
Proceedings of the Joint Conference on EMNLP and CoNLL: Shared Task, pages 49–55,
Jeju Island, Korea, July 13, 2012. c©2012 Association for Computational Linguistics

Data-driven Multilingual Coreference Resolution using Resolver Stacking

Anders Björkelund and Richárd Farkas
Institute for Natural Language Processing

University of Stuttgart
{anders,farkas}@ims.uni-stuttgart.de

Abstract

This paper describes our contribution to the
CoNLL 2012 Shared Task.1 We present a
novel decoding algorithm for coreference res-
olution which is combined with a standard
pair-wise coreference resolver in a stacking
approach. The stacked decoders are evaluated
on the three languages of the Shared Task. We
obtain an official overall score of 58.25 which
is the second highest in the Shared Task.

1 Introduction

In this paper we present our contribution to the
CoNLL 2012 Shared Task (Pradhan et al., 2012).
We follow the standard architecture where mentions
are extracted in the first step, then they are clustered
using a pair-wise classifier (see e.g., (Ng, 2010)).
For English, the set of extracted mentions is filtered
by removing non-referential occurrences of certain
pronouns. Our coreference resolver at its core re-
lies on a pair-wise classifier. To overcome the prob-
lems associated with the isolated pair-wise deci-
sions, we devised a novel decoding algorithm which
compares a mention to partially built clusters. For
our Shared Task contribution we combined this al-
gorithm with conventional pair-wise decoding algo-
rithms in a stacking approach.

In the Shared Task evaluation, our system re-
ceived an overall official score of 58.25, which is
the second highest among the sixteen participants.2

1The system is available for download on http://www.
ims.uni-stuttgart.de/˜anders/

2The overall score is the average of MUC, B3, and CEAFE,
averaged over all three languages

2 Mention Extraction

Since all mentions are not annotated in Shared Task
data, but only mentions that take part in coreference
chains, training a general-purpose anaphoricity clas-
sifier is non-trivial. We thus implemented a high-
recall, low-precision mention extraction module that
allows the coreference resolver to see most of the
possible mentions, but has to learn to sort out the
non-referential mentions.

The mention extraction module relies mainly on
the syntactic parse tree, but also on named entities
(which were only provided for English in the pre-
dicted versions of the Shared Task data).

Since the part-of-speech tags vary a bit across the
languages, so do our extraction rules: For Arabic,
we extract all NP’s, and all terminals with part-of-
speech tags PRP and PRP$; for Chinese, we extract
all NP’s, and all terminals with part-of-speech tags
PN and NR; for English, we extract all NP’s, all ter-
minals with part-of-speech tags PRP and PRP$, and
all named entities.

Early experiments indicated that the English
coreference resolver frequently makes mistakes re-
lated to non-referential instances of the pronouns it
(often referred to as expletive or pleonastic in the lit-
erature), we, and you (generic mentions, which are
not annotated according to the OntoNotes annota-
tion guidelines). To address this issue, we developed
a referential/non-referential mention classifier in
order to identify these mentions. The classifier acts
as a filter after the mention extraction module and
removes clear cases of non-referential mentions.

Our basic assumption was that when these pro-

49

th = 0.5 th = 0.95

Precision Recall F1 Precision Recall F1 # occurrences
it 75.41 61.92 68 86.78 38.65 53.48 10,307
we 65.93 41.61 51.02 75.41 24.20 36.64 5,323
you 79.10 74.26 76.60 88.36 51.59 65.15 11,297
Average 75.73 63.05 68.81 86.17 41.04 55.60 26,927

Table 1: Performance of the non-referential classifier used for English. Precision, recall, and F-measure are broken
down by pronoun (top three rows), and the micro-average over all three (bottom row). The left side uses a probability
threshold of 0.5, and the right one a threshold of 0.95. The last column denotes the number of occurrences of the
corresponding token. All numbers are computed on the development set.

nouns do not participate in any coreference chain,
they are examples of non-referential mentions.
Based on this assumption, we extracted referential
and non-referential examples from the training set
and trained binary MaxEnt classifiers using the Mal-
let toolkit (McCallum, 2002).

