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Abstract 

We present two approaches (rule-based and 
statistical) for automatically annotating 

intra-chunk dependencies in Hindi. The 

intra-chunk dependencies are added to the 
dependency trees for Hindi which are 

already annotated with inter-chunk 

dependencies. Thus, the intra-chunk 
annotator finally provides a fully parsed 

dependency tree for a Hindi sentence. In 

this paper, we first describe the guidelines 

for marking intra-chunk dependency 
relations. Although the guidelines are for 

Hindi, they can easily be extended to other 

Indian languages. These guidelines are 
used for framing the rules in the rule-based 

approach. For the statistical approach, we 

use MaltParser, a data driven parser. A part 
of the ICON 2010 tools contest data for 

Hindi is used for training and testing the 

MaltParser. The same set is used for testing 

the rule-based approach. 

1 Introduction 

Treebanks are corpora in which each sentence 
pairs with a parse tree. These are linguistic 

resources in which the morphological, syntactic 

and lexical information for each sentence has been 

explicitly marked. Some notable efforts in this 

direction are the Penn Tree Bank (Marcus et al., 
1993) for English and the Prague 

Dependency Bank (Hajicova, 1998) for 

Czech.  Lack of such treebanks has been a major 
bottleneck in various efforts in advance research 

and development of NLP tools and applications for 

Indian languages. 
Treebanks can be created manually or semi-

automatically. Manual creation of treebank is a 

costly task both in terms of money and time. The 
annotators follow a set of prescribed guidelines for 

the annotation task. Semi-automatic creation of 

treebank involves first running of tools/parsers and 
then manual correction of errors. An accurate 

annotating parser/tool saves cost and time for both 

the annotation as well as the validation task. 
A multi-layered Hindi treebank is in the process 

of being created (Bhatt et al., 2009). Dependency 

treebank forms the first layer in this annotation. To 
save annotation effort, manual annotation of the 

dependency relations for Hindi dependency 

treebank is carried at the inter-chunk level. The 
intra-chunk relations are marked automatically. 

The focus of this paper is the task of automatically 

marking intra-chunk relations. We present both a 
rule-based and a statistical approach for this 

expansion process. We call this process 

‘expansion’ since the intra-chunk dependencies are 
made explicit by removing the chunk 
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encapsulation; one could visualize this as 

expanding the chunk into sub-trees. The rest of the 
paper is organized as follows. Sections 2 & 3 give 

an overview of Hindi treebank and the steps 

involved in its development. Section 4 describes 
the guidelines for annotating intra-chunk 

dependencies. Section 5 shows our approach to 

building an automatic intra-chunk annotator. 
Section 6 talks about issues with a couple of 

dependency relations and how these are handled by 

the automatic annotator. We conclude in section 7 
and present future work in Section 8.  

2 Hindi Dependency Treebank 

A multi-layered and multi-representational 

Treebank for Hindi (Bhatt et al., 2009; Xia et al., 

2009) is currently being developed. The treebank 
will have dependency relations, verb-arguments 

(PropBank, Palmer et al., 2005) and phrase 

structure (PS) representations. The dependency 
treebank contains information encoded at the 

morpho-syntactic (morphological, part-of-speech 

and chunk information) and syntactico-semantic 
(dependency) levels  The manual annotation of the 

dependency treebank entails the annotation of part 

of speech (POS) tag, morphological information 
for each word, identification of chunk boundary 

(and chunk tag) and marking inter-chunk 

dependency relation between word pairs.  
The intra-chunk dependencies are left 

unannotated. The decision to leave intra-chunk 

relations unmarked is based on the understanding 
that their identification is quite deterministic and 

can be automatically annotated with high degree of 

accuracy. The notion of chunk is, in essence, used 
as a device for modularity in the process of 

annotation. The relations among the words in a 

chunk are not marked in the initial phase of 
annotation and hence allow us to ignore local 

details while building the sentence level 

dependency tree.  An example of inter-chunk 
dependency annotation is given in Figure 1 below. 

