

 

KEYWORDS : transliteration, predictive text input, multilingual text input, Quillpad, decision trees 

1 Introduction 

Predictive transliteration has proven to be an effective method for text input of Indian languages. 

This paper discusses general challenges involved in building a practical predictive transliteration 

system. Further, it describes the key aspects of Quillpad multilingual transliteration system that 

pioneered such an input method for Indian languages. Though the techniques employed in 

developing Quillpad system are illustrated in the context of English to Hindi transliteration, the 

system is generic and can be directly applied to train a system for transliterating between any two 

alphabet-based languages. Quillpad itself has been successfully trained for phonetic 

transliteration between Roman input and 16 Indian languages (including Urdu) and Arabic.      

The content of this paper will be organised as follows. Section 2 will talk about specific 

challenges to be addressed by a phonetic transliteration system. Section 3 will discuss the 

Quillpad system and describe the approaches behind its key modules. Section 4 will briefly 

discuss some of the issues that have not been addressed by current Quillpad system and can 

provide some topics for future work. 

This document assumes the input language as Roman alphabet and output language as Hindi. 

Other language examples are used wherever it is appropriate to highlight challenges that may be 

specific to those languages.  

107



2 Predictive Transliteration Challenges 

Predictive transliteration systems should allow users to type in phonetically, by intuitively 

composing letters from an input alphabet. For the sake of illustration, consider transliterating 

from Roman alphabet to Hindi. This is an important use case as almost all computers shipped in 

India come with a Roman keyboard. Predictive transliteration enables users to type in their own 

language. The following sections highlight the challenges involved in building an effective 

transliteration solution.    

2.1 Phonetic Mapping Ambiguities 

Rigid transliteration schemes use upper case and lower case letters to represent similar but 

different sounds, which generally makes the typing interface cumbersome for the end users.  For 

better usability, the input should be assumed case insensitive. Given this design decision, there 

are 26 letters in Roman alphabet and 50+ different letters in Hindi. This naturally leads to 

ambiguous mappings. For example, letter ‘d’ will be used to represent both ‘द’ (this) , ‘ड‘(did) 

and ‘ड़’. Another example is the letter ‘n’. ‘n’ can be used by the user to write ‘ञ’ , ‘ण’ (used in 

Marathi), ‘न ’(not) and nasal markers like ‘ं ’ (bindu) and ‘ं ’ (chandrabindu). Phonetic 
transliteration system should correctly convert the input character to the corresponding Hindi 

character depending on the word that is being written. Other cases include different Roman 

letters mapping to a same Hindi character, cluster of Roman characters mapping to a single Hindi 

character etc.  

 

2.2 Loosely Phonetic Nature 

 Though Indian languages are generally phonetic, there are cases where one cannot assume strict 

phonetic nature. This problem is more evident in Hindi. For example, the word ‘बचपन’ is 

pronounced as ‘bachpan’(IPA: ‘bǝtʃpǝn’) and not as ‘bachapana’ which would be the 

pronunciation if the language were to be strictly phonetic. In Hindi, the final consonant is 

pronounced without the inherent schwa, though the consonant is written with the implicit vowel 

sound ‘ǝ’. South Indian languages like Kannada, Tamil, Telugu do not follow this rule. Though 

the rule for handling the final consonant is easy to specify, the challenge is in handling the case 

where vowel sound ‘ǝ’ is skipped in the middle of the word. In the above example, though the 

word is written as ‘ba cha pa na’ in Hindi, user would type the word as ‘bachpan’, as per the 

pronunciation of the word. In general, when two consonants come together, they should be 

combined into a conjunct ligature. However, in this case though ‘ch’ and ‘p’ are adjacent without 

any explicit vowel in the input, they should not be combined to form the conjunct ‘च्प’. If the 

Roman input, ‘bachpan’, is interpreted to be strictly phonetic, the output should have been 

‘बच्पन’ which is not what the user intends to write. This condition can’t be defined as the 

application of this rule is fairly complex and can appear at multiple locations in a given word. 

Other extreme cases of this loose phonetic nature can be observed in Arabic and Urdu, where in 

the output language the vowel sounds are optional in many cases. However, the vowels are 

explicitly written in the input word as the pronunciation of the word would have the vowel 

sounds. 

        

108



2.3 Multiple Input Variants 

As a result of issues discussed in 2.1 and 2.2, and other scenarios discussed below, different users 

can type a given word with multiple variants of input spellings. This problem is compounded by 

local conventions for writing certain letters or syllables, influence of the native language of the 

input alphabet and the pronunciation differences due to user’s own native tongue influence. Some 

of these issues are briefly discussed here. 

2.3.1 Phonetic Variants 

These are generally due to the issues discussed in 2.1 and 2.2. For illustration, consider a 

Hindi word राष्ट्रपति (IPA: rɑ:ʃtrpǝt ɪ). Users can write any of the following Roman inputs for 

writing this word. ‘rashtrapati’, ‘rashtrapathi’, ‘raashtrapathy’, ‘raashtrpati’ etc. All these inputs 

should yield the correct Hindi word राष्ट्रपति.   