Since the mentions filtered by these classifiers
are permanently removed, they are never presented
as potential mentions to the coreference resolver.
Hence, we aim for a classifier that yields few false
positives (i.e., mentions classified as non-referential
although they were not). False negatives, on the
other hand, may be passed on to the resolver, which,
ideally, does not assign them to a cluster. The pre-
cision/recall tradeoff can easily be controlled by ad-
justing the threshold of the posterior probability of
these classifiers, requiring a very high probability
that a mention is non-referential. Preliminary ex-
periments indicated that a threshold of 0.95 worked
best when the coreference resolver was trained and
evaluated on these filtered mentions.

We also found that the target pronouns should be
handled separately, i.e., instead of training one sin-
gle classifier we trained independent classifiers for
each of the target pronouns. The individual per-
formance of the classifiers, as well as the micro-
average over all three pronouns are shown in Ta-
ble 1, both using the default probability threshold
of 0.5, and the higher 0.95. In the final, fine-tuned
English coreference system, we found that the use
of the classifiers with the higher threshold improved
in all coreference metrics, and gave an increase of
about 0.5 in the official CoNLL score.

The feature set used by the classifiers describes
the (in-sentence) context of the pronoun. It consists
of the uni-, bi-, and trigrams of word forms and POS
tags in a window of ±5; the position inside the sen-

tence; the preceding and following verb and adjec-
tive; the distance to the following named entity; the
genre of the document; and whether the mention is
between quotes. For English, we additionally ex-
tended this general feature set by re-implementing
the features of Boyd et al. (2005).

We investigated similar classifiers for Arabic and
Chinese as well. We selected targets based on the
frequency statistics of tokens being referential and
non-referential on the training set and used the gen-
eral feature set described above. However, these
classifiers did not contribute to the more complex
coreference system, hence the non-referential clas-
sifiers are included only in the English system.

3 Training Instance generation

To generate training instances for the pair-wise clas-
sifier, we employed the approach described by Soon
et al. (2001). In this approach, for every extracted
anaphoric mention mj , we create a positive train-
ing instance with its closest preceding antecedent
mi: P = {(mi, mj)}. Negative examples are con-
structed by considering all the pairs of mj and the
(non-coreferent) mentions mk between mi and mj :
N = {(mk, mj)|i < k < j}. We extract the train-
ing examples on the version of the training set that
uses predicted information, and restrict the mentions
considered to the ones extracted by our mention ex-
traction module. Using these training examples, we
train a linear logistic regression classifier using the
LIBLINEAR package (Fan et al., 2008).

To create training examples for the English clas-
sifier, which uses the non-referential classifier for
pronouns, we made a 10-fold cross-annotation on
the training set with this classifier. I.e., the docu-
ments were partitioned into 10 sets D1, D2, ..., D10,
and when extracting training examples for docu-

50

ments in Dp, the non-referential classifier trained on
Dt

p =
⋃
i 6=p

Di was applied.

4 Decoding

We implemented several decoding algorithms for
our resolver. The two most common decoding al-
gorithms often found in literature are the so-called
BestFirst (henceforth BF) and ClosestFirst (CF) al-
gorithms (Ng, 2010). Both work in a similar man-
ner and consider mentions linearly ordered as they
occur in the document. They proceed left-to-right
and for every mention mj , they consider all pairs
(mi, mj), where mi precedes mj , and queries the
classifier whether they are coreferent or not. The
main difference between the two algorithms is that
the CF algorithm selects the closest preceding men-
tion deemed coreferent with mj by the classifier,
while the BF algorithm selects the most probable
preceding mention. Most probable is determined
by some sort of confidence measure of how likely
two mentions are to corefer according to the classi-
fier. For both algorithms, the threshold can also be
tuned separately, e.g., requiring a probability larger
than a certain threshold thcoref in order to establish
a link between two mentions. Since the logistic clas-
sifiers we use directly model a probability distribu-
tion, we simply use the posterior probability of the
coref class as our confidence score.

