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Abstract Note that the system was designed for submission to

_ _ o the closed track of the shared task, which means de-
This paper describes a system for discriminat- - y,e|0pment is constrained to using the data provided
ing between factual and non-factual contexts, by the task organizers

trained on weakly labeled data by taking ad- .
vantage of informyation implicit in gnnotat?ons Th'e rest O_f the paper '_S structgred as f_OIIOWS' We
of negated events. In addition to evaluating  Start in Section 2 by giving a brief overview of re-
factuality detection in isolation, we also evalu- lated work and resources. In Section 3 we then
ate its impact on a system for event detection.  present the problem statement in more detail, along
The two components for factuality detection  with the relevant data sets. This section also dis-
and event detection form part of a system for  ¢;sses the notion of (non-)factuality assumed in the
identifying negative factual events, or coun- o\ ent naner. We then go on to present and evaluate
terfacts, with top-ranked results in the *SEM the factuality classifier in Section 4. In Section 5
2012 shared task. ) ) .
we move on to describe the event detection task,
_ which is handled by learning a discriminative rank-
1 Introduction ing function over candidate tokens within the nega-

The First Joint Conference on Lexical and Compution scope, using features from paths in constituent
tational Semantics (*SEM 2012) is hosting a shareH€es. Both the event ranking function and the fac-
task (Morante and Blanco, 2012) on identifyingtua”ty classifier are implemented using the Support
various elements of negation, and one of the sutyector Machine (SVM) framework. After evaluat-
tasks is to identify negateevents However, only ing the impact of factuality detection on event de-
events occurring ifiactual statementshould be la- tection, we finally provide some concluding remarks
beled. This paper describes pilot experiments oand discussion of future directions in Section 6.

how to t_raln _aifac_:tuallty c_Iassmerby takl_ng_advan- > Related Work

tage of implicit information on factuality in anno-

tations of negation. In addition to evaluating factuNote that the *SEM 2012 shared task singled out
ality detection in isolation, we also assess its impathree separate subtasks for the problem of recogniz-
when embedded in a system farent detectionThe ing negation, namely the identification of negation
system was ranked first for the *SEM 2012 subtaskues their in-sentencecopesand the negated fac-
of identifying negated events, and also formed pattial events Most of the systems submitted for the
of the top-ranked system in the shared task overadhared task correspondingly implemented a pipeline
(Read et al., 2012). The experiments presented gonsisting of three components, one for each sub-
this paper further improves on these initial resultsask. One thing that set the system of Read et al.
" 1The web site of the 2012 *SEM Shared Task: (2012) apart from other shared task submissions is
http://wwv. cl i ps. ua. ac. be/ sen2012- st - neg/ that it included afourth component; a dedicated
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classifier for identifying thefactuality of a given ing factuality as a perspective that a particular source
context. It is this latter problem which is the main(speaker) holds toward an event, the system aims to
focus of the current paper, along with its interactiongnake this attribution explicit. It is developed on the
with the task of identifying events. basis of the FactBank corpus (Seamd Pustejovsky,

