
Proceedings of the 6th Linguistic Annotation Workshop, pages 12–21,
Jeju, Republic of Korea, 12-13 July 2012. c©2012 Association for Computational Linguistics

Prague Markup Language Framework

Jirka Hana and Jan Štěpánek
Charles University in Prague, Faculty of Mathematics and Physics

lastname@ufal.mff.cuni.cz

Abstract

In this paper we describe the Prague Markup
Language (PML), a generic and open XML-
based format intended to define format of lin-
guistic resources, mainly annotated corpora.
We also provide an overview of existing tools
supporting PML, including annotation editors,
a corpus query system, software libraries, etc.

1 Introduction

Constructing a linguistic resource is a compli-
cated process. Among other things it requires a
good choice of tools, varying from elementary data
conversion scripts over annotation tools and tools
for consistency checking, to tools used for semi-
automatic treebank building (POS taggers, syntactic
parsers). If no existing tool fits the needs, a new one
has to be developed (or some existing tool adapted or
extended, which, however, seldom happens in prac-
tice). The variety of tools that exist and emerged
from various NLP projects shows that there is no
simple solution that would fit all. It is sometimes a
small missing feature or an incompatible data format
that disqualifies certain otherwise well-established
tools in the eyes of those who decide which tools
to use for their annotation project.

This paper presents an annotation framework that
was from its very beginning designed to be exten-
sible and independent of any particular annotation
schema. While reflecting the feedback from several
annotation projects, it evolved into a set of generic
tools that is open to all kinds of annotations.

The first section describes the Prague Markup
Language and the way it is used to define format of

linguistic resources; follows a section on annotation
tools, a query engine and programming libraries. Fi-
nally, we discuss related work and future plans.

2 Data Format

The base data format selected for the described an-
notation framework, both for data exchange and as
a memory-model reference, is Prague Markup Lan-
guage (PML, Pajas and Štěpánek, 2006). While de-
signing PML, we have followed the following set of
desiderata:

• Stand-off annotation principles: Each layer of
the linguistic annotation should be cleanly sep-
arated from the other annotation layers as well
as from the original data. This allows for mak-
ing changes only to a particular layer without
affecting the other parts of the annotation and
data.

• Cross-referencing and linking: Both links to
external document and data resources and links
within a document should be represented co-
herently. Diverse flexible types of external
links are required by the stand-off approach.
Supposed that most data resources (data, tag-
sets, and dictionaries) use the same principles,
they can be more tightly interconnected.

• Linearity and structure: The data format ought
to be able to capture both linear and structure
types of annotation.

• Structured attributes: The representation
should allow for associating the annotated

12

units with complex and descriptive data
structures, similar to feature-structures.

• Alternatives: The vague nature of language
often leads to more than one linguistic inter-
pretation and hence to alternative annotations.
This phenomenon occurs on many levels, from
atomic values to compound parts of the annota-
tion, and should be treated in a unified manner.

• Human-readability: The data format should be
human-readable. This is very useful not only in
the first phases of the annotation process, when
the tools are not yet mature enough to reflect
all evolving aspects of the annotation, but also
later, especially for emergency situations when
for example an unexpected data corruption oc-
cur that breaks the tools and can only be re-
paired manually. It also helps the programmers
while creating and debugging new tools.

• Extensibility: The format should be extensible
to allow new data types, link types, and similar
properties to be added. The same should apply
to all specific annotation formats derived from
the general one, so that one could incremen-
tally extend the vocabulary with markup for ad-
ditional information.

• XML based: XML format is widely used for
exchange and storing of information; it offers
a wide variety of tools and libraries for many
programming languages.

Thus PML is an abstract XML-based format in-
tended to be generally applicable to all types of an-
notation purposes, and especially suitable for multi-
layered treebank annotations following the stand-off
principles. A notable feature that distinguishes PML
from other encoding schemes existing at the time of
its creation (see Section 4) is its generic and open
nature. Rather than being targeted to one particu-
lar annotation schema or being a set of specifically
targeted encoding conventions, PML is an open sys-
tem, where a new type of annotation can be intro-
duced easily by creating a simple XML file called
PML schema, which describes the annotation by
means of declaring the relevant data types (see Fig-
ure 1 for an example).

