
Proceedings of the 6th Linguistic Annotation Workshop, pages 104–112,
Jeju, Republic of Korea, 12-13 July 2012. c©2012 Association for Computational Linguistics

Usability Recommendations for Annotation Tools

Manuel Burghardt
Media Informatics Group
University of Regensburg

manuel.burghardt@ur.de

Abstract

In this paper we present the results of a heuris-
tic usability evaluation of three annotation
tools (GATE, MMAX2 and UAM Corpus-
Tool). We describe typical usability problems
from two categories: (1) general problems,
which arise from a disregard of established
best practices and guidelines for user interface
(UI) design, and (2) more specific problems,
which are closely related to the domain of lin-
guistic annotation. By discussing the domain-
specific problems we hope to raise tool devel-
opers’ awareness for potential problem areas.
A set of 28 design recommendations, which
describe generic solutions for the identified
problems, points toward a structured and sys-
tematic collection of usability patterns for lin-
guistic annotation tools.

1 Introduction

To find valuable clues about annotation tools and the
role of usability, we have reviewed the LAW pro-
ceedings from 2007-20111 (altogether 140 articles)
systematically with regard to their main topics. As
expected, most articles are concerned with linguistic
corpus annotation scenarios, which are oftentimes
realized by deploying automatic tools. However, ar-
ticles which use a manual or semi-automatic annota-
tion approach are just as frequent. Most manual an-
notation projects rely on annotation tools, which are
either selected from the wide range of freely avail-
able tools, or crafted for the very project. Although

1http://www.cs.vassar.edu/sigann/previous workshops.html

the usability of such tools, which is oftentimes para-
phrased as ease-of-use or user-friendliness, is gener-
ally understood as an important factor to reduce time
and effort for laborious annotation projects (Dan-
dapat et al., 2009; Santos and Frankenberg-Garcia,
2007), a serious account on how to systematically
test and engineer usability for annotation tools is
largely missing. Dipper et al. (2004) are amongst
the few who evaluate the usability of a selection of
tools in order to choose an adequate candidate for
their annotation project. In other respects, usabil-
ity is only mentioned as a rather vague requirement
that is (if at all) implemented according to the devel-
oper’s personal assumption of what makes a usable
tool (cf. e.g. Eryigit, 2007).

The rest of the paper is structured as follows: in
chapter 2 we show that usability is not some vague
postulation, but actually a criterion that can be mea-
sured and systematically engineered. Chapter 3 de-
scribes the testing method that has been applied
to evaluate three annotation tools (GATE, MMAX2
and UAM CorpusTool) in order to reveal typical us-
ability problems. We discuss the results of the eval-
uation in chapter 4 and present usability recommen-
dations for annotation tools in chapter 5. These rec-
ommendations will help developers to design tools
which are more usable than current implementa-
tions. They can also be used as a basic usability
checklist for annotators who have to choose from
the wide variety of available tools. Finally, the set
of recommendations will serve as a starting point for
further research concerning the usability of annota-
tion tools, with the ultimate goal being to provide
a wholesome collection of usability patterns for this

104



very domain. Chapter 6 provides an outlook to the
wider context of this particular study.

2 Usability fundamentals

2.1 Defining usability
According to Nielsen (1993), usability can not be
described as a one-dimensional criterion, but must
rather be seen as a concept that consists of multiple
components such as learnability, efficiency, memo-
rability, error rate and satisfaction. Each of these
usability components can be measured individually,
thus making the hitherto vague concept of usability
more concrete. There are also more formal defini-
tions, e.g. the ISO 9241-11 standard (1999), which
characterizes usability as

“the extent to which a product can be
used by specified users to achieve spec-
ified goals with effectiveness, efficiency,
and satisfaction in a specified context of
use.”

Barnum (2011) emphasizes the use of the term spec-
ified in this definition, which indicates that usability
has to be engineered for a specific user with specific
goals in a specific context.

2.2 Usability engineering
Usability engineering can be seen as a set of activ-
ities, which describe a systematic way to create us-
ability for a system throughout its development life-
cycle. Hence, there are several suggestions for us-
ability engineering life-cycles, which show similar-
ities and parallels to existing software engineering
and development processes. The ISO standard for
human-centered design of software (ISO 9241-210,
2010) describes four elementary stages: (1) under-
stand and specify context of use, (2) specify user re-
quirements, (3) produce design solutions, (4) eval-
uate designs and iterate the previous steps if neces-
sary.