2.3.2 Native Language Influence 

The native language of the user plays a significant role in determining the phonetic spelling they 

come up with for writing a word in their language. For example, a Tamil speaking user wanting 

to write in Tamil is likely to type the input as ‘pirakash’ for writing ‘பிரகாஷ்’ (IPA: prǝkɑ:ʃ). 

Most other users would type ‘prakash’ as input. This is because of how the conjuncts are written 

in native Tamil words. There are many such local language influences that an effective 

transliteration system should allow to be incorporated into.    

2.3.3 Foreign Language Influence 

Users fluent in English may use some spelling conventions that are common in native English 

words. Such combinations are not phonetic, but many of those combinations are commonly used. 

For example the Hindi word हम(IPA: hǝm). Though the phonetic input for this word is ‘ham’, 

uses familiar with English might type in ‘hum’ as input. However, if ‘hum’ is interpreted 

phonetically, it would result in ‘हूम’, which is not the intended output. This is a simple example, 

but there are many more cases where native English spellings can influence user’s input. 

2.3.4 Conventional Spellings 

There are local conventions for representing certain sounds in regional languages. These 

conventions have been traditionally set in because of multiple reasons. One, when the local 

language character does not have any character in English that closely represents its sound. For 

example ‘zh’ in Tamil and Malayalam is used to represent sounds that are actually not 

pronounced as ‘z’(IPA).  Two, historically certain names are written with spellings that do not 

faithfully represent its phonetic form in the Indian languages. Consider the name ‘Krishnaiah’, 

which is actually represented as ‘Krishnayya’ in Indian languages.  One can find many such 

examples. 

 

109



2.4 Multiple Output Words 

While previous sections discussed about the variants in inputs, it is also possible for a given input 

word to have multiple valid outputs. Transliteration system should be able to suggest all those 

possibilities. 

2.5 Transliteration of Foreign Words 

It is quite common for the users to type native English words in the middle of their Hindi 

sentences.  As the input alphabet they use is same as the alphabet used for English language, they 

would naturally enter native English spelling for the word. Most of these spellings firstly, are not 

phonetic, secondly, do not really represent any native Hindi words. A good transliteration system 

should allow the users to type native English spellings, and if detected as an English word, 

should convert it into regional language using English pronunciation of the word. This feature 

significantly improves user experience as it contributes to fluency in writing in local languages. 

However, it should be kept in mind that native English pronunciations when represented in 

Indian language scripts, do not capture the local pronunciation of those words. So, it is important 

for the transliteration system to convert the native English words into a pronunciation that is 

acceptable locally, and further use the language specific conventions for representing native 

English phones. 

  

3 Quillpad System Description 

Quillpad transliteration system effectively addresses most of the above mentioned challenges. 

The solution has been live on www.quillpad.in since 2006. This section briefly discusses the 

overall approach behind the Quillpad system.  

3.1 Overview of the Approach 

Quillpad has been designed by modelling the core transliteration task as a multi-class 

classification problem. It can be trained to transliterate between any two alphabet-based 

languages. The rough mappings between the alphabet code points of input and output languages 

is definable using a simple language definition file. Once that is done, rest of the pipeline is 

automatic. The learning and prediction modules do not assume anything specific to the language 

pair and almost all the language specific issues mentioned above are completely definable in the 

external language definition file. Once the definition file is ready, which normally takes  8-10 

hours to perfect, the predictive transliteration rules are learned given just the target language 

corpus, without requiring any sort of parallel transliteration corpus. The prediction itself is just a 

decision tree traversal for each of the input characters and the words are combined and ordered 

using a language model. Brief descriptions of these steps are given below. 

3.2 Alphabet Mapping Definition 

Language definition file that defines the mapping between input and output alphabet character is 

a simple, regular expression based set of rules to specify what English characters users are likely 

to use for a given Hindi character. By allowing regular expression models, these options can be 

110



controlled and many language specific conventions and transliteration rules can be easily 

captured. The rules themselves are defined per target character, independent of any word the 

character would appear in. Thus, defining them does not require deep linguistic expertise and the 

mappings can be one to many, many to one, and many to many. It must be noted that language 

definition does not define any rule for actually determining which output character a given input 

character would be converted to. These are defined per character, and theoretically can be just a 

dump of all possible input alphabet combinations that a user may enter to type the given 

character. However, doing so increases the artificial training data exponentially. This point will 

be further clarified in the next section. Modelling the possible input characters for a given Hindi 

character, in a context-specific manner, will give the model expressive power to incorporate 

language specific nuances.  

3.3 Training Data Generation 

One of the important aspects of Quillpad transliteration system is that it doesn’t require a 

manually prepared transliteration parallel corpus. The alphabet mapping rules are used to 

generate several possible ways in which the user may type a Hindi word from the corpus. For 

each Hindi character, the language definition file defines possible English characters the user 

may use to type it. Such candidates for each Hindi character are combined together to produce 

multiple possible inputs for a given word. The context specific rules in the language definition 

model allows one to define rules that would select different candidate English character 

combinations for a given Hindi character depending on, say, whether that character appears at the 

beginning of the word, middle of the word, is followed by a particular consonant etc. This 

controls both the quality and the number of options generated for each corpus word. This 

significantly determines the quality. Using the English input options generated for every corpus 

word, one to one correspondence parallel training data is generated.  

