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Abstract

This paper describes a system for discriminat-
ing between factual and non-factual contexts,
trained on weakly labeled data by taking ad-
vantage of information implicit in annotations
of negated events. In addition to evaluating
factuality detection in isolation, we also evalu-
ate its impact on a system for event detection.
The two components for factuality detection
and event detection form part of a system for
identifying negative factual events, or coun-
terfacts, with top-ranked results in the *SEM
2012 shared task.

1 Introduction

The First Joint Conference on Lexical and Compu-
tational Semantics (*SEM 2012) is hosting a shared
task1 (Morante and Blanco, 2012) on identifying
various elements of negation, and one of the sub-
tasks is to identify negatedevents. However, only
events occurring infactual statementsshould be la-
beled. This paper describes pilot experiments on
how to train afactuality classifierby taking advan-
tage of implicit information on factuality in anno-
tations of negation. In addition to evaluating factu-
ality detection in isolation, we also assess its impact
when embedded in a system forevent detection. The
system was ranked first for the *SEM 2012 subtask
of identifying negated events, and also formed part
of the top-ranked system in the shared task overall
(Read et al., 2012). The experiments presented in
this paper further improves on these initial results.

1The web site of the 2012 *SEM Shared Task:
http://www.clips.ua.ac.be/sem2012-st-neg/

Note that the system was designed for submission to
the closed track of the shared task, which means de-
velopment is constrained to using the data provided
by the task organizers.

The rest of the paper is structured as follows. We
start in Section 2 by giving a brief overview of re-
lated work and resources. In Section 3 we then
present the problem statement in more detail, along
with the relevant data sets. This section also dis-
cusses the notion of (non-)factuality assumed in the
current paper. We then go on to present and evaluate
the factuality classifier in Section 4. In Section 5
we move on to describe the event detection task,
which is handled by learning a discriminative rank-
ing function over candidate tokens within the nega-
tion scope, using features from paths in constituent
trees. Both the event ranking function and the fac-
tuality classifier are implemented using the Support
Vector Machine (SVM) framework. After evaluat-
ing the impact of factuality detection on event de-
tection, we finally provide some concluding remarks
and discussion of future directions in Section 6.

2 Related Work

Note that the *SEM 2012 shared task singled out
three separate subtasks for the problem of recogniz-
ing negation, namely the identification of negation
cues, their in-sentencescopesand the negated fac-
tual events. Most of the systems submitted for the
shared task correspondingly implemented a pipeline
consisting of three components, one for each sub-
task. One thing that set the system of Read et al.
(2012) apart from other shared task submissions is
that it included afourth component; a dedicated
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classifier for identifying thefactuality of a given
context. It is this latter problem which is the main
focus of the current paper, along with its interactions
with the task of identifying events.

The field has witnessed a growing body of work
dealing with uncertainty and speculative language
over the recent years, and in particular so within the
domain of biomedical literature. These efforts have
been propelled not least by the several shared tasks
that have targeted such phenomena. The shared task
at the 2010 Conference on Natural Language Learn-
ing (CoNLL) focused on speculation detection for
the domain of biomedical research literature (Farkas
et al., 2010), with data sets based on the BioScope
corpus (Vincze et al., 2008) which annotates so-
called speculationcuesalong with theirscopes. The
BioNLP shared tasks of 2009 and 2011 mainly con-
cerned recognizing bio-molecular events in text, but
optional subtasks involved detecting whether these
events were affected by speculation or negation. The
data set used for this task is the Genia event corpus
(Kim et al., 2008) which annotates the uncertainty
of events according to the three labelscertain, prob-
ableanddoubtful(but without explicitly annotating
cue words or scope as in BioScope).