2.3 Usability testing
Usability testing is an important activity throughout
the usability engineering life-cycle (cf. stage 4 of the
ISO 9241-210 process), but it may also be used as a
stand-alone-method, to achieve one of the following
goals:

(I) To find out which system is better (comparison)

(II) To judge how well a system works (summative
judgment)

(III) To find out why a system is bad (reveal usabil-
ity problems)

The annotation tools evaluated in this paper are nei-
ther compared to each other, so as to find out which
one is best, nor are they tested against some prede-
fined set of criteria. The goal of our evaluation is
to reveal usability problems for existing annotation
tools (cf. goal III).

There is a huge collection of different usability
testing methods, which can be used to conduct
a usability evaluation. Basically, they can be
divided into two main categories (Rosson and
Carroll, 2002): Empirical methods, which collect
information about the usability of a system by ob-
serving and interviewing actual users, and analytic
methods, which rely on usability-experts who try
to put themselves in the position of actual users.
Usually, analytic methods are used early in the
design process because they are less laborious than
empirical methods. Empirical methods however
are by nature more demanding, as they require real
users, and the data has to be interpreted by usability
experts afterwards. Among the analytic methods are
the so-called inspection methods, which include e.g.
the cognitive walkthrough (CW) and the heuristic
evaluation (HE).

Cognitive walkthrough — During a CW the evalu-
ator tries to put himself in the position of an actual
user in order to explore and experience the system
from the user’s point of view. It is important to know
the basic characteristics of the actual user (e.g. by
observing real users) and to make use of four con-
trol questions (Wharton et al., 1994) (cf. Table 1).

The CW method can be described as being
very structured and task-oriented: the evaluator
explores and tests the system as he tries to solve
some predefined tasks step by step. These tasks
have to be designed in such a way as to ensure that
the evaluator will experience the most important
features of the system. The evaluator documents
every step, either positive or negative, on his way to
solving the task.

105



Q1 Will users know what they need to do
next to accomplish their task?

Q2 Will users notice that there is a control
available that will allow them to
accomplish the next part of their task?

Q3 Once users find the control, will they
know how to use it?

Q4 If users perform the correct action, will
they see that progress is being made
toward completing the task?

Table 1: Control questions to support empathy with the
actual user.

Heuristic evaluation — Basically, the HE is a
rather unstructured expert evaluation, where a col-
lection of usability principles (the heuristics) serves
as a basic guideline for the usability-experienced
evaluator. The heuristics are formulated in a generic
way and are meant to provide some basic structure
for the evaluation process. Among the most widely-
known sets of usability heuristics are Nielsen’s
(1994) ten heuristics2 (cf. Table 2).

H1 Visibility of system status
H2 Match between system and the

real world
H3 User control and freedom
H4 Consistency and standards
H5 Error prevention
H6 Recognition rather than recall
H7 Flexibility and efficiency of use
H8 Aesthetic and minimalist design
H9 Help users recognize, diagnose,

and recover from errors
H10 Help and documentation

Table 2: Nielsen’s heuristics for user interface design.

These heuristics are intended to facilitate the dis-
covery of actual usability problems, as the evalu-
ator relates identified usability problems to one or
more heuristics and ranks the severity of the prob-
lem. Once the evaluation is finished, the heuristics
make it easy to cluster usability problems and to

2Nielsen’s ten heuristics (accompanied by short, ex-
planatory decriptions) are also freely available online:
http://www.useit.com/papers/heuristic/heuristic list.html

identify those problematic areas where the system
needs to be improved.

A HE can be conducted by multiple evaluators.
For the ideal cost-benefit ratio, Nielsen (1994)
recommends 3-5 evaluators, as this number of
evaluators on average discovers about 60-75% of all
potential usability problems of a system. The ideal
evaluator is a double-expert, i.e. he is both a domain
expert and a usability expert (Nielsen, 1992).

Heuristic walkthrough — Sears (1997) describes
the heuristic walkthrough (HW) as a method which
sorts out some of the problems of existing inspec-
tion methods. Among the problems of the HE is
its lack of structure and its strong focus on abstract
heuristics. As a result, the heuristic evaluator is
prone to find only problems that are captured by the
heuristics, or if still unexperienced, he might even
find false usability problems by misinterpreting the
heuristics. While conducting a HE it is important
to know that not every violation of a heuristic re-
sults in a usability problem. Sometimes the violation
of one heuristic can be interpreted as an intentional
compromise for not violating three other heuristics.
The CW on the other hand has too much structure
by relying on a list of user tasks and a guided set of
questions. The CW approach discourages the dis-
covery of usability problems that are not covered by
the tasks or the questions.