Following Björkelund and Nugues (2011) we also
implemented a decoder that works differently de-
pending on whether mj is a pronoun or not. Specifi-
cally, for pronouns, the CF algorithm is used, other-
wise the BF algorithm is used. In the remainder, we
shall refer to this decoder as PronounsClosestFirst,
or simply PCF.

4.1 Disallowing transitive nesting

A specific kind of mistake we frequently saw in our
output is that two clearly disreferent nested mentions
are put in the same cluster. Although nestedness
can be used as a feature for the classifier, and this
appeared to improve performance, two nested men-
tions can still be put into the same cluster because
they are both classified as coreferent with a different,
preceding mention. The end result is that the two
nested mentions are inadvertently clustered through
transitivity.

For example, consider the two occurrences of the
phrase her mother in (1) below. The spans in the ex-
ample are labeled alphabetically according to their
linear order in the document.3 Before the resolver
considers the last mention d, it has already success-
fully placed (a, c) in the same cluster. The first pair
involving d is (c, d), which is correctly classified as
disreferent (here, the feature set informs the classi-
fier that (c, d) are nested). However, the pair (a, d)
is easily classified as coreferent since the head noun
of a agrees in gender and number with d (and they
are not nested).

A different problem is related to named entities
in possessive constructions. Consider (2), where our
mention extractor extracted e, because it was an NP,
and f , because it was tagged as a GPE by the named
entity recognizer. Again, the pair (e, f) is correctly
classified as disreferent, but both e and f are likely
to be classified as coreferent with preceding men-
tions of Taiwan, since our string matching feature
ignores possessive markers.

(1) ... she seemed to have such a good relation-
ship with [[her]b mother]a. Like [[her]d mother]c
treated her like a human being ...

(2) [[Taiwan]f ’s]e

To circumvent this problem, we let the decoders
build the clusters incrementally as they work their
way through a document and disallow this type of
transitive nesting. For instance, when the decoder is
trying to find an antecedent for d in (1), a and c have
already been clustered together, and when the pair
(c, d) is classified as disreferent, the decoder is con-
strained to skip over other members of c’s cluster as
it moves backwards in the document. This modifi-
cation gave an increase of about 0.6 in the CoNLL
score for English, and about 0.4 for Arabic and Chi-
nese, and we used this constraint whenever we use
the above-mentioned decoders.

4.2 A Cluster-Mention Decoding Algorithm

The pair-wise classifier architecture has, justifiably,
received much criticism as it makes decisions based
on single pairs of mentions only. We therefore de-

3We impose a total order on the mentions by sorting them
by starting point. For multiple mentions with the same starting
point, the longer is considered to precede the shorter.

51

vised a decoding algorithm that has a better perspec-
tive on entire clusters.

The algorithm works by incrementally merging
clusters as mentions are processed. Initially, every
mention forms its own cluster. When the next men-
tion mj is processed, it is compared to all the pre-
ceding mentions, M = {mi|i < j}. The score of
linking mj with mi is defined according to:

score(mi, mj) = (
∏

mc∈C

P (coref |(mc, mj)))1/|C|

where P (coref |(mi, mj)) is the posterior probabil-
ity that mi and mj are coreferent according to the
pair-wise classifier, and C denotes the cluster that
mi belongs to.

After considering all preceding mentions, the
cluster of mj is merged with the cluster of the men-
tion with which it had the highest score, assuming
this score is higher than a given threshold thcoref .
Otherwise it remains in its own cluster.

The task of the score function is to capture
cluster-level information. When mj is compared to
a mention mi, the score is computed as the geo-
metric mean of the product of the probabilities of
linking mj to all mentions in the cluster that mi

belongs to. Also note that for two preceding men-
tions mi1 and mi2 that already belong to the same
cluster, score(mi1 , mj) = score(mi2 , mj). I.e., the
score is the same when mj is compared to all men-
tions belonging to the same cluster. Since this algo-
rithm works by maximizing the average probability
for linking a mention, we dub this algorithm Aver-
ageMaxProb, or AMP for short.