Note how the two chunks (the noun chunk, NP and 

the verb chunk, VGF) are related to each other 
using the attribute 'drel' (dependency relation), also 

note that the relations between the chunk-internal 

words (e.g.      and       in the NP chunk) are 

left unspecified. The annotation is represented in 

SSF
1
 

Sentence1:                           ई 

           niilii       kitaab      gir     gaii 
          ‘blue’      ‘book’    ‘fall’ ’go-perf’ 
               The blue book fell down 

1 (( NP        <name=’NP’ drel=’k1:VGF’> 

1.1 niilii JJ <name='niilii'> 

1.2 kitaab NN <name='kitaab'> 

)) 

2 (( VGF <name=’VGF’> 

2.1 gir VM <name='gir'> 

2.2 gaii VAUX <name='gaii'> 

)) 

 

Figure 1: SSF representation 
 

Figure 2 shows the schematic dependency tree for 
sentence 1. 

                  gir 
                                             k1 

 
                 kitaab 

Figure 2: Inter-chunk dependency tree of sentence1 

The inter-chunk dependency annotation is done 
following the dependency guidelines in Bharati et 

al., (2009) that uses a dependency framework 

inspired by Panini's grammar of Sanskrit (see, 
Begum et al., 2008 for more details). Subsequent 

to inter-chunk dependency annotation, intra-chunk 

annotation is done automatically following the 
guidelines described in this paper.   

The final treebank for Hindi would have other 

layers annotation such as Propbank and Phrase 
structure. The conversion to phrase structure 

depends on the expanded version of the treebank 

(i.e. trees with inter-chunk, as well as, intra-chunk 
relations marked).Hence, it is important to have 

high quality complete dependency structure for 

each sentence, and since inter-chunk annotation is 
manual, this implies that the process of automatic 

expansion (i.e. the task of making intra-chunk 

relations explicit) should be very accurate. 

                                                        
1 SSF: Shakti Standard Format http:// web2py.iiit.ac.in/ 
publications/default/download/techreport.pdf.c08a8d0a-50ed- 
4837-8ff0-93d099efbccb.pdf 
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1 niilii  JJ <fs drel='nmod__adj:kitaab' chunkType='child:NP' name='niilii '> 

2 kitaab NN <fs drel='k1:gir' name='kitaab' chunkId='NP' chunkType='head:NP'> 

3 gir VM <fs name='gir' chunkId='VGF' chunkType='head:VGF'> 

4 gaii VAUX <fs drel='lwg__aux:gir' name='gaii' chunkType='child:VGF'> 

 

Figure 3: SSF representation of complete dependency tree 
 

                                    gir<chunkId=’VGF’ chunkType=head:VGF> 
 
 

     <chunkId=’NP’ chunkType=head:NP> kitaab            gaii <chunkType=child:VGF> 
    
 

                    <chunkType: child:NP> niilii 
 

Figure 4: Complete dependency tree of sentence 1 
 

3 Intra-Chunk Annotation 

Showing intra-chunk relations and thereby a fully 

parsed dependency tree implies chunk removal 

from the inter-chunk dependency annotation. Once 
the intra-chunk dependencies are made explicit, 

every sentential token becomes part of the 

dependency tree. However, it can be useful to 
retain the chunk information which has been 

manually validated for inter-chunk dependency 

annotation.  Indeed, previous parsing experiments 
for Hindi during the ICON2010 tools contest 

(Husain et al., 2010) have shown that this 

information consistently improves performance. 
Thus, during the process of expansion, we 

introduce two attribute-value pairs for this purpose. 

This way we maintain chunk information after 
making the intra-chunk relations explicit. This 

makes it possible for the users of the treebank to 

select the chunk head and ignore the intra-chunk 
information if so desired. Alternatively, it is also 

possible to access the complete dependency tree.  