The best performer in the BioNLP 2011 support-
ing task of detecting speculation modification of
events, the system of Kilicoglu and Bergler (2011),
achieved an end-to-end F1 of 27.25 using a manu-
ally compiled dictionary of trigger expressions to-
gether with a set of rules operating on syntactic de-
pendencies for identifying events and event modifi-
cation. Turning to the task of identifying specula-
tion cues in the BioScope data, current state-of-the-
art systems, implementing simple supervised classi-
fication approaches on the token- or sequence-level,
achieves F1-scores of well above 80 (Tang et al.,
2010; Velldal et al., 2012). For the task of resolv-
ing the scopes of these cues, the current best systems
obtain end-to-end F1-scores close to 60 in held-out
testing (Morante et al., 2010; Velldal et al., 2012).

Note that the latter reference is from a forthcom-
ing issue of Computational Linguistics specifically
on modality and negation (Morante and Sporleder,
2012). In that same issue, Saurı́ and Pustejovsky
(2012) present a linguistically motivated system for
factuality profiling with manually crafted rules op-
erating on dependency graphs. Conceptually treat-

ing factuality as a perspective that a particular source
(speaker) holds toward an event, the system aims to
make this attribution explicit. It is developed on the
basis of the FactBank corpus (Saurı́ and Pustejovsky,
2009), containing manual annotations of pairs of
events and sources along the dimensions of polarity
(positive, negative, or underspecified) and certainty
(certain, probable, possible, or underspecified.

Prabhakaran et al. (2010) report experiments with
belief tagging, which in many ways is similar to
factuality detection. Their starting point is a cor-
pus of 10.000 words comprising a variety of genres
(newswire text, emails, instructions, etc.) annotated
for speaker belief of stated propositions (Diab et al.,
2009): Propositional heads are tagged ascommitted
belief (CB),non-committed belief(NCB), ornot ap-
plicable(NA), meaning no belief is expressed by the
speaker. To some degree, CB and NCB can be seen
as similar to our categories of factuality and non-
factuality, respectively. Applying a one-versus-all
SVM classifier by 4-fold cross validation, and using
wide range of both lexical and syntactical features,
Prabhakaran et al. (2010) report F1-scores of 69.6
for CB, 34.1 for NCB, and 64.5 for NA.

3 Data Sets and the Notion of Factuality

The data we will be using in the current study is
taken from a recently released corpus of Conan
Doyle (CD) stories annotated for negation (Morante
and Daelemans, 2012). The data is annotated with
negation cues, the in-sentencescopeof those cues,
as well as the negatedevent, if any. The cue is the
word(s) or affix indicating a negation, The scope
then indicates the maximal extent of that negation,
while the event indicates the most basic negated el-
ement. In the annotation guidelines, Morante et al.
(2011, p. 4) use the termeventin a rather general
sense; “[i]t can be a process, an action, or a state.”
The guidelines occasionally also refer to the no-
tion of negated elementsas encompassing “the main
event or property actually negated by the negation
cue” (Morante et al., 2011, p. 27). In the remainder
of this paper we will simply takeeventto conflate all
these senses.

Some examples of annotated sentences are shown
below. Throughout the paper we will use angle
brackets for marking negation cues, curly brackets

29



for scopes, and underlines for events.

(1) {There was} 〈no〉 {answer}.

(2) {I do} 〈n’t〉 {think that I am a coward} , Watson , but that
sound seemed to freeze my very blood .

In the terminology of Saurı́ and Pustejovsky (2012),
the negation cues are negative polarity particles, and
all annotated events in the Conan Doyle data will
have a negative polarity and thereby representcoun-
terfacts, i.e., events with negative factuality. This
should not be confused with non-factuality; a coun-
terfactual statement is not uncertain.