The field has witnessed a growing body of work009), containing manual annotations of pairs of
dealing with uncertainty and speculative languagevents and sources along the dimensions of polarity
over the recent years, and in particular so within thépositive negative or underspecifiedand certainty
domain of biomedical literature. These efforts havécertain, probable possible or underspecified
been propelled not least by the several shared tasksPrabhakaran et al. (2010) report experiments with
that have targeted such phenomena. The shared tésief tagging which in many ways is similar to
at the 2010 Conference on Natural Language Learfactuality detection. Their starting point is a cor-
ing (CoNLL) focused on speculation detection fopus of 10.000 words comprising a variety of genres
the domain of biomedical research literature (Farka®ewswire text, emails, instructions, etc.) annotated
et al., 2010), with data sets based on the BioScoger speaker belief of stated propositions (Diab et al.,
corpus (Vincze et al., 2008) which annotates sa2009): Propositional heads are taggedasmitted
called speculatioouesalong with theirscopesThe  belief (CB), non-committed beligfNCB), ornot ap-
BioNLP shared tasks of 2009 and 2011 mainly conplicable(NA), meaning no belief is expressed by the
cerned recognizing bio-molecular events in text, bugpeaker. To some degree, CB and NCB can be seen
optional subtasks involved detecting whether thesgs similar to our categories of factuality and non-
events were affected by speculation or negation. THactuality, respectively. Applying a one-versus-all
data set used for this task is the Genia event corp@®/M classifier by 4-fold cross validation, and using
(Kim et al., 2008) which annotates the uncertaintyvide range of both lexical and syntactical features,
of events according to the three labetstain prob- Prabhakaran et al. (2010) repori-6cores of 69.6
able anddoubtful (but without explicitly annotating for CB, 34.1 for NCB, and 64.5 for NA.
cue words or scope as in BioScope). ] )

The best performer in the BioNLP 2011 support3 Data Setsand the Notion of Factuality

ing task of detecting s_peculation modification ofrne gata we will be using in the current study is
events, the system of Kilicoglu and Bergler (2011)y51en from a recently released corpus of Conan

achieved an end-to-end fef 27.25 using a manu- pgye (CD) stories annotated for negation (Morante
ally compiled dictionary of trigger expressions t0-3nd paelemans, 2012). The data is annotated with

gether with a set of rules operating on syntactic den‘egation cuesthe in-sentencecopeof those cues,
pendencies for identifying events and event modifiz5 \yell as the negateglent if any. The cue is the

cation. Turning to the task of identifying speculayyoq(s) or affix indicating a negation, The scope
tion cues in the BioScope data, current state-of-thgnen indicates the maximal extent of that negation,
art systems, implementing simple supervised classjghjje the event indicates the most basic negated el-

fication approaches on the token- or sequence-leV@lnent. |n the annotation guidelines, Morante et al.
achieves I~scores of well above 80 (Tang et aI.,(2011’ p. 4) use the termventin a rather general
2010; Velldal et al., 2012). For the task of resolv—sense; “[it can be a process, an action, or a state.”

ing the scopes of these cues, the current best systefilg, guidelines occasionally also refer to the no-
obtain end-to-end f~scores close to 60 in held-out;p, of negated elementss encompassing “the main
testing (Morante et al., 2010; Velldal et al., 2012). oyent or property actually negated by the negation

Note that the latter reference is from a forthcomtuen (Morante et al., 2011, p. 27). In the remainder

ing issue of Computational Linguistics specificallyqf this paper we will simply takeventto conflate all
on modality and negation (Morante and Sporledefhase senses.

2012). In that same issue, Saand Pustejovsky  gome examples of annotated sentences are shown
(2012) present a linguistically motivated system fopa|ow. Throughout the paper we will use angle

factuality profiling with manually crafted rules op- prackets for marking negation cues, curly brackets
erating on dependency graphs. Conceptually treat-
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for scopes, and underlines for events. (8) Ithink , Watson {a brandy and soda would do hjnino)

{harm} .
(1) {There wa$ (no) {answe.

(2) {Ido} (n't) {thinkthat|am a cowar}l, Watson , but that - Future tense: .
sound seemed to freeze my very blood . (9) {The shadow has departed anfvill } (not) {return} .