In Figure 1, the dependency relations are 
marked between chunk heads, i.e. ‘kitaab’ is seen 

related to ‘gir’ with a ‘k1’ relation. 'niilii' and 'gaii', 

on the other hand, are not shown related to any 
other word. Also note that the chunk boundaries 

are shown using brackets. Once we show all the 

tokens as part of the dependency tree, this 

information goes in the feature structure of 

individual nodes. This can be seen in figure 3. 
The attribute, ‘chunkId’ and ‘chunkType’ 

substitute the bracketing, as well as show the 
chunk members in the role of head and child. The 
head node has ‘chunkId’ that gives it a unique 
chunk name; note that this is same as the value of 
‘name’ for the original chunk. When multiple 
chunks with same name occur in a sentence, we 
append a number along with the name. For 
example, if there are multiple NP’s then the chunk 
ids will be NP, NP2 and NP3 etc. In addition, all 
the chunk members have ‘chunkType’ that gives 
their membership type. In the example (figure 3), 
the adjective ‘nIlI’ modifies the head noun 
‘kiwAba’ with ‘nmod__adj’ relation. The chunk 
membership is also shown for both these tokens, 
nIlI is the ‘child of the chunk with chunkId=NP’ 
shown by chunkType. kiwAba on the other hand is 
the ‘head of the chunk with chunkId=NP’, it has 
both chunkType and chunkId. 

4 Intra-Chunk Dependency Guidelines 

Intra-chunk labels are used when the dependencies 
within a chunk are made explicit. There are a total 
of 12 major intra-chunk tags. The tags are of three 
types: (a) normal dependencies, eg. nmod__adj, 
jjmod__intf, etc., (b) local word group 
dependencies(lwg), eg. lwg__psp, lwg__vaux, etc., 
and (c) linking lwg dependencies, eg. lwg_cont. 
Local word dependencies themselves can be 
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broadly classified into two types, one that handles 
post-positions and auxiliary verbs and the other 
that handles negations, particles, etc. Following 
guidelines are used to annotate the intra-chunk 
dependencies. 

1. nmod__adj: Various types of adjectival 
modifications are shown using this label. An 
adjective modifying a head noun is one such 
instance. The label also incorporates various 
other modifications such as a demonstrative or 
a quantifier modifying a noun.   

                  Chunk:             

NP ((niilii_JJ kitaab_NN))       
‘blue ‘    ‘book’ 

niilii 
                        nmod__adj 

kitaab 

In the above example NP is the chunk with words 
‘niilii’ (blue) and ‘kitaab’ (book) with POS tags JJ 
and NN respectively.  

2. lwg__psp: This relation is used to attach 
post-positions/auxiliaries associated with the 
noun or a verb. ‘lwg’ in the label name stands 
for local word grouping and associates all the 
postpositions with the head noun. These 
relations are distinct from normal dependency 
relations as they are more morphological in 
nature. 
   

Chunk:           
NP((abhishek_NNP  ne_PSP)) 

    ’abhishek’      ’ERG’ 

abhishek 

         lwg__psp 
ne 

3. lwg__neg: This relation is used for negative 
particles. Negative particles are normally 

grouped with a noun/verb. Like postpositions 

or auxiliaries these are also classified as ‘lwg’. 

Chunk:                      

VGF((nahim_NEG  aayegaa_VM)) 

     ‘Never’          ‘Come’ 
nahim 

 lwg__neg 

aayega 

4. lwg__vaux: This relation is used when an 
auxiliary verb modifies the main verb. 

Chunk:        
VGF((ho_VM  gayaa_VAUX)) 

   ‘be’         ‘go-perf’ 

ho 

  lwg__vaux 
gayaa 

5. jjmod_intf : This relation is used when an 
adjectival intensifier modifies an adjective. 

                  Chunk:                

NP((bahut_INTF  tez_JJ jaanvar_NN)) 

                    ‘very’           ‘fast’    ‘animal’ 

     bahut 

   nmod__adj 

                                tez 
     jjmod__intf 

                             jaanvar 

6. pof__redup: This relation is used when there is 
reduplication inside a chunk. The POS tag will 
in almost all the cases help us identify such 
instances. We see this in the example below.  