Importantly, however, the Conan Doyle negation
corpus does not explicitly contain any annotation of
factuality. The annotation guidelines specify that
“we focus only on annotating information relative
to the negative polarity of an event” (Morante et al.,
2011, p. 4). However, the guidelines also specify
that events should only be annotated for negations
that (i) have a scope and that (ii) occur infactual
statements(Morante et al., 2011, p. 27). (As we only
have annotations for the sentence-level it is possible
to have a cue without a scope in cases where the
cue negates a proposition in a preceding sentence.)
The notion of (non-)factuality assumed in the cur-
rent work will reflect the way it is defined in the
Conan Doyle annotation guidelines. Morante et al.
(2011) lists the following types of constructions as
not expressing factual statements (we here show ex-
amples from CDDEV for each case):

- Imperatives:
(3) {Do} 〈n’t〉 {move} , I beg you , Watson .

- Non-factual interrogatives:
(4) {You do} 〈n’t〉 {believe it} , do you , Watson ?

- Conditional constructions:
(5) If {the law can do} 〈nothing〉 we must take the risk our-

selves .

- Modal constructions:
(6) {The fault from what I hear may} 〈not〉 {have been en-

tirely on one side} .

- Wishes or desires:
(7) “ I hope , ” said Dr. Mortimer , “ that{you do} 〈not〉

{look with suspicious eyes upon everyone [. . . ]}

- Suppositions or presumptions:

(8) I think , Watson ,{a brandy and soda would do him} 〈no〉
{harm} .

- Future tense:
(9) {The shadow} has departed and{will } 〈not〉 {return} .

Our goal then, will be to correctly identify these
cases in order to separate between factual and non-
factual contexts before identifying events. Note that,
while an event, if present, must always be embedded
in the scope, the indicators of factuality are typically
found well outside of this scope. The examples also
show that non-factuality here encompasses a wider
range of phenomena than what is traditionally cov-
ered in work on identifying hedging or speculation.

The examples above illustrate how we can take
the data toimplicitly annotate factuality and non-
factuality, and we here show how to take advantage
of this to train a factuality classifier. For the exper-
iments in this paper we will let positive examples
correspond to negations that are annotated with both
a scope and an event, while negative examples cor-
respond to scoped negations with no event. For our
training and development data (CDDEV; more de-
tails below), this strategy gives 738 positive exam-
ples and 317 negatives, spread over 930 sentences.

Our weakly labeled data as defined above comes
with several limitations of course. The implicit la-
beling of factuality will be limited to sentences that
are negated. We will also not have access to an event
in the cases of non-factuality. Neither, do we have
any explicit annotation of factuality cue words for
these examples. All we have are instances of nega-
tion that we know to be within some non-delimited
factual or non-factual context. For our experiments
here will therefore use the negation cue itself as a
place-holder for the abstract notion of context that
we are really trying to make predictions about.

Table 1 presents some basic statistics for the rele-
vant data sets. For training and development we will
use the negation annotated version ofThe Hound of
the Baskerville’s(CDH) andWisteria Lodge(CDW)
(Morante and Daelemans, 2012). We refer to the
combination of these two data sets as CDDEV. For
held-out testing we will use the evaluation data
sets prepared for the *SEM 2012 shared task;The
Cardboard Box(CDC) andThe Red Circle(CDR)
(Morante and Blanco, 2012). We will use CDEVAL

to refer to the combination of CDC and CDR. Note
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Scoped Negations

Data set Sentences Negations Factual Non-factual

CDH 3644 984 616 271
CDW 787 173 122 46
CDDEV 4431 1157 738 317

CDC 496 133 87 41
CDR 593 131 86 35
CDEVAL 1089 264 173 76

Table 1: Summary of the Conan Doyle negation data.
Note that the total number of negations (column 3) can
be smaller than the number of scoped negations (columns
4+5). The reason is that it is possible to have a cue with-
out a scope in cases where the cue negates a proposition
in a preceding sentence (which would not be reflected
in these sentence-level annotations). The numbers in the
column ’Factual’ correspond to scoped negations that in-
clude an annotated event.

that the columnFactual correspond to negations
with both a scope and event (i.e., positive examples,
in terms of factuality classification), while theNon-
factual column correspond to negations with scope
only and no event (negative examples).