The HW method borrows ideas from both, HE
and CW: from HE it takes the free-form evaluation
and the list of usability heuristics, from CW it takes
the idea of user tasks and the check-questions,
which emphasize the most important steps during
a dialog. The HW also incorporates ideas from
the usability walkthrough method (Karat et al.,
1992), which is a two-way process consisting of a
heuristics-based, free-form evaluation, and a more
structured, task-based phase.

3 Usability evaluation of annotation tools

This study applies the HW method to demonstrate
that the usability of annotation tools can be tested
even with scarce resources. Another goal is to pro-
vide some exemplary proof that existing tools suf-
fer from considerable usability problems, which di-

106



rectly influence the benefit-to-cost ratio of annota-
tion projects (Dandapat et al., 2009). A third goal is
to collect typical usability problems from the anno-
tation domain, which can serve as a starting point to
generate a collection of best practices and usability
recommendations for the design of annotation tools.

3.1 Evaluation design

This subsection describes how the HW has been
adopted to evaluate annotation tools.

Evaluators and prearrangements — For the eval-
uation of three exemplary annotation tools we chose
three evaluators, with each of them testing each tool.
One of the three evaluators was a double-expert3, i.e.
the evaluator is not only experienced in usability-
testing, but also has experience in linguistic anno-
tation and the use of annotation tools. The other two
evaluators are usability experts, with a basic back-
ground in linguistic annotation. The double-expert
thus had the additional function of making the us-
ability experts aware of domain- and user-specific
problems and requirements (cf. Reidsma et al.,
2004). A brief introductory text, which contained
the essential contextual information, was provided
for the other evaluators before they conducted the
actual tests. Additionally, the double-expert could
be addressed during the first phase (CW) if any
domain-specific problems kept the evaluators from
solving their tasks. The tasks were designed by the
double-expert and pretested by two additional test
persons before the actual HW session. Although the
tasks were slightly modified for each of the three
tested tools, they included the following basic con-
stituents:

(I) Import a text document into the tool

(II) Create an annotation scheme with two annota-
tion layers, one for parts of speech, and one for
phrases

(III) Create some basic tags in each of the created
annotation layers

(IV) Annotate the first sentence of the imported text

(V) Delete an annotation

3Note: the double-expert is also the author of this paper.

Limitations of this study — Further requirements
for annotation tools, like e.g. the search and query-
ing for annotations within the tool, or the export of
annotated data for further processing, have not been
studied in this evaluation, as the tasks would have
become to complex for a HW session. For means
of feasibility we did not consider the special needs
of multi-user annotation scenarios in this evaluation
study. We also simplified our test scenario by
assuming that the schema designer and the actual
annotator are the same person. Large annotation
projects, which involve many different annotators
and schema designers at different skill levels, how-
ever imply additional requirements for annotation
tools. Such multi-user requirements are hard to test
with expert-based evaluation approaches, but should
be rather addressed by using empirical test methods
(e.g. user observation or interviews).

System exploration (CW) — During the first
phase of the evaluation the main steps and user
comments were recorded as a screen capture with
the corresponding audio track. The main steps and
important remarks were also written down by the
double-expert, who acted as a passive observer.
After the evaluators had finished the first phase
of the HW, the documented steps were quickly
recapitulated by the observer.

Documentation of problems (HE) — In the second
phase, the evaluators wrote down usability problems
which they had discovered while solving the tasks
from the first phase. During this phase, they were
still allowed to use and explore the annotation
tool. The evaluators used a template for problem
documentation, which provides fields for the name
of the problem, the severity of the problem, and
the violated heuristic(s). The scale for the severity
rating ranges from 1 (cosmetic problem) to 4
(usability catastrophe).

Data analysis and clustering — At the end of the
test sessions, all usability problems were analyzed
by the double-expert. The problems were aggre-
gated if several evaluators described the same prob-
lem for one tool. The problems were also clustered
into thematic categories, which emerged during the
analysis of the problems, and which are described in

107



more detail in the results section.