Chunk:           
RBP((dhiire_RB dhiire_RDP)) 

        ‘slowly’    ‘slowly’ 

dhiire 

  pof__redup 

dhiire 

7. pof__cn: This relation is used for relating the 
components within a compound noun. Like 
‘pof__redup’ identifying such cases will be 
straight-forward. The POS will provide us with 
the relevant information 

Chunk:               

       NP((raamabachhan_NNPC yaadav_NNP)) 

                      ‘rambachhan’               ‘yadav’ 

                               raamabachhan 

                              pof__cn 

                                      yaadav  

8. pof__cv : This relation is used for compound 
verbs. Like the previous ‘pof’ labels, POS 
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information will be sufficient to identify this 
relation. 

Chunk: उठ   ठ  
VGF((uTha_VMC baiThaa_VM)) 

      ‘rise’            ‘sit-perf’ 

uTha 

       pof__cv 

baiThaa 

9. rsym: Punctuation marks and symbols like ‘-‘ 
should be attached to the head of the chunk 
with relation rsym.  

10. lwg__rp: This relation is used when a particle 
modifies some chunk head. 

Chunk:              
         VGF((jaanaa_VM bhi_RP tha_VAUX)) 

                    ‘go-inf’       ‘also’   ‘perf’ 

                                   jaanaa 

                lwg__rp                   lwg__vaux 

                       bhi                     tha  

11. lwg__uh: This relation is used when 
interjection modifies other words. 

 

Chunk : हे भगवान  

NP((hei_INJ  bhagvaan_NN)) 

             ‘Oh!’          ‘God’ 

bhagvaan 

                   lwg__uh 

hei 

12. lwg__cont: We use this label to show that a 
group of lexical items inside a chunk together 
perform certain function. In such cases, we do 
not commit on the dependencies between these 
elements. We see this with complex post-
positions associated with a noun/verb or with 
the auxiliaries of a verb. ‘cont’ stands for 
continue.  

Chunk:            
      VGF((jaa_VM  sakataa_VAUX  hai_VAUX)) 
                ‘go’          ‘can’                  ‘be-pres’ 

                                  jaa 

                       lwg__vaux 

sakataa 

            lwg__cont 
      hai 

5 Intra-Chunk Dependency Annotator 

In this section we discuss our approach to building 

an intra-chunk dependency annotator/parser for 
Hindi. We describe three experiments; the first two 

are rule-based and statistical based, while the third 

is hybrid in a sense that it adds on a heuristic based 
post-processing component on top of the statistical 

technique. We evaluate about approaches in 

section 5.3 after describing rule-based and 
statistical approaches in sections 5.1 and 5.2 

respectively. 

5.1 Rule-Based Dependency Annotator 

The rule-based approach identifies the modifier-

modified (parent–child) relationship inside a chunk 

with the help of the rules provided in a rule 
template. The inter-chunk dependency annotated 

data is run through a head computation module (a 

rule-based tool), which marks the head of each 
chunk. After getting the heads for each chunk, we 

get the intra-chunk relations using a rule-base that 

has been manually created. The design of the rule 
template allows capturing all the information in a 

SSF representation. The rule template is a 5-

columned table with each row representing a rule. 
Table1 shows a sample rule written using the rule 

template. The five columns are 
1. Chunk Name: Specifies the name of the chunk 
for which this expansion rule can be applied. 
2. Parent Constraints: Lexical item which 
satisfies these constraints will be identified as the 
parent. Constraints are designed capturing POS, 
chunk, word and morphological features. In Table1 
the constraint on the parent is specified using its 
POS category (NN: common noun). 
3. Child Constraints: Lexical item satisfying 
these constraints becomes the child. Constraints 
are designed similar to the parent constraints.  In 
Table 1 the constraint on the child is specified 
using its POS category ( JJ:adjective ). 
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Table 1: Sample rule 

4. Contextual Constraints: Lexical items 
satisfying constraints 1, 2 &3 become parent and 
child in a chunk. One can access the previous and 
next words of parent and child by applying 
arithmetic on posn attribute. Information about the 
lexical item can be accessed by applying attributes 
like POS (for part of speech tag), CAT (category), 
and LEMMA (for root form of lexical item). 
    Here an example of a contextual constraint taken 
from Table1:  

 posn(parent) > posn(child) 

Parent and child constraint look at the properties of 
word but there are cases where the constraint needs 
to be formed beyond word level information. 
These constraints involve capturing of word order 
information. In such cases we use the operator ‘>’. 
It can be used only when ‘posn’ attribute is used.  
Here the constraint means that this rule is 
applicable only when child occurs before parent 
inside the chunk. 