4 Factuality Detection

Having described how we abstractly define our train-
ing data above, we can now move on to describe
our experiments with training a factuality classifier.
It is implemented as a linear binary SVM classi-
fier, estimated using the SVMlight toolkit (Joachims,
1999). We start by describing the feature types in
Section 4.1 and then present results in Section 4.2.

4.1 Features

The feature types we use are mostly variations over
bag-of-words (BoW) features. We include left/right
oriented BoW features centered on the negation cue,
recording forms, lemmas, and PoS, and using both
unigrams and bigrams. These features are extracted
both from the sentence as a whole, and from a local
window of six tokens to each side of the cue. The
optimal window size and the order ofn-grams was
determined empirically.

The reason for including both local and sentence-
level BoW features is that we would like to be able

to assign different factuality labels to different in-
stances of negation within the same sentence, but
at the same time experiments showed sentence-level
features to be very important.

Note that, ideally our features should be centered
on the negated event, but since this information is
only available for factual contexts, we instead take
the negation cue as our starting point. In practice,
this seems to provide a good approximation, how-
ever, given that the negated event is typically found
in close vicinity of the negation cue.

In addition to the BoW type features we have fea-
tures explicitly recording the first full-stop punctua-
tion following the negation cue (i.e., ‘.’, ‘!’, or ‘?’) as
well as whether there is anif to the left. Note that,
although this information is already implicit in the
BoW features, the model appeared to benefit from
having them explicitly coupled with the cue itself.

We also experimented with several other features
that were not included in the final configuration.
These included distance to co-occurring verbs, and
modal verbs in particular. We also recorded the pres-
ence of speculative verbs based on various word lists
manually extracted from the training data. None of
these features appeared to contribute information not
already present in the simple BoW features.

4.2 Results

Table 2 provides results for our factuality classifier
using gold cues and gold scopes. In addition, we
also include results for a baseline approach that sim-
ply considers all cases to be factual, i.e., the majority
class. Note that, in this case the precision (of fac-
tuality labeling) is identical to the accuracy, which
is close to 70% on both the development and held-
out set. The recall for the majority-class baseline is
of course at 100%, and the corresponding F1 is ap-
proximately 82 on both data sets. In comparison,
our classifier achieves an F1 of 89.92 for the 10-
fold cross-validation runs on the development data
and 87.10 on the held-out test data. The accuracy
is 83.98 and 80.72, respectively. Across both data
sets it is clear that the classifier offers substantial im-
provements over the baseline. We do however, ob-
serve a drop in performance particularly with respect
to precision when moving to the held-out set.When
inspecting the scores for the two individual sections
of the held-out set, CDC and CDR, we find that
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Data set Model Prec Rec F1 Acc

CDDEV Baseline 69.95 100.00 82.32 69.95
Classifier 84.51 96.07 89.92 83.98

CDEVAL Baseline 69.48 100.00 81.99 69.48
Classifier 80.60 94.74 87.10 80.72

Table 2: Results for factuality detection (using gold nega-
tion cues and scopes), reporting 10-fold cross-validation
on CDDEV and held-out testing on CDEVAL .

the classifier seems to have more difficulties with
the former. Although recall is roughly the same
across the two sections (94.25 and 95.24, respec-
tively, which is again fairly close to the 10-fold re-
call of 96.07), precision suffers a much larger drop
on CDC than CDR (78.85 versus 82.47). On the
other hand, it is difficult to reliably assess perfor-
mance on the individual test sets, given the limited
amount of data: There are only 128 relevant test
cases in CDC and 121 in CDR. However, there also
seems to be signs of overfitting, in that an unhealthy
number of the training examples end up as support
vectors in the final model (close to 70%).