In the terminology of Sadiand Pustejovsky (2012), Our goal then, will be to correctly identify these
the negation cues are negative polarity particles, af@Ses in order to separate between factual and non-
all annotated events in the Conan Doyle data wiliactual contexts before identifying events. Note that,
have a negative polarity and thereby represenin- while an event, if present, must always be embedded
terfacts i.e., events with negative factuality. Thisin the scope, the indicators of factuality are typically
should not be confused with non-factuality; a counfound well outside of this scope. The examples also
terfactual statement is not uncertain. show that non-factuality here encompasses a wider
Importantly, however, the Conan Doyle negatiodng€ of phenomena than what is traditionally cov-
corpus does not explicitly contain any annotation ofred in work on identifying hedging or speculation.
factuality. The annotation guidelines specify that The examples above illustrate how we can take
“we focus only on annotating information relativethe data toimplicitly annotate factuality and non-
to the negative polarity of an event” (Morante et al.factuality, and we here show how to take advantage
2011, p. 4). However, the guidelines also Specifyf this to train a factuality classifier. For the exper-
that events should only be annotated for negatiod@€nts in this paper we will let positive examples
that (i) have a scope and that (ii) occur factual correspond to negations that are annotated with both
statementéMorante et al., 2011, p. 27). (As we only & SCOpe and an event, while negative examples cor-
have annotations for the sentence-level it is possibl§SPond to scoped negations with no event. For our
to have a cue without a scope in cases where tigining and development data (EB’; more de-
cue negates a proposition in a preceding sentenckjlS below), this strategy gives 738 positive exam-
The notion of (non-)factuality assumed in the curbles and 317 negatives, spread over 930 sentences.
rent work will reflect the way it is defined in the Our weakly labeled data as defined above comes
Conan Doyle annotation guidelines. Morante et aWith several limitations of course. The implicit la-
(2011) lists the following types of constructions adoeling of factuality will be limited to sentences that
notexpressing factual statements (we here show e&l€ negated. We will also not have access to an event

amples from CBEV for each case): in the cases of non-factuality. Neither, do we have
any explicit annotation of factuality cue words for
- Imperatives: these examples. All we have are instances of nega-
(3) {Do} (n't) {move} , I beg you , Watson . tion that we know to be within some non-delimited

factual or non-factual context. For our experiments
here will therefore use the negation cue itself as a
(4) {You do} (n't) {believe it , do you , Watson ? place-holder for the abstract notion of context that
we are really trying to make predictions about.

Table 1 presents some basic statistics for the rele-
vant data sets. For training and development we will
use the negation annotated versiormbe Hound of

- Non-factual interrogatives:

- Conditional constructions:

(5) If {the law can d (nothing we must take the risk our-
selves .

- Modal constructions: the Baskerville’CDH) andWisteria Lodgg CDW)
(6) {The fault from what | hear may(not) {have been en- (Morante and Daelemans, 2012). We refer to the
tirely on one sidg . combination of these two data sets asRED. For

held-out testing we will use the evaluation data
sets prepared for the *SEM 2012 shared takhke
(7) * I hope , * said Dr. Mortimer , * thaffyou doj (o} Cardboard Box(CDC) andThe Red Circl(CDR)
{look with suspicious eyes upon everyone [} ] (Morante and Blanco, 2012). We will use EB\-

- Suppositions or presumptions: to refer to the combination of CDC and CDR. Note

- Wishes or desires:
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Scoped Negations to assign different factuality labels to different in-
stances of negation within the same sentence, but
at the same time experiments showed sentence-level

Dataset Sentences Negations Factual Non-factual

CDH 3644 984 616 271 foat t0 b . cant
CDW 787 173 122 46 eatures to be very important.

CDPEV 4431 1157 738 317 Note that, ideally our features should be centered
cpe 496 133 a7 a1 on the n_egated event, but since this |r_1format|on is
CDR 593 131 86 35 only available for factual contexts, we instead take
CDEVA- 1089 264 173 76 the negation cue as our starting point. In practice,

this seems to provide a good approximation, how-
Table 1: Summary of the Conan Doyle negation date£Ver, given that the negated event is typically found
Note that the total number of negations (column 3) cain close vicinity of the negation cue.