3.2 Selection of tools

Elementary differences between the vast number of
existing annotation tools can be found with respect
to the type of software as well as to the modal-
ity of annotation. Software types reach from sim-
ple, proprietary stand-alone programs to complex,
standardized annotation and text processing frame-
works. Tools also differ in the modality of annota-
tion (images, spoken or written text, audio or video
files). We chose to evaluate three freely available
tools for the annotation of written texts. The selected
tools represent different software types and showed
quite different implementation approaches in earlier
pretests (Burghardt and Wolff, 2009).

The first subject of evaluation was GATE4 (Gen-
eral Architecture for Text Engineering), a widely
used text annotation framework, which has been de-
veloped since 1997. GATE was last updated in
02/20125 and claims to have around 35.000 down-
loads p.a. (GATE, 2009). GATE is actually more
than just an annotation tool, as it allows to inte-
grate many automatic processing modules. How-
ever, for this evaluation, only the manual annotation
features were tested and judged. Furthermore, we
decided to evaluate MMAX26 (Multi-Modal Anno-
tation in XML) and UAM7 (Universidad Autonoma
de Madrid) CorpusTool. Both tools are stand-alone
annotation tools and therefore cannot be extended as
easily as the GATE framework, but both implement
interesting annotation features in very distinct and
unique ways. Although the last update for MMAX2
dates back to 07/2010, and the number of downloads
is at a moderate 4.700, we chose the tool, as it oc-
curs frequently in literature and annotation projects.
UAM CorpusTool was updated in 12/2011, and so
far has 10.200 downloads8.

4 Evaluation results

This section describes the results of the HW. The
first part views the results with focus on the vio-

4http://gate.ac.uk/
5Note: the evaluation was conducted with GATE 6.1.
6http://mmax2.sourceforge.net/
7http://www.wagsoft.com/CorpusTool/
8Both, MMAX2’s and UAM CorpusTool’s download
numbers describe the state of February 2012.

lated heuristics, and the second part focuses on more
generic problem categories, which will be discussed
in more detail in the next chapter.

4.1 Heuristic violations
There seems to be a trend toward the violation of H5
in each of the tools (cf. Figure 1), indicating that
error prevention is a usability problem category that
should be considered by annotation tool developers
with particular attention. There are also numerous
problems which violate H1 (visibility of system sta-
tus), H2 (match between system and the real world),
H4 (consistency and standards) and H6 (recognition
rather than recall), and fewer records for the viola-
tion of H8 (aesthetic and minimalistic design) and
H10 (help and documentation). In general, none of
the tools does exceptionally well or bad with regard
to these heuristics when compared to each other. At
the same time, H3 (user control and freedom), H7
(flexibility and efficiency of use) and H9 (help users
recognize, diagnose, and recover from errors) on av-
erage are not violated very often. This implies that
the three evaluated tools contain many positive ex-
amples for implementing features which fall into the
described heuristic categories.

Figure 1: Number of violated heuristics per tool.

Strikingly positive or negative counts of violated
heuristics for individual tools will not be discussed
in detail here, but are rather captured in the recom-
mendations chapter. Nevertheless, the specific num-
bers display that there are tool-specific strengths and

108



weaknesses, which consequently means that recom-
mendations and best practices will have to be gath-
ered from different tools, and that none of the tested
tools can without further ado be used as the gold
standard for a perfectly usable annotation tool.

4.2 Problem counts and categories

The test results of the three evaluators for the anno-
tation tools GATE, MMAX2 and UAM CorpusTool
reveal a total of 143 usability problems, of which
81 can be identified as unique usability problems.
The number of unique problems per tool is quite
balanced, with 23 problems for MMAX2, and 29
problems for both GATE and UAM CorpusTool (cf.
Table 3). The counts for unique problems together

Tool All Unique Average
problems problems severity

GATE 51 29 2.8
MMAX2 41 23 2.9
UAM CT 51 29 2.8

Table 3: Number of identified usability problems per tool.

with the average problem severity of each tool show
that neither of the tools outperforms the others with
regard to usability. Although the average severity
(scale: 1.0 - 4.0) of the problems found for each tool
is not very meaningful by itself, the values (2.8 -
2.9) indicate that the majority of problems are more
than just cosmetic problems or nice to have features,
but rather serious issues that need to be addressed by
tool developers.