Note that the F1-scores cited above targetsfac-
tuality as the positive class label. However, given
that this is in fact the majority class it might also
be instructive to look at F1-scores targetingnon-
factuality. (In other words, we will use exactly the
same classifier predictions, but compute our scores
by letting true positives correspond to former true
negatives, false positives to former false negatives,
and so on, thereby treating non-factuality as the pos-
itive class we are trying to predict.) Of course,
while all accuracy scores will remain unchanged, the
majority-class baseline yields an F1 of 0 in this case,
as there will be no true positives. Table 3 lists the
non-factuality scores for the classifier.

Given that we are not aware of any other studies
on (non-)factuality detection on this data we are not
yet able to directly compare our results against those
of other approaches. Nonetheless, we believe the
state-of-the-art results cited in Section 2 for related
tasks such as belief tagging and identifying specu-
lation cues give reasons for being optimistic about
the results obtained with the simple classifier used
in these initial pilot experiments.

Data set Prec Rec F1

CDDEV 77.21 66.25 71.31

CDEVAL 81.25 50.00 61.91

Table 3: Results for non-factuality detection (using gold
negation cues and scopes). The scores are based on the
same classifier predictions as in Table 2, but treats non-
factuality as the positive class.

4.3 Error Analysis and Sample Size Effects

In order to gauge the effect that the size of the train-
ing set has on performance we also experimented
with leaving out portions of the training examples
in our 10-fold cross-validation runs. Figure 1 plots a
learning curve showing how classifier performance
on CDDEV changes as we incrementally include
more training examples. In order to more clearly
bring out the contrasts in performance we here plot
results againstnon-factuality scores. We also show
the size of the training set on a logarithmic scale to
better see whether improvements are constant forn-
fold increases of data. As can be seen, the learning
curve appears to be growing linearly with the incre-
ments in larger training samples and it seems safe to
assume that the classifier would greatly benefit from
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Figure 1: Learning curve showing the effect on F1 for
non-factuality labeling when withdrawing portions of the
training partitions (shown on a logarithmic scale) across
the 10-fold cross-validation cycles.
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additional training data.
This impression is strengthened by a manual in-

spection of the misclassifications for CDDEV. Quite
a number of errors seem related to a combination of
scarcity and noise in the data. As a fairly typical
example, consider the following negation which the
system incorrectly classifies as factual:

(10) “ I presume , sir , ” said he at last , “ that{it was} 〈not〉
{merely for the purpose of examining my skull that you
have done me the honour to call here last night and again
today} ? ”

One could have hoped that the BoW features record-
ing the presence ofpresumewould have tipped this
prediction toward non-factual. However, while there
are ten occurrences ofpresumein CDDEV, only three
of these are in contexts that we can actually use as
part of our factuality training data. Apart from the
one in Example (10), these are shown in (11) and
(12) below, both of which indicate factual contexts
(given the labeling of an event). We would at least
consider Example (11) to reveal an error in the gold
annotation here, however.

(11) “ {There is} 〈no〉 {other claimant} , I presume ? ”

(12) “ {I presume} 〈nothing〉 .

We also get a few errors for incorrectly labeling
a context as factual in cases where there are no ob-
vious indicators of non-factuality but the annotation
does not mark an event, as in:

(13) “ 〈Nothing〉 {of much importance} , Mr. Holmes .

For some of the other errors we observed it would
seem that introducing additional features that are
sensitive to the syntactic structure could be bene-
ficial. For example, consider sentence (14) below
where we incorrectly classify the first negation as
non-factual;

(14) [. . . ] {I had broughtit} only to defend myself if attacked
and 〈not〉 {to shoot{an} 〈un〉{armedman} who was}
running{away} .

The error is most likely due to overgeneralizing from
the presence ofif. By letting the lexical features be
extracted from a context constrained by the syntax
tree rather than a simple sliding window, such errors
might be avoided.

For some more optimistic examples, note that the
previously listed examples of non-factuality in (3)

S

NP

EX

{There

VP

VBD

was

NP

DT

〈no〉

NN

answer}

.

.

Figure 2: Example of parse tree in the negation data set.

through (9) were all selected among cases that were
correctly predicted by our classifier.