be smaller than the number of scoped negations (columns|n addition to the BoW type features we have fea-
4+5) The reason is that it is pOSSIble to have a cue W|thures exphcmy recording the first fu”_stop punctua_

out a scope in cases where the cue negates a propositigry, following the negation cue (i.e., ", ‘', or ‘?') as

in a preceding sentence (which would not be reflecte\gveII as whether there is &f to the left. Note that,

in these sentence-level annotations). The numbers inth?h h this i ion is already implicit in th
column 'Factual’ correspond to scoped negations that irgithough this information is already implicit in the

clude an annotated event. BoW features, the model appeared to benefit from
having them explicitly coupled with the cue itself.
We also experimented with several other features
that were not included in the final configuration.
that the columnFactual correspond to negations These included distance to co-occurring verbs, and
with both a scope and event (i.e., positive examplesjodal verbs in particular. We also recorded the pres-
in terms of factuality classification), while tidon- ence of speculative verbs based on various word lists
factual column correspond to negations with scopenanually extracted from the training data. None of
only and no event (negative examples). these features appeared to contribute information not

) . already present in the simple BoW features.
4 Factuality Detection

. . ) 4.2 Reaults
Having described how we abstractly define our train-

ing data above, we can now move on to describgable 2 provides results for our factuality classifier

our experiments with training a factuality classifierUSing gold cues and gold scopes. In addition, we

It is implemented as a linear binary SVM classi-also include results for a baseline approach that sim-

fier, estimated using the SV toolkit (Joachims, ply considers all ca_lses_to be factual, i.e._, t_he majority
1999). We start by describing the feature types iﬁlass. Note that, in this case the precision (of fac-

Section 4.1 and then present results in Section 4.2ulity 1abeling) is identical to the accuracy, which
is close to 70% on both the development and held-

4.1 Features out set. The recall for the majority-class baseline is

The feature types we use are mostly variations ové&f course at 100%, and the correspondings=ap-
bag-of-words (BoW) features. We include left/rightProximately 82 on both data sets. In comparison,
oriented BoW features centered on the negation cu@!l classifier achieves an, fof 89.92 for the 10-
recording forms, lemmas, and PoS, and using bofRld cross-validation runs on the development data
unigrams and bigrams. These features are extractg@d 87.10 on the held-out test data. The accuracy

both from the sentence as a whole, and from a locki 83-98 and 80.72, respectively. Across both data
window of six tokens to each side of the cue. ThS€tsitis clear that the classifier offers substantial im-

optimal window size and the order afgrams was provements over the baseline. We do however, ob-
determined empirically. serve a drop in performance particularly with respect

The reason for including both local and sentencd® Precision when moving to the held-out set. When
level BoW features is that we would like to be abldnSPecting the scores for the two individual sections
of the held-out set, CDC and CDR, we find that
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Dataset Model Prec Rec F1 Acc Dataset Prec Rec F1

Baseline 69.95 100.00 82.32 69.95 CDP®Y 7721 66.25 71.31
Classifier 84.51 96.07 89.92 83.98 DAL 8125 5000 6L91

Baseline 69.48 100.00 81.99 69.48
Classifier 80.60 9474 87.10 80.72

CDDEV

CDEVAL
Table 3: Results for non-factuality detection (using gold

negation cues and scopes). The scores are based on the

Table 2: Results for factuality detection (using gold negasame classifier predictions as in Table 2, but treats non-
tion cues and scopes), reporting 10-fold cross-validatiopctuality as the positive class.

on CDPEY and held-out testing on CI¥AL.