By looking at the identified problems in more de-
tail, it becomes obvious that most of them are very
tool specific, which proves the previous claim that
different tools have individual positive and negative
features. During the process of sorting and aggregat-
ing the identified usability problems to meaningful
clusters, two main categories with a total of seven
subcategories emerged. The first main category can
be subsumed as “general usability problems”, i.e.
problems in this category are not specifically related
to the field of annotation tools, but could be traced
in any other kind of software. The second category
contains problems which are closely connected to
the field of linguistic annotation.

4.3 General usability problems

The evaluation revealed a total of 30 general usabil-
ity problems, which can be further distinguished as
belonging to one of the following two subcategories
(cf. Table 4):

Cat. Description G M U Total
A Feedback and 2 6 7 15

user guidance,
error messages

B UI elements 4 3 8 15
and design

Table 4: Number of general usability problems per tool
(G=GATE, M=MMAX2, U=UAM CorpusTool).

Typical examples for such problems reach from
cryptic error messages or unclear system prompts
(category A) to badly designed buttons and menus
(category B). As the treatment of such general prob-
lems is extensively described in numerous guide-
lines and best practice collections (cf. e.g. Johnson,
2007; Apple, 1992), these problems and their solu-
tions will not be further discussed in this paper.

4.4 Domain-specific annotation usability
problems

The second main category contains a total of
51 domain-specific annotation usability problems,
which are aggregated to form another five subcat-
egories (cf. Table 5).

Cat. Description G M U Total
C Wording and 4 1 2 7

metaphors
D Import / edit 4 2 3 9

primary data
E Import / create / 7 5 5 17

edit annotation
scheme

F Apply / edit / 6 3 2 11
delete annotations

G Visualize 2 3 2 7
annotations

Table 5: Number of domain-specific annotation usabil-
ity problems per tool (G=GATE, M=MMAX2, U=UAM
CorpusTool).

109



The problems in these subcategories are very inter-
esting for tool designers, as they are closely con-
nected to the specific domain of annotation tools.
They are summed up as design recommendations in
the next chapter.

5 Design recommendations for usable
annotation tools

This section subsumes the insights gathered from
positively evaluated tool features and the lessons
learned from problematic features in the form
of general design recommendations for annotation
tools. These recommendations provide solutions for
the most severe usability problems found in our eval-
uation study.

5.1 Wording and metaphors
The wording and the use of metaphors (category C)
within an annotation tool are crucial for the basic
understanding, the learnability and the memorabil-
ity of the tool. Most problems occurred when the
wording or the metaphors for basic functions devi-
ated from conventions established by similar kinds
of software, like e.g. text processing software. The
wording for more domain-specific functions often
seems to be very technical or theory-driven, i.e. it
is not easily understood by the “plain annotator”
(Reidsma et al., 2004).

R1 Do not invent new metaphors for fundamental in-
teraction paradigms that are known from numer-
ous other tools, but rather stick to conventionalized
wording for basic actions like e.g. importing or sav-
ing a file

R2 Refrain from using technical wording, although it
might seem obvious from a developer’s point of
view, but rather try to rephrase technical concepts
in the domain-specific language

R3 Make sure that metaphors are understood by users
from the domain of linguistic annotation; if using a
set of metaphors, make sure they are consistent and
easy to differentiate

R4 The help function should use wording that describes
a problem from the user’s perspective

5.2 Primary data
In order to import a document (category D) into an
annotation tool, the user usually has to set all kinds
of importing and preprocessing parameters. In many

cases, the plain annotator is unable to cope with all
these settings and options, besides he does not real-
ize which effects the settings will have on the later
annotation process. Another potential problem with
imported text occurs with the possibility of editing
the primary data.

R5 Guide the user through the import process and make
clear which parameters have to be set by providing
default values and a list of options rather than free
text fields

R6 Automatize preprocessing parameters as far as pos-
sible and provide standard users with meaningful
default values; offer optional advanced settings for
more experienced users

R7 Provide a preview of the imported text, but make
sure the user realizes it is only a preview and not
the actual document

R8 Allow users to optionally customize and style the
appearance of the primary text (color, size, fonts,
etc.)

R9 Provide an adequate visual separation of primary
data and annotation base markers

R10 Provide a mechanism to import and organize mul-
tiple documents within an annotation project (basic
corpus management features)

R11 Make sure that the primary text cannot be edited ac-
cidentally; also make sure to inform the user about
possible consequences of changes in the primary
text

5.3 Annotation scheme

Before a user can start to annotate, he needs to be
able to import or define a new annotation scheme
(category E). The definition and editing of annota-
tion schemes is realized very differently in the three
tools, each with specific problems.