In the next section we move on to describe a sys-
tem for identifying negated events and assess the im-
pact of the factuality classifier on this task (recall
from Section 3 that only negations occurring in fac-
tual statements should be assigned an event).

5 Event Detection

To identify events in factual instances of negation2

we employ an automatically-learned discriminative
ranking function. As training data we select all nega-
tion scopes that have a single-token3 event, and gen-
erate candidates from each token in the scope. The
candidate that matches the event is labeled as cor-
rect; all others are labeled as incorrect. For the ex-
ample sentence in Figure 2 there are three words
in the scope and thus three candidates for events:
There, wasandanswer.

5.1 Features

Candidates are primarily described in terms of paths
in constituent trees.4 In particular, we record the
full path from a candidate token to the constituent
whose projection matches the negation scope (i.e.,
the most-specific constituent that subsumes all can-

2Note that, although one could of course argue that negated
events should also be identified for non-factual contexts, that is
not how the task is construed in *SEM 2012 shared task or in
the Conan Doyle data sets.

3To simplify the system we assume that all events are single
tokens. It should be noted, however, that 9.85% of events in
CDDEV are actually composed of multiple tokens.

4Constituent trees from Charniak and Johnson’s Max-Ent
reranking parser (2005) were provided by the task organizers.
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didates). In Figure 2 this is theS root of the
tree; the path that describes the correct candidate is
answer/NN/NP/VP/S. We also record delexical-
ized paths (e.g.,./NN/NP/VP/S) and generalized
paths (e.g.,./NN//S), as well as bigrams formed of
nodes on the path. Furthermore, we record some sur-
face properties of candidates, namely; lemma, part-
of-speech, direction and distance from cue, and po-
sition in scope. Finally, we record the lemma and
part-of-speech of the token immediately preceding
the candidate (development testing showed that in-
formation about the token following the candidate
was not beneficial).

Based on the features above we learn an SVM-
based scoring function using the implementation of
ordinal ranking in SVMlight (Joachims, 2002). We
use a linear kernel and empirically tune the regu-
larization parameterC (governing the trade-off be-
tween margin size and errors).

5.2 Results

Similarly to the learning curve shown above for
factuality detection, Figure 3 plots the F1 of event
detection on CDDEV when providing increasing
amounts of training data and using gold standard in-
formation on factuality. (Note that, except for end-
to-end results below, all scores reported in this paper
assumes gold negation cues and gold scopes, given
that we want to isolate the performance of the event
ranker and/or factuality classifier.) We see that the
performance is remarkably strong even at 10% of
the total data, and increases steadily until around
60%, at which point it appears to be leveling off.
It is unclear as to whether or not the ranker would
benefit from additional data. We also note differ-
ences with respect to the factuality learning curve
in Figure 1, both in terms of “entry performance”
and overall trend. To some degree, there are gen-
eral reasons as to why one could expect to see dif-
ferences in learning curves for a discriminative rank-
ing/regression set-up and a classifier set-up (assum-
ing that the class distribution for the latter is unbal-
anced, as is typically the case). For a ranker, ev-
ery item provides useful training data, in the sense
that each item provides both positive and negative
examples (in our case selected from the candidate
tokens within a negation scope). For a classifier, the
few items providing examples of the minority class
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Figure 3: Learning curve showing the effect on F1 for
event detection when using gold factuality and withdraw-
ing portions of the training partitions (shown on a loga-
rithmic scale) across the 10-fold cross-validation cycles.

will typically be the most valuable and it will there-
fore easily be more sensitive to having the training
sample restrained. Even so, it seems clear that the
factuality detection component and event detection
component belong to different ends of the spectrum
in terms of sensitivity to sample size.

Table 4 details the results of using the final rank-
ing model to predict negated events. For a compar-
ative baseline, we implemented a basic ranker that
uses only the candidate lemma as a single feature.
This baseline achieves an F1 of 73.90 (P=74.01,
R=73.80) on CDDEV when using factuality informa-
tion inferred from the gold-standard (and testing by
10-fold cross-validation). For comparison, the full
ranking model achieves an F1 of 90.42 (P=90.75,
R=90.10) on the same data set, as seen in Table 4.