the classifier seems to have more difficulties witl4.3 Error Analysisand Sample Size Effects

the former. ~Although recall is roughly the samep orqer to gauge the effect that the size of the train-
across the two sections (94.25 and 95.24, respey set has on performance we also experimented
tively, which is again fairly close to the 10-fold re-\yith |eaving out portions of the training examples
call of 96.07), precision suffers a much larger drog, oy 10-fold cross-validation runs. Figure 1 plots a
on CDC than CDR (78.85 versus 82.47). On thgarning curve showing how classifier performance
other hand, it is difficult to reliably assess perfory, cpPEV changes as we incrementally include
mance on the individual test sets, given the limite¢,, e training examples. In order to more clearly
amount of data: There are only 128 relevant tegfing out the contrasts in performance we here plot
cases in CDC and 121 in CDR. However, there alsg,q s againstonfactuality scores. We also show
seems to be signs of overfitting, in that an unhealthyq gjze of the training set on a logarithmic scale to
number of the training examples end up as SUPPORter see whether improvements are constantfor
vectors in the final model (close to 70%). fold increases of data. As can be seen, the learning
Note that the f-scores cited above targefc-  orye appears to be growing linearly with the incre-
tuality as the positive class label. However, givennens in larger training samples and it seems safe to

that this is in fact the majority class it might alsoagsyme that the classifier would greatly benefit from
be instructive to look at Fscores targetinghon-

factuality. (In other words, we will use exactly the
same classifier predictions, but compute our scores
by letting true positives correspond to former true

negatives, false positives to former false negatives, 80

and so on, thereby treating non-factuality as the pos- 7° //_/
itive class we are trying to predict.) Of course, 60 /
while all accuracy scores will remain unchanged, the so

majority-class baseline yields an 6f 0 in this case, - 4
as there will be no true positives. Table 3 lists the /
non-factuality scores for the classifier.

Given that we are not aware of any other studies
on (non-)factuality detection on this data we are not
yet able to directly compare our results against those © o %
of other approaches. Nonetheless, we believe the 3% of raining data ©
state-of-the-art results cited in Section 2 for related
tasks such as belief tagging and identifying specursigure 1: Learning curve showing the effect on flér
lation cues give reasons for being Opt|m|st|c abou'ton':factua“t.y. Iabeling when Withdrav-\ling.portions of the
the results obtained with the simple classifier use§2ining partitions (shown on a logarithmic scale) across
in these initial pilot experiments. the 10-fold cross-validation cycles.

20

10

Non-factuality predictions——
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additional training data.

This impression is strengthened by a manual in-
spection of the misclassifications for €B". Quite

a number of errors seem related to a combination of NP VP _

scarcity and noise in the data. As a fairly typical | \
. . . . EX /\ .

example, consider the following negation which the | VBD NP

system incorrectly classifies as factual: {There W\as DT/\NN

(10) “ 1 presume, sir, " said he at last , “ théit was} (not) | \
{merely for the purpose of examining my skull that you (no)  answek

have done me the honour to call here last night and again. . .
today} ? " Figure 2: Example of parse tree in the negation data set.

One could have hoped that the BoW features record-

ing the presence giresumewould have tipped this

prediction toward non-factual. However, while therQhrough (9) were all selected among cases that were
are ten occurrences pfesumén CDPEY, only three  correctly predicted by our classifier.

of these are in contexts that we can actually use as|n the next section we move on to describe a sys-
part of our factuality training data. Apart from thetem for identifying negated events and assess the im-
one in Example (10), these are shown in (11) anfact of the factuality classifier on this task (recall
(12) below, both of which indicate factual contextsrom Section 3 that only negations occurring in fac-
(given the labeling of an event). We would at leastyal statements should be assigned an event).
consider Example (11) to reveal an error in the gold

annotation here, however. 5 Event Detection

(11) “{There ig (no) {other claimant , | presume ? " To identify events in factual instances of negafion
we employ an automatically-learned discriminative
ranking function. As training data we select all nega-
We also get a few errors for incorrectly labelingtion scopes that have a single-toR@vent, and gen-

a context as factual in cases where there are no ofrate candidates from each token in the scope. The
vious indicators of non-factuality but the annotatiorcandidate that matches the event is labeled as cor-
does not mark an event, as in: rect; all others are labeled as incorrect. For the ex-
(13) * (Nothing {of much importanck, Mr. Holmes . ample sentence in Figure 2 there are three words

_ in the scope and thus three candidates for events:
For some of the other errors we observed it woulethere wasandanswer

seem that introducing additional features that are

sensitive to the syntactic structure could be bené.1 Features

ficial. For example, consider sentence (14) belowandidates are primarily described in terms of paths
where we incorrectly classify the first negation asn constituent tree$. In particular, we record the
non-factual; full path from a candidate token to the constituent
(14) [...] {1 had broughit} only to defend myself if attacked WhOS€ projection matches the negation scope (i.e.,

and (not) {to shoot{an} (un){armedman} who wag the most-specific constituent that subsumes all can-
running{away} .