3.4 Training 

Once the training data is generated, a different classifier is trained for each English character. 

Quillpad uses a decision tree based learning algorithm. The features can be as simple as checking 

if at a given relative position there is a particular English character. However, it significantly 

improves the generalisation accuracy of the system if higher level and richer features are used. 

Some of the higher level features like, if the previous character is a ‘consonant’, or ‘nasal’ will 

prevent the decision tree from splitting on every character as it can be split by checking a 

condition on a class of characters. For every Hindi character, arbitrary number of these special 

labels can be assigned in the language definition file. The learning algorithm automatically makes 

use of those labels to generate these higher level features. Another important aspect for designing 

the features is to make it invariant to the exact position of the feature in the input string. Quillpad 

learning algorithm generates such position invariant features, which are independent of any 

language. 

The actual training for a corpus with 5,00,000 unique Hindi words takes about 30-40 minutes. 

Once the training is complete, it can be used for prediction.  

111



3.5 Prediction 

Prediction module takes the decision tree model for each of the input alphabet characters and 

applies them on every input character independently. The resulting class assignments for each of 

these characters are combined together to form candidate output words.  

3.6 Pre-Processing 

Some of the simple issues mentioned in section 2 can be easily handled by pre-processing the 

input string before passing the input to the prediction engine. Quillpad system makes provision 

for language specific pre-processing rules. Though this can be addressed by defining appropriate 

rules in the language definition file, in practice it is more efficient to deal with some of these 

cases at a pre-processing level.  

3.7 Post-Processing 

The generation of candidate words as described in 3.5 is restricted by using beam search. Beam 

search uses the log probabilities returned by the decision trees for determining the words to be 

trimmed off the list. By incorporating word frequency score during training, the decision tree also 

serves as a character level language model. This ensures that log probabilities from the trees can 

be used reliably in the beam search. The candidate lists are further ordered by using a word level 

language model to present multiple possible output options to the user. 

3.8 Dealing with Foreign Words 

Quillpad effectively deals with the challenge in handling native English words in the middle of 

Hindi text. A simple dictionary lookup is used to check if a given word is a valid English word. 

However, if the given input is also a valid representation of any word in the corpus, it is not 

considered as a foreign word. Since the phonetics of English and Indian languages are different, 

such a simple method works very well. Once the input is determined as an English word, a 

different prediction model, similar to the one used for Hindi prediction, is used to convert the 

input into its Hindi representation. A different set of decision trees are used for this purpose as 

mixing native English pronunciation rules significantly differ from those of Hindi prediction. 

Training them as separate models helps improve both prediction and generalisation accuracy.  

4 Conclusion & Future Scope 

Quillpad, multi-lingual predictive transliteration system that is described in this paper, is a 

generic system that can be trained to predictively transliterate between any two alphabet-based 

languages. Any new language can be supported within a matter of days. The addition of a new 

language involves defining the basic mappings between the input and the output language, which 

in theory can be as simple as specifying all the possible ways of representing an output character 

in input alphabet. However, context specific modelling is supported to have more control on 

incorporating language specific knowledge. The key idea here is to use thus defined simple 

language model to generate transliteration parallel corpus for training the prediction module. An 

AJAX based, rich text editor using the Quillpad technology is available for free use on 

www.quillpad.in .  

112



Quillpad is the leading solution for Indian language input method online. However, there are a 

few open issues that are not handled at present by the Quillpad system. Though the current 

system is very good for most practical scenarios, it does not predict colloquial language well. 

Since Indian languages are generally phonetic, multiple different dialects and phonetically similar 

versions of a given word are accepted in written form. This, while rules out dictionary based 

approaches (See the blog entry for details: http://blog.tachyon.in/2012/03/02/does-quillpad-use-

dictionary-for-prediction/ ), also poses another challenge. Most of the available corpus does not 

contain the colloquial word forms. Thus, for such words the transliteration would depend only on 

the generalisation performance of the system. Since a model is not learned on such patterns, the 

prediction quality is affected. However, it is possible to design a better learning algorithm that 

can learn to predict the colloquial forms effectively as colloquial forms themselves are some 

variants of the dictionary form of the word. And the transformation seems to depend mostly on 

the constraints introduced by our speech production or psycho-acoustic factors. It would be an 

interesting research topic, though we haven’t felt the commercial need for it yet.  

Another problem that is not effectively addressed in current Quillpad system is that of 

transliteration of English words inflected with Indian language suffixes. In South Indian 

languages, it is quite common to use English words attached with Indian language suffixes. 

However, the current way of handing Indian language prediction and English word prediction 

separately, is not the right approach for addressing this issue. A better approach is needed. 

Finally, multiple words in Indian languages can be compounded into one word. This scenario is 

more common with South Indian languages. At the location where two words are joined, the 

consonants and vowels get replaced or skipped. These changes the local features used for 

predicting the class of certain characters. This might lead to error in predicted classes for those 

characters.    

 

113