It should also be noted that other definitions
of the cluster score function score are conceiv-
able.4 However, initial experiments with other clus-
ter score functions performed worse than the defi-
nition above, and time prevented us from exploring
this conclusively.

Contrary to the pair-wise decoding algorithms
where pair-wise decisions are made in isolation, the
order in which mentions are processed make a dif-
ference to the AMP decoder. It is generally ac-
cepted that named entities are more informative and

4In the extreme case, one could take the maximum of the
link probabilities over the mentions that belong to the cluster
C, in which case the algorithm collapses into the BF algorithm.

easier to resolve than common noun phrases and
pronouns. To leverage this, we follow Sapena et
al. (2010) who reorder mentions based on mention
type. Specifically, we first process proper noun
phrases, then common noun phrases, and finally pro-
nouns. This implies that common noun phrases
have to have a reasonable agreement not only with
preceding proper noun phrases of a cluster, but all
proper noun phrases in a document (where reason-
able means that the geometric average of all poste-
rior probabilities stay reasonably high). Similarly,
pronouns are forced agree reasonably with all proper
and common nouns phrases in a given cluster, and
not only the preceding ones. Early experiments
showed an increase in performance using reorder-
ing, and we consequently used reordering for all lan-
guages in the experiments.

5 Features

An advantage of the pair-wise model and of the lin-
ear classifiers we use is that they can easily accom-
modate very large feature spaces, while still remain-
ing reasonably fast. We exploited this by building a
large number of parametrized feature templates, that
allowed us to experiment easily and quickly with
different feature sets. Additionally, since our clas-
sifiers are linear, we also evaluated a large number
of feature conjunctions, which proved to be crucial
to gain reasonable performance.

Due to space restrictions we can not list the com-
plete set of features used in this paper but mention
briefly what type of features we used. Most of them
are taken from previous work on coreference reso-
lution (Soon et al., 2001; Luo and Zitouni, 2005;
Sapena et al., 2010; Björkelund and Nugues, 2011).
For a complete list of features the reader can refer
to the download of the resolver, which includes the
feature sets and parameters used for every language.

One set of feature templates we use is based on
surface forms and part-of-speech tags of the first and
last, previous and following, and head tokens of the
spans that make up mentions. Another set of tem-
plates are based on the syntax trees, including both
subcategorization frames as well as paths in the syn-
tax tree. To extract head words of mentions, we
used the head percolation rules of Choi and Palmer
(2010) for Arabic and English, and those of Zhang

52

and Clark (2011) for Chinese.
While Chinese and English display no or rela-

tively small variety in morphological inflection, Ara-
bic has a very complex morphology. This means
that Arabic suffers from greater data sparseness with
respect to lexical features. This is exaggerated by
the fact that the Arabic training set is considerably
smaller than the Chinese and English ones. Hence,
we used the lemmas and unvocalised Buckwalter
forms that were provided in the Arabic dataset.

We also tried to extract number and gender in-
formation based on affixes of Arabic surface forms.
These features did, however, not help much. We
did however see a considerable increase in perfor-
mance when we added features that correspond to
the Shortest Edit Script (Myers, 1986) between sur-
face forms and unvocalised Buckwalter forms, re-
spectively. We believe that edit scripts are better at
capturing the differences in gender and number sig-
naled by certain morphemes than our hand-crafted
rules.

6 Resolver Stacking

In Table 2 we present a comparison of the BF, PCF,
and AMP resolvers. We omit the results of the CF
decoder, since it always did worse and the corre-
sponding numbers would not add more to the pic-
ture. The table shows F-measures of mention de-
tection (MD), the MUC metric, the B3 metric, and
the entity-based CEAF metric. The CoNLL score,
which is computed as the arithmetic mean of MUC,
B3, and CEAFE, is shown in the last row.

Comparing the AMP decoder to the pair-wise de-
coders, we find that it generally – i.e., with respect
to the CoNLL average – performs worse though it
always obtains higher scores with the CEAFE met-
ric. When we looked at the precision and recall for
mention detection, we also found that the AMP de-
coder suffers from lower recall, but higher precision.
This led us to conclude that this decoder is more con-
servative in terms of clustering mentions, and builds
smaller, but more consistent clusters. We could also
verify this when we computed average cluster sizes
on the output of the different decoders.