(12) “{I presumé (nothing .

2Note that, although one could of course argue that negated
The error is most likely due to overgeneralizing fronevents should also be identified for non-factual contexts, that is
the presence df. By letting the lexical features be not how the task is construed in *SEM 2012 shared task or in
f text trained by th nt t)k(le Conan Doyle data sets.
extracted from a an ex C'OI.’IS a_ €d by the Synia 3To simplify the system we assume that all events are single
tree rather than a simple sliding window, such errorgyens. It should be noted, however, that 9.85% of events in
might be avoided. CDPEV are actually composed of multiple tokens.

For some more optimistic examples, note that the “Constituent trees from Charniak and Johnson’s Max-Ent

previously listed examples of non-factuality in (3)reranklng parser (2005) were provided by the task organizers.

33



didates). In Figure 2 this is th& root of the
tree; the path that describes the correct candidate is

answer / NN/ NP/ VP/ S. We also record delexical- 90 T
ized paths (e.g.,/ NN/ NP/ VP/ S) and generalized /
paths (e.g.,/ NN/ / S), as well as bigrams formed of o g5

nodes on the path. Furthermore, we record some sur-
face properties of candidates, namely; lemma, part-
of-speech, direction and distance from cue, and po-
sition in scope. Finally, we record the lemma and
part-of-speech of the token immediately preceding 75
the candidate (development testing showed that in-
formation about the token following the candidate
was not beneficial). Figure 3: Learning curve showing the effect op fer
Based on the features above we learn an SVMVent detection when using gold factuality and withdraw-
based scoring function using the implementation g9 Portions of the training partitions (shown on a loga-
ordinal ranking in SvV/Might (Joachims, 2002). We rithmic scale) across the 10-fold cross-validation cycles
use a linear kernel and empirically tune the regu-
larization parametef’ (governing the trade-off be-
tween margin size and errors).

Event predictions——

(00

% of training data

will typically be the most valuable and it will there-
5.2 Results fore easily be more sensitive to having the training

Similarly to the leaming curve shown above forsample restrained. Even so, it seems clear that the

factuality detection, Figure 3 plots the Bf event factuality detection component and event detection
detection on CBEY when providing increasing component belong to different ends of the spectrum

amounts of training data and using gold standard i’ terms of sensitivity (o sample size.

formation on factuality. (Note that, except for end- Table 4 details the results of using the final rank-

to-end results below, all scores reported in this papé’?g model to predict negated events. For a compar-

assumes gold negation cues and gold scopes, giv%%ve baseline, we implemented a basic ranker that

. ly the candidate lemma as a single feature.
that we want to isolate the performance of the eve#[sgs on . i
P his baseline achieves an f 73.90 (P=74.01,

ranker and/or factuality classifier.) We see that th
4 ) C§=73.80) on CBEY when using factuality informa-

performance is remarkably strong even at 10% !l n inferred f h ld-standard (and testing b
the total data, and increases steadily until aroun n inferred from the gold-standar (a_n esiing by
O-fold cross-validation). For comparison, the full

60%, at which point it appears to be leveling off. . .
° WhICh point 1t app veing anking model achieves an, Fof 90.42 (P=90.75,