 One can also specify constraints in form of: 

 POS__posn(parent) - 1 == NN  

    Here the Part of Speech of word preceding 
parent is accessed and compared with NN. 
posn(parent) – 1 retrieves the position of preceding 

word of parent and POS__ on this position gives us 
the Part of Speech tag of that lexical item. 
5. Dependency Relation: If all the constraints are 
satisfied, then the dependency relation from this 
column is marked on the parent-child arc.   

5.2 Sub-tree Parsing using MaltParser  

We use MaltParser (Nivre et al., 2007) as an 
alternative method to identify the intra-chunk 

relations. It is well known in the literature that 

transition-based dependency parsing techniques 
(e.g. Nivre, 2003) work best for marking short 

distance dependencies in a sentence. As must be 

clear by now, intra-chunk relations are in fact short 
distance dependencies; and we basically use 

MaltParser to predict the internal structure of a 

chunk. So instead of using it to parse a sentence, 
we parse individual chunks. Each chunk is treated 

as a sub-tree. The training data contains sub-trees 

with intra-chunk relations marked between chunk-
internal nodes, the head of the chunk becomes the 

root node of the sub-tree. The MaltParser is trained 
on these sub-trees and a model is created. We run 

the test data on this model for marking intra-chunk 

dependencies among the sub-trees and then post-
process them to obtain complete dependency tree 

for the data. 

5.3 Results 

 In this section we evaluate the three approaches 
that were explored to build the automatic intra-

chunk annotator. A total of 320 sentences extracted 

from the ICON2010 tools contest data for Hindi 
(Husain et al., 2010) have been manually annotated 

for intra-chunk relations. Table 2 shows the 

statistics for this gold data that has been used for 
evaluation (and training).  

 

Data Number of Sentences 

Training 192 

Development 64 

Testing 64 

 Table 2: Gold data 

Rule-Based Approach:  As discussed in section 

5.1, the rule-based approach marks dependency 

relation mainly by using POS patterns in a chunk. 
Table 3 shows the result when evaluated for the 

test data.  
 

LAS 97.89 

UAS 98.50 

LS 98.38 

Table 3: Parsing accuracies
2
 obtained using rule-

based tool 

Statistical/MaltParser-based approach: Table 2 

shows the division of data into training, 
development and test. The experimentation 

procedure is similar to the one used in Kosaraju et 

al., (2010).  We prepared a list of features with the 
aim of getting a better parse. A simple forward 

selector is used to prune the list and prepare the 

best feature template. The selector’s task is to 
include the feature into feature template if this 

                                                        
2 Parsing Accuracies- LAS: labeled attachment score, UAS: 
Unlabeled attachment score, LS: label score. 

Chunk 

Name 

Parent 

Constraints 

Child 

Constraints 

Contextual Constraints Dep. 

Relation 

NP POS == NN POS == JJ posn(parent) > posn(child);    nmod__adj 
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template improves the LAS score over the previous 

template.  These feature optimization experiments 
were conducted over 5-fold cross-validation of the 

combined training and development data.  The best 

feature template was used to get the final 
accuracies for the test data. Table 4 shows results 

on the basic template, template capturing POS 

patterns and best template that included POS, 
lemma and other information present in the SSF 

data.  

 LAS UAS LS 

Base line 95.70 97.07 96.80 

POS template 96.80 97.62 97.80 

Best template 97.35 98.26 97.90 

Table 4: Parsing accuracies using MaltParser 

The POS-based template scores can be 

compared with the results obtained from the rule-

based scores (Table 3) since the rules are formed 
using POS patterns. 