Of course, the results for event detection us-
ing gold-standard factuality also provides the up-
per bound for what we can achieve using system
predicted factuality, i.e., applying the classifier de-
scribed in Section 4. In order to assess the im-
pact of the factuality classifier we also include re-
sults for event detection using the majority-class
baseline, which means simply assuming that all in-
stances of negations are factual. Table 4 lists re-
sults for event detection using system predicted fac-
tuality, compared to results using baseline and gold-
standard factuality. We find that the factuality clas-
sifier greatly improves precision of the event de-
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Data set Factuality Prec Rec F1

CDDEV
Baseline 62.24 90.10 73.62
Classifier (10-fold) 78.48 82.98 80.67
Gold 90.75 90.10 90.42

CDEVAL
Baseline 58.26 84.94 69.11
Classifier (Held-out) 68.72 80.24 74.03
Gold 84.94 84.94 84.94

Table 4: Results for event detection using various meth-
ods for factuality detection.

tection. As can be expected, however, this comes
with a cost in terms of recall. In both 10-fold
cross-validation on CDDEV and held-out testing on
CDEVAL we find large improvements in F1, corre-
sponding to error reductions of 26.73% and 15.93%
respectively. As expected given the results discussed
in Section 4, the improvement is slightly less pro-
nounced for the held-out test results than the 10-fold
cross-validated development results. Although the
factuality classifier improves substantially over the
baseline, it is also clear that a large gap remains
toward the “upper bound” results of using gold-
standard factuality. We take the results of the pilot
experiments described in this paper as a proof-of-
concept for using the CD data for training a factual-
ity classifier, and at the same time have high expec-
tations that future experimentation with additional
(syntactically oriented) feature types should be able
to further advance performance considerably.

Building on the system presented in Velldal et al.
(2012), the initial *SEM 2012 shared task submis-
sion of Read et al. (2012) also included an SVM
negation cue classifier (including support for mor-
phological cues) along with an SVM-based rank-
ing model over syntactic constituents for scope res-
olution. Coupled with the components for factual-
ity and event detection described above, the end-to-
end result for this system on CDEVAL for identify-
ing negated events is F1=67.02 (P=60.58, R=75.00),
making it the top-ranked submission in the shared
task.

6 Conclusions and Future Directions

This paper has demonstrated that a classifier for
discriminating between factuality and non-factuality

can be trained by taking advantage of implicit in-
formation on factuality found in the negation an-
notations of the Conan Doyle corpus (Morante and
Daelemans, 2012). Even though the pilot experi-
ments described in this paper use just simple lex-
ical features, the factuality classifier provides sub-
stantial improvements over the majority-class base-
line. We also present a system for detecting negated
events by learning an SVM-based discriminative
ranking function over candidate tokens within the
negation scope. We show that the factuality classi-
fier proves very useful for improving the precision
of event detection. In order to isolate the perfor-
mance of the event ranker and factuality classifier we
have focused on results for gold negation cues and
scopes in this paper, although end-to-end results for
the full system presented by Read et al. (2012) are
also included. The system obtained the best results
for identifying negative factual events in the 2012
*SEM shared task.

It is worth noting that there is nothing inherently
negation specific about our factuality detection ap-
proachper se, save for how the training data happens
to be extracted in the current study. One reason for
using the implicit factuality information in the Co-
nan Doyle negation corpus is the advantage of get-
ting in-domain data, and this also allowed us to stay
within the confines of the closed track for the *SEM
shared task. For future experiments, however, we
would also like to test cross-domain portability by
both training and testing the factuality classifier us-
ing other annotated data sets such as FactBank, and
also add features that incorporate predictions from
speculation cue classifiers trained on BioScope.
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