The types used by PML include the following:

Attribute-value structures (AVS’s), i.e. structures
consisting of attribute-value pairs. For each
pair, the name of the attribute and the type of
the value is specified. The type can be any
PML type, including an AVS. A typical usage
example of an AVS structure is, for example
a structure gathering the annotation of several
independent morphological categories (lemma,
case, gender, number). A special type of AVS
is a container, a structure with just one non-
attribute member.

Lists allowing several values of the same type to be
aggregated, either in an ordered or unordered
manner. For example, a sentence can be repre-
sented as an ordered list of tokens, whereas a
set of pointers to an ontology lexicon could be
captured as an unordered list.

Alternatives used for aggregating alternative anno-
tations, ambiguity, etc. For example, noun and
verb can be alternative values of the part-of-
speech attribute in the morphological analysis
of the word flies: only one of them is the cor-
rect value, but we do not know (yet) which one.

Sequences representing sequences of values of dif-
ferent types. Unlike list members, the members
of a sequence do not need to be of the same
type and they may be further annotated using
XML attributes. There is also a basic support
for XML-like mixed content (a sequence can
contain both text and other elements). A sim-
ple regular expression might be used to spec-
ify the order and optionality of the members.
To give a typical usage example, consider the
phrase structure tree: each node has a sequence
of child nodes of two data types, terminals and
non-terminals. The content of each node would
typically be an AVS capturing the phrase type
for non-terminals and morphological informa-
tion for terminals.

Links providing a uniform method for cross-
referencing within a PML instance, referencing
among various PML instances (e.g. between
layers of annotation), and linking to other ex-
ternal resources (lexicons, audio data, etc.).

Enumerated types which are atomic data types
whose values are literal strings from a fixed fi-

13

<?xml version="1.0"?>
<pml_schema version="1.1" xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">

<description>Example of constituency tree annotation</description>
<root name="annotation">

<sequence role="#TREES" content_pattern="meta, nt+">
<element name="meta" type="meta.type"/>
<element name="nt" type="nonterminal.type"/>

</sequence>
</root>
<type name="meta.type">

<structure>
<member name="annotator"><cdata format="any"/></member>
<member name="datetime"><cdata format="any"/></member>

</structure>
</type>
<type name="nonterminal.type">

<container role="#NODE">
<attribute name="label" type="label.type"/>
<sequence role="#CHILDNODES">

<element name="nt" type="nonterminal.type"/>
<element name="form" type="terminal.type"/>

</sequence>
</container>

</type>
<type name="terminal.type">

<container role="#NODE">
<cdata format="any"/>

</container>
</type>
<type name="label.type">

<choice>
<value>S</value>
<value>VP</value>
<value>NP</value>

<!-- etc. -->
</choice>

</type>
</pml_schema>

Figure 1: A PML schema defining a simple format for representation of phrase structure trees

<?xml version="1.0"?>
<annotation xmlns="http://ufal.mff.cuni.cz/pdt/pml/">

<head>
<schema href="example_schema.xml"/>

</head>
<meta>

<annotator>John Smith</annotator>
<datetime>Sun May 1 18:56:55 2005</datetime>

</meta>
<nt label="S">

<nt label="NP">
<form>John</form>

</nt>
<nt label="VP">

<form>loves</form>
<nt label="NP">

<form>Mary</form>
</nt>

</nt>
</nt>

</annotation>

Figure 2: A sample phrase structure encoded in the format defined in Figure 1

14

nite set. A typical example is a boolean type
with only two possible values, 0 and 1.