    We see that both rule-based and statistical 

approach give very high accuracies on the test 
data. These results validate our initial intuition that 

identification of intra-chunk relations is quite 

deterministic. These results also support our 
annotation design choice of leaving the annotation 

of intra-chunk relations out of the initial manual 

phase. Table 5 shows percentage error contribution 
of some major tags to total Error of their respective 

systems.  Table 6 shows precision (P) and recall 

(R) of some major tags. 
 

Depn. 

Relation 

Rule-based 

appraoch 

Statistical  

appraoch 

pof__cn 28.33 26.7 

nmod__adj 13.3 13.3 

lwg__rp 6.6 0 

rsym  16.7 20.0 

 

Table 5: Percentage Contribution of error by 
each tag to the total error of the system 
 

Hybrid approach: Table 5 & 6 shows error 

analysis of both approaches. For some tags like 
nmod__adj we see the rule-based appraoch shows 

better results. Therefore we decided to include 
rules as a post-processing step in the statistical 

approach. 

 
 

Depn. 

Relation 

Rule-based Statistical 

P R P R 

pof__cn  95.63 94.50   91.07 
  
92.73 

nmod__adj 96.33 98.33 95.28 98.06 

lwg__rp 97.62 95.35 100 100 

rsym  96.71 97.63 92.41 96.05 

Table 6:  Error analysis of both methods 

We made the statistical approach hybrid by 

post-processing the output of the MaltParser. This 
involves correction of some dependency relations 

based on heuristics framed from the rules of the 

rule-based tool. Heuristics are formed for those 
dependency relations that have higher recall in the 

rule-based approach compared to the statistical 

approach. The modification resulted in 
improvement in parsing accuracies. This can be 

seen in Table 7. 

 

Approach LAS UAS LS 

Rule-based 97.89 98.50 98.38 

Statistical 97.35 98.26 97.90 

Hybrid 98.17 98.81 98.63 

 

Table 7: Parsing accuracies 

6 Special Cases 

The neat division between the task of inter-chunk 

parsing and intra-chunk parsing is based on the 
following assumption: 'Chunks are self contained 

units. Intra-chunk dependencies are chunk internal 

and do not span outside a chunk.' However, there 
are two special cases where this constraint does not 

hold, i.e. in these two cases a chunk internal 

element that is not the head of the chunk has a 
relation with a lexical item outside its chunk and 

therefore, these two relations have to be handled 

separately. These are related to punctuation and co-
ordination.  

1. rsym__eos: The EOS (end-of-sentence) 

marker occurs in the last chunk of the sentence. It 
attaches to the head of the sentence (which may lie 

in the same chunk or another chunk) with this 

relation. 
2. lwg__psp: As noted in section 4, a PSP 

(postposition) attaches to the head of its chunk 

with a lwg__psp relation. However, if the right 
most child of a CCP (conjunction chunk) is a 
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nominal (NP or VGNN), one needs to attach the 

PSP of this nominal child to the head of the CCP 
during expansion. If there are multiple PSP then 

the first PSP gets lwg__psp and the following gets 

lwg__cont relation. Take the following example 

NP(raama_NNP) CCP(aur_CC) NP(siitaa_NNP  

‘ram’                    ‘and’                  ‘sita’ 

ne_PSP) 

 ‘ERG’ 

      In this case the PSP connects to the CC with 
the relation lwg__psp. The subtree after expansion 

is shown in figure 6. 

aur 
      ccof                   ccof                       lwg__psp 

           raama                           ne 

sita 

 

Figure 6:  Expanded sub-tree with PSP connected 
with CC. 

7 Conclusion 

 In this paper we described annotation guidelines 
for marking intra-chunk dependency relations. We 

then went on to show that these relations can be 

automatically identified with high accuracy. This 
was illustrated using (1) a rule-based approach that 

mainly used intra-chunk POS patterns, and (2) a 

statistical approach using MaltParser. We also 
showed that these two systems can be combined 

together to achieve even higher accuracy. 

From the report of error analysis, it is been 
shown that there are certain relations that are not 

being marked successfully. This is good news 

because then one can make very targeted manual 
corrections after the automatic tool is run.  
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