R12 Allow the import of existing schemes and make
clear which formal requirements will have to be met

R13 Allow the creation and editing of an annotation
scheme from within the tool; hide technical details
by providing a graphical scheme-editor and offer an
optional XML-mode for advanced users

R14 Make clear which annotation scheme is associated
with the imported text

R15 For most users, the creation of an annotation layer,
which has the function of a container, and the cre-
ation of tags for this layer, are closely connected:

110



provide a mechanism that does not separate the cre-
ation of a layer and the creation of the actual tags;
at the same time, allow to edit the layer as a whole
(delete, rename, change order, etc.) but also allow
to edit individual tags on a layer

R16 Provide an easy mechanism to move tags from one
layer to another

R17 As in many annotation projects the scheme gradu-
ally evolves with the actual annotation process al-
low the ad hoc modification of the scheme; make
sure the user is aware of potential inconsistencies
and provide a basic validation mechanism

5.4 Annotation process

In order to apply an annotation (category F), some
user-defined unit of the original text has to be se-
lected via mouse or keyboard, functioning as the
“base of the annotation” (Fogli et al., 2004). De-
pending on whether the annotation base is a single
word, or some specific phrase in a complex syntac-
tic construction, the selection process itself can be
fairly challenging for the human annotator already.
Applying or deleting an annotation to or from a se-
lected text-unit bears the most problem potential for
interaction design. The interaction becomes even
more demanding when multi-level annotations have
to be applied, i.e. an annotation base is annotated
with multiple, parallel annotations.

R18 Provide conventionalized interaction mechanisms
which are familiar from existing text editors such
as single click, double click and click-drag-release

R19 Provide an option for automatic segmenting tools
such as tokenizers or sentence splitters; also allow
for easy overwriting of those automatically gener-
ated segments if necessary

R20 Allow easy modification (expand or shrink the
range) and deletion of existing annotation bases

R21 Display the annotation scheme of a specific layer
of annotation at any time in order to simplify the
application of the appropriate annotation

R22 Provide a quick and easy annotation mechanism,
with a minimum number of steps (=mouse-clicks
/ key-strokes): select an annotation base (step 1),
select an appropriate annotation from the scheme
(step 2), apply the annotation (step 3)

R23 Provide an easy mechanism to select tags from dif-
ferent annotation layers

5.5 Annotation visualization

The recommendations for the last problem category
are concerned with the adequate visualization of the
annotated data (category G). The main challenge
here is to integrate the annotations into the primary
text in a way the user can distinct not only different
annotations from the primary text, but also parallel
annotations from each other.

R24 Display an annotation when clicking on or hovering
over an annotated text-unit

R25 Provide filtering of visible annotations by single
tags (e.g. show all nouns) and by the whole annota-
tion layer (e.g. hide all part of speech annotations)

R26 Allow the user to customize and style his annotation
and the annotation base by using different colors or
markers

R27 Provide an adequate visualization of parallel anno-
tations for one annotation base, e.g. by using the
layer- or stack-metaphor

R28 Provide an optional XML-view of the annotated
data for advanced users

6 Outlook and future work

While human-computer interaction has been and
still is the subject of extensive research, the sub-
genre of humanist-computer interaction has been
treated with significantly less attention. Fortunately,
usability is increasingly perceived as a key factor
in the entire corpus creation process (Santos and
Frankenberg-Garcia, 2007), which besides annota-
tion includes the digitization of primary data and
the querying and visualization of the annotated data
(Culy and Lyding, 2009).

The recommendations derived from the usabil-
ity evaluation of three existing annotation tools may
serve as a starting point for subsequent studies which
point toward a more structured and validated set of
usability patterns for the design of annotation tools9.
Such a collection of patterns (Borchers, 2001) can
help tool developers to systematically engineer us-
ability for future tools, or to refactor the usability
(Garrido et al., 2011) of existing tools.

9The evaluation study described in this paper accompanies
an ongoing dissertation project on usability patterns for annota-
tion tools.

111



Acknowledgments

I would like to thank Isabella Hastreiter and Flo-
rian Meier for taking part in the HW study, and Tim
Schneidermeier and Prof. Christian Wolff for feed-
back and helpful advice throughout the project.