CData type representing all character-based data
without internal structure or whose inter-
nal structure is not expressed by means of
XML. For improved validation and optimal in-
memory representation, the cdata type decla-
ration can be accompanied by a simple format
specification (identifier, reference, and the stan-
dard W3C XML Schema simple types for num-
bers, date, time, language, . . .).

A PML schema can also assign roles to particular
annotation constructions. The roles are labels from
a pre-defined set indicating the purpose of the dec-
larations. For instance, the roles indicate which data
structures represent the nodes of the trees, how the
node data structures are nested to form a tree, which
field in a data structure carries its unique ID (if any),
or which field carries a link to the annotated data or
other layers of annotation, and so on.

A new PML schema can be derived from an exist-
ing one by just mentioning the reference to the old
one and listing the differences in special PML ele-
ments.

A PML schema can define all kinds of annota-
tions varying from linear annotations of morphol-
ogy, through constituency or dependency trees, to
complex graph-oriented annotation systems (coref-
erence, valency, discourse relations). The schema
provides information for validating the annotation
data as well as for creating a relevant data model for
their in-memory or database representation.

To give a complex example, the annotation of the
Prague Dependency Treebank 2.0 (PDT 2.0, Hajič
et al., 2006) was published in the PML format. It
consists of four annotation layers, each defined by
its own PML schema:

• a lowest word-form layer consisting of tok-
enized text segmented just into documents and
paragraphs;

• a morphological layer segmenting the token
stream of the previous layer into sentences and
attaching the appropriate morphological form,
lemma, and tag to each token;

• an analytical layer building a morpho-syntactic

dependency tree from the words of each sen-
tence (morphologically analysed on the previ-
ous layer);

• a tectogrammatical layer consisting of deep-
syntactic dependency trees interlinked in a m:n
manner with the analytical layer and a valency
lexicon and carrying further relational annota-
tion, such as coreference and quotation sets.

Many other corpora were encoded in the for-
mat, including the Prague English Dependency
Treebank,1 the Prague Arabic Dependency Tree-
bank,2 the Prague Dependency Treebank of Spoken
Language,3 the Prague Czech-English Dependency
Treebank,4 Czesl (an error tagged corpus of Czech
as a second language, (Hana et al., 2010)), the Lat-
vian Treebank,5 a part of the National Corpus of Pol-
ish,6 the Index Thomisticus Treebank,7 etc.

Moreover, several treebanks were converted into
the PML format, mostly to be searchable in the
query tool (see Section 3.3); e.g. the Penn Tree-
bank 3, the TIGER Treebank 1.0, the Penn – CU
Chinese Treebank 6.0, the Penn Arabic Treebank 2
– version 2.0, the Hyderabad Treebank (ICON 2009
version), the Sinica Treebank 3.0 (both constituency
and CoNLL dependency trees), the CoNLL 2009 ST
data, etc. The conversion programs are usually dis-
tributed as “extensions” (plug-ins) of TrEd (see Sec-
tion 3.2), but they can be run without the editor as
well.

3 Tools

A data format is worthless without tools to process
it. PML comes with both low level tools (valida-
tion, libraries to load and save data) and higher level
tools like annotation editors or querying and con-
version tools. Since the last published description
of the framework (Pajas and Štěpánek, 2008), the

1http://ufal.mff.cuni.cz/pedt2.0/
2http://ufal.mff.cuni.cz/padt/PADT_1.0/

docs/index.html
3http://ufal.mff.cuni.cz/pdtsl/
4http://ufal.mff.cuni.cz/pcedt2.0/
5http://dspace.utlib.ee/dspace/

bitstream/handle/10062/17359/Pretkalnina_
Nespore_etal_74.pdf

6http://nkjp.pl/
7http://itreebank.marginalia.it/

15

Figure 3: Sample sentence in the TrEd tree annotation tool

tools were further improved and several new ones
emerged.

3.1 Low Level Tools

PML documents can be easily validated against their
schemas. The validation is implemented by translat-
ing the PML schema into a Relax NG schema (plus
some Schematron rules) and then validating the doc-
uments using existing validation tools for Relax NG.
For schemas themselves, there exists another Re-
lax NG schema that can validate them.