It is unclear as to whether or not the ranker woul ~00.10) on th data set in Table 4
benefit from additional data. We also note differ- =~ ) on the same data set, as seen in _a €.
Of course, the results for event detection us-

ences with respect to the factuality learning curve ld-standard factuality al ides th
in Figure 1, both in terms of “entry pen‘ormance”Ing gold-siandard lactuaiity aiso provides the up-

and overall trend. To some degree, there are geR-er bound for what we can achieve using system

eral reasons as to why one could expect to see dﬁa_redicted factuality, i.e., applying the classifier de-

ferences in learning curves for a discriminative rank§Cr|becl N Sectlon. 4. In Q_rder o assess the im-
act of the factuality classifier we also include re-

ing/regression set-up and a classifier set-up (assu%

ing that the class distribution for the latter is unbaI-SUItS for event detection using the majority-class

anced, as is typically the case). For a ranker, e\p_asellne, which means simply assuming that all in-

ery item provides useful training data, in the Sensgtances of negations are factual. Table 4 lists re-

that each item provides both positive and negativ%uns for event detection using system predicted fac-
ality, compared to results using baseline and gold-

examples (in our case selected from the candida%

tokens within a negation scope). For a classifier, th%tandard factuality. We find that the factuality clas-

few items providing examples of the minority classSncler greatly improves precision of the event de-
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Dataset Factuality Prec  Rec F can be trained by taking advantage of implicit in-
Baseline 6224 90.10 73.62 formation on factuality found in the negation an-
CD°®Y  Classifier (10-fold) ~ 78.48 82.98 80.67 notations of the Conan Doyle corpus (Morante and
GOId_ 9.75 9010 9042 Daelemans, 2012). Even though the pilot experi-
o S ooy o Sass S ments described n this paper use ust simple lex
Gold 8494 8494 8494 ical features, the factuality classifier provides sub-
stantial improvements over the majority-class base-
Table 4: Results for event detection using various mettine. We also present a system for detecting negated
ods for factuality detection. events by learning an SVM-based discriminative
ranking function over candidate tokens within the
negation scope. We show that the factuality classi-
fier proves very useful for improving the precision
tection. As can be expected, however, this coma¥ event detection. In order to isolate the perfor-
with a cost in terms of recall. In both 10-fold mance of the event ranker and factuality classifier we
cross-validation on CPFVY and held-out testing on have focused on results for gold negation cues and
CDEVAL we find large improvements in;Fcorre- scopes in this paper, although end-to-end results for
sponding to error reductions of 26.73% and 15.93%e full system presented by Read et al. (2012) are
respectively. As expected given the results discuss@Bo included. The system obtained the best results
in Section 4, the improvement is slightly less profor identifying negative factual events in the 2012
nounced for the held-out test results than the 10-folfSEM shared task.
cross-validated development results. Although the It is worth noting that there is nothing inherently
factuality classifier improves substantially over théegation specific about our factuality detection ap-
baseline, it is also clear that a large gap remairgroachper se save for how the training data happens
toward the “upper bound” results of using gold-to be extracted in the current study. One reason for
standard factuality. We take the results of the pilogsing the implicit factuality information in the Co-
experiments described in this paper as a proof-opan Doyle negation corpus is the advantage of get-
concept for using the CD data for training a factualting in-domain data, and this also allowed us to stay
ity classifier, and at the same time have high expewvithin the confines of the closed track for the *SEM
tations that future experimentation with additionashared task. For future experiments, however, we
(syntactically oriented) feature types should be ablould also like to test cross-domain portability by
to further advance performance considerably. both training and testing the factuality classifier us-
Building on the system presented in Velldal et aling other annotated data sets such as FactBank, and
(2012), the initial *SEM 2012 shared task submisalso add features that incorporate predictions from
sion of Read et al. (2012) also included an SVMpeculation cue classifiers trained on BioScope.
negation cue classifier (including support for mor-
phological cues) along with an SVM-based rankACknowledgments

ing model over syntactic constituents for scope respe want to thank Roser Morante and Eduardo
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