References

Apple Computer. 1992. Macintosh human interface
guidelines. Addison-Wesley.

Carol M. Barnum. 2011. Usability Testing Essentials:
Ready, Set...Test . Morgan Kaufmann Publishers.

Jan Borchers. 2001. A pattern approach to interaction
design. Wiley & Sons.

Manuel Burghardt and Christian Wolff. 2009.
Werkzeuge zur Annotation diachroner Korpora. In:
Proc. GSCL-Symposium Sprachtechnologie und eHu-
manities, 21–31.

Chris Culy and Verena Lyding. 2009. Corpus clouds - fa-
cilitating text analysis by means of visualizations. In:
LTC’09 Proceedings of the 4th conference on Human
language technology: challenges for computer science
and linguistics, Springer-Verlag, 351–360.

Sandipan Dandapat, Priyanka Biswas, Monojit Choud-
hury, and Kalika Bali 2009. Complex linguistic an-
notation - no easy way out! A case from Bangla and
Hindi POS labeling tasks. In: Proceedings of the Third
Linguistic Annotation Workshop, Morristown, NJ, 10–
18.

Stefanie Dipper, Michael Götze, and Manfred Stede.
2004. Simple annotation tools for complex annotation
tasks: an evaluation. In: Proceedings of the LREC
Workshop on XML-based Richly Annotated Corpora,
54–62.

Gülsen Eryigit. 2007. ITU treebank annotation tool. In:
Proceedings of the First Linguistic Annotation Work-
shop, Prague, 117–120.

Daniela Fogli, Giuseppe Fresta, and Piero Mussio. 2004.
On electronic annotation and its implementation. In:
Proceedings of the working conference on Advanced
visual interfaces - AVI ’04, 98–102.

Alejandra Garrido, Gustavo Rossi, and Damiano Dis-
tante. 2011. Refactoring for usability in web appli-
cations. In: IEEE Software vol. 28, 60–67.

GATE. 2009. GATE online brochure
http://gate.ac.uk/sale/gate-flyer/2009/gate-flyer-4-
page.pdf, accessed in February 2012.

ISO 9241-11. 1999. Ergonomic requirements for office
work with visual display terminals – Part 11: Guidance
on usability. ISO.

ISO 9241-210. 2010. Ergonomics of human-system in-
teraction – Part 210: human-centred design process for
interactive systems. ISO.

Jeff Johnson. 2007. GUI Bloopers 2.0: common user
interface design don’ts and dos. Morgan Kaufmann
Publishers.

Claire-Marie Karat, Robert Campbell, and Tarra Fiegel.
1992. Comparison of empirical testing and walk-
through methods in user interface evaluation. In: CHI
’92 Proceedings of the SIGCHI conference on Human
factors in computing systems, ACM Press, 397–404.

Jakob Nielsen. 1992. Finding usability problems
through heuristic evaluation. In: Proceedings of the
ACM CHI’92 Conference, 373–380.

Jakob Nielsen. 1993. Usability Engineering. Morgan
Kaufmann Publishers.

Jakob Nielsen. 1994. Heuristic evaluation. In: Jakob
Nielsen and Robert Mack (eds.): Usability Inspection
Methods. John Wiley & Sons, 25–62

Dennis Reidsma, Natasa Jovanovic, and Dennis Hofs.
2004. Designing annotation tools based on proper-
ties of annotation problems. Report for the Centre for
Telematics and Information Technology. University of
Twente: Dept. of Computer Science, HMI Group.

Mary Beth Rosson and John M. Carroll. 2002. Usability
Engineering. Scenario-based development of human-
computer interaction. Morgan Kaufmann Publishers.

Diana Santos and Ana Frankenberg-Garcia. 2007. The
corpus, its users and their needs: a user-oriented eval-
uation of COMPARA. In: International Journal of
Corpus Linguistics, 12(3), 335–374.

Andrew Sears. 1997. Heuristic walkthroughs: find-
ing the problems without the noise. In: International
Journal of Human-Computer Interaction, 9(3), 213–
234.

Cathleen Wharton, John Rieman, Clayton Lewis, and Pe-
ter Polson. 1994. The cognitive walkthrough method:
a practitioner’s guide. In: Jakob Nielsen and Robert
Mack (eds.): Usability Inspection Methods. John Wi-
ley & Sons, 105–140.

112