Most PML-related tools are written in Perl. The
Treex::PML package (available at CPAN8) pro-
vides object-oriented API to PML schemas and doc-
uments. The library first loads the schema and
then generates API tailored to the instances of the
schema.

Applications written in Java can build on a li-
brary providing objects supporting basic PML types
and utilities for reading and writing them to streams,
etc. Moreover, additional libraries provide support
for several PML instances (e.g. the PDT corpus and
the Czesl corpus (Hana et al., 2010)). While adding

8http://www.cpan.org/

support for additional instances is rather straightfor-
ward, it must be done manually, as we have not yet
implemented an automatic API generator as we did
for Perl.

3.2 Tree Editor TrEd
TrEd, a graphical tree editor, is probably the most
frequently used tool from the PML framework. It is
a highly extensible and configurable multi-platform
program (running on MS Windows, Max OS and
Linux). TrEd can work with any PML data9 whose
PML schema correctly defines (via roles) at least
one sequence of trees. Besides the PML format,
TrEd can work with many other data formats, either
by means of the modular input/output interface of
the PML library or using its own input/output back-
ends.

The basic editing capabilities of TrEd allow the
user to easily modify the tree structure with drag-
and-drop operations and to easily edit the associated
data. Although this is sufficient for most annotation

9TrEd can open data in other formats, too, because it is able
to convert the data to PML and back on the fly, the conversion
can be implemented as an XSLT transformation, Perl code or
executable program.

16

tasks, the annotation process can be greatly acceler-
ated by a set of custom extension functions, called
macros, written in Perl. Macros are usually created
to simplify the most common tasks done by the an-
notators. For example, by pressing “(”, the annota-
tor toggles the attribute is_parenthesis of the
whole subtree of the current node.

While macros provide means to extend, accelerate
and control the annotation capabilities of TrEd, the
concept of style-sheets gives users full control over
the visual presentation of the annotated data.

So far, TrEd has been used as an annotation
tool for PDT 2.0 and several similarly structured
treebanking projects like Slovene (Džeroski et al.,
2006), Croatian (Tadić, 2007), or Greek Depen-
dency Treebanks (Prokopidis et al., 2005), but also
for Penn-style Alpino Treebank (van der Beek et
al., 2002), the semantic annotation in the Dutch
language Corpus Initiative project (Trapman and
Monachesi, 2006), the annotation of French sen-
tences with PropBank information (van der Plas et
al., 2010), as well as for annotation of morphol-
ogy using so-called MorphoTrees (Smrž and Pajas,
2004) in the Prague Arabic Dependency Treebank
(where it was also used for annotation of the depen-
dency trees in the PDT 2.0 style).

TrEd is also one of the client applications to the
querying system, see Section 3.3.

The editor can also be used without the GUI
just to run macros over given files. This mode
supports several types of parallelization (e.g. Sun
Grid Engine) to speed up processing of larger tree-
banks. This inspired the Treex project (Popel and
Žabokrtský, 2010), a modular NLP software sys-
tem implemented in Perl under Linux. It is primar-
ily aimed at machine translation, making use of the
ideas and technology created during the Prague De-
pendency Treebank project. It also significantly fa-
cilitates and accelerates development of software so-
lutions of many other NLP tasks, especially due to
re-usability of the numerous integrated processing
modules (called blocks), which are equipped with
uniform object-oriented interfaces.

3.3 Tree Query
Data in the PML format can be queried in a query
tool called PML-Tree Query (PML-TQ, Pajas and
Štěpánek, 2009). The system consists of three main

components:

• an expressive query language supporting cross-
layer queries, arbitrary boolean combinations
of statements, able to query complex data struc-
tures. It also includes a sub-language for gener-
ating listings and non-trivial statistical reports,
which goes far beyond statistical features of
e.g. TigerSearch.

• client interfaces: a graphical user interface with
a graphical query