In order to combine the strengths of the AMP
decoder and the pair-wise decoders we employed
stacking, i.e., we feed the output of one resolver

Arabic BF PCF AMP Stacked
MD 58.63 58.49 58.21 60.51
MUC 45.8 45.4 43.2 46.66
B3 66.65 66.56 66.39 66.3
CEAFE 41.52 41.58 43.1 42.57
CoNLL 51.32 51.18 50.9 51.84
Chinese BF PCF AMP Stacked
MD 67.22 67.19 66.79 67.61
MUC 59.58 59.43 57.23 59.84
B3 72.9 72.82 72.7 73.35
CEAFE 46.99 46.98 48.25 47.7
CoNLL 59.82 59.74 59.39 60.30
English BF PCF AMP Stacked
MD 74.33 74.42 73.75 74.96
MUC 66.76 66.93 62.74 67.12
B3 70.96 71.11 68.05 71.18
CEAFE 45.46 45.83 46.49 46.84
CoNLL 61.06 61.29 59.09 61.71

Table 2: Performance of different decoders on the devel-
opment set for each language. The configuration of the
Stacked systems is described in detail in Section 7.

as input to a second. The second resolver is in-
formed about the decision of the first one by intro-
ducing an additional feature that encodes the deci-
sion of the first resolver. This feature can take five
values, depending on how the first resolver treated
the two mentions in question: NEITHER, when none
of the mentions were placed in a cluster; IONLY,
when only the first (antecedent) mention was placed
in a cluster; JONLY, when only the second (anaphor)
mention was placed in a cluster; COREF, when both
mentions were placed in the same cluster; and DIS-
REF, when both mentions were clustered, but in dif-
ferent clusters.

In addition to the stacking feature, the second re-
solver uses the exact same feature set as the first re-
solver. To generate the information for the stack fea-
ture for training, we made a 10-fold cross-annotation
on the training set, in the same way that we cross-
annotated the non-referential classifier for English.

In early stacking experiments, we experimented
with several combinations of the different decoders.
We found that stacking different pair-wise decoders
did not give any improvement. We believe the rea-
son for this is that these decoders are too similar and
hence can not really benefit from each other. How-
ever, when we used the AMP decoder as the first

53

step, and a pair-wise decoder as the second, we saw
an increase in performance, particularly with respect
to the CEAFE metric.

7 Feature and Parameter Tuning

For every language we tuned decoder parameters
and feature sets individually. The feature sets were
tuned semi-automatically by evaluating the addition
of a new feature template (or template conjunction)
to a baseline set. Ideally, we would add feature
templates to the baseline set incrementally one at a
time, following a cross-validation on the training set.
However, to reduce computational effort and time
consumption, we resorted to doing only one or two
folds out of a 4-fold cross-validation, and adding the
two to three most contributing templates in every it-
eration to the baseline set. The feature sets were op-
timized to maximize the official CoNLL score using
the standard BF decoder.

For the final submission we tuned the thresholds
for each decoder, and the choice of pair-wise de-
coder to use as the second decoder for each lan-
guage. Modifying the threshold of the AMP decoder
gave very small differences in overall score and we
kept the threshold for this decoder at 0.5. How-
ever, when we increased the probability threshold
for the second resolver, we found that performance
increased across all languages.

The choice of decoder for the second resolver, and
the probability threshold for this, was determined by
a 4-fold cross-validation on the training set. For our
final submission, as well as in the column Stacked
in Table 2, we used the following combinations: For
Arabic, the threshold was set to 0.60, and the PCF
decoder was used; for Chinese, the threshold was set
to 0.65, and the BF decoder was used; for English,
the threshold was set to 0.65, and the PCF decoder
was used.

8 Official Results

The final scores of our system are presented in Ta-
ble 3. The table also includes the results on the sup-
plementary tracks: gold mention boundaries (GB),
when the perfect boundaries of mentions were given;
and gold mentions (GM), when only the mentions in
the gold standard were given (with gold boundaries).
For all three settings we used the same model, which

Arabic PM GB GM
MD 60.55 60.61 76.43
MUC 47.82 47.90 60.81
B3 68.54 68.61 67.29
CEAFE 44.3 44 49.32
CoNLL 53.55 53.50 59.14
Chinese PM GB GM
MD 66.37 71.02 83.47
MUC 58.61 63.56 76.85
B3 73.10 74.52 76.30
CEAFE 48.19 50.20 56.61
CoNLL 59.97 62.76 69.92
English PM GB GM
MD 75.38 75.3 86.16
MUC 67.58 67.29 78.70
B3 70.26 69.70 72.67
CEAFE 45.87 45.27 53.23
CoNLL 61.24 60.75 68.20

Table 3: Performance on the shared task test set. Us-
ing predicted mentions (PM; i.e., the official evalua-
tion), gold mentions boundaries (GB), and gold mentions
(GM).

was trained on the concatenation of the training and
the development sets.

Compared to the results on the development set
(cf. Table 2), we see a slight drop for Chinese and
English, but a fairly big increase for Arabic. Given
that Chinese and English have the biggest training
sets, we speculate that the increase in Arabic might
stem from the increased lexical coverage provided
by training on both the training and the development
sets.

9 Conclusion

We have presented a novel cluster-based coreference
resolution algorithm. This algorithm was combined
with conventional pair-wise resolution algorithms in
a stacking approach. We applied our system to all
three languages in the Shared Task, and obtained an
official overall final score of 58.25 which was the
second highest in the Shared Task.

Acknowledgments

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) via the SFB 732
“Incremental Specification in Context”, projects D4
(PI Helmut Schmid) and D8 (PI Jonas Kuhn).

54

References
Anders Björkelund and Pierre Nugues. 2011. Explor-

ing lexicalized features for coreference resolution. In
Proceedings of the Fifteenth Conference on Compu-
tational Natural Language Learning: Shared Task,
pages 45–50, June.

Adriane Boyd, Whitney Gegg-Harrison, and Donna By-
ron. 2005. Identifying non-referential it: A machine
learning approach incorporating linguistically moti-
vated patterns. In Proceedings of the ACL Workshop
on Feature Engineering for Machine Learning in Nat-
ural Language Processing, pages 40–47, June.

Jinho D. Choi and Martha Palmer. 2010. Robust
Constituent-to-Dependency Conversion for English.
In Proceedings of 9th Treebanks and Linguistic The-
ories Workshop (TLT), pages 55–66.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. LIBLINEAR: A li-
brary for large linear classification. Journal of Ma-
chine Learning Research, 9:1871–1874.

Xiaoqiang Luo and Imed Zitouni. 2005. Multi-lingual
coreference resolution with syntactic features. In Pro-
ceedings of Human Language Technology Conference
and Conference on Empirical Methods in Natural Lan-
guage Processing, pages 660–667, October.

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

Eugene W. Myers. 1986. An O(ND) difference algo-
rithm and its variations. Algorithmica, 1:251–266.

Vincent Ng. 2010. Supervised noun phrase coreference
research: The first fifteen years. In Proceedings of the
48th Annual Meeting of the Association for Computa-
tional Linguistics, pages 1396–1411, July.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unrestricted
coreference in OntoNotes. In Proceedings of the
Sixteenth Conference on Computational Natural Lan-
guage Learning (CoNLL 2012).

Emili Sapena, Lluı́s Padró, and Jordi Turmo. 2010. A
global relaxation labeling approach to coreference res-
olution. In Coling 2010: Posters, pages 1086–1094,
August.

Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong
Lim. 2001. A machine learning approach to corefer-
ence resolution of noun phrases. Computational Lin-
guistics, 27(4):521–544.

Yue Zhang and Stephen Clark. 2011. Syntactic process-
ing using the generalized perceptron and beam search.
Computational Linguistics, 37(1):105–151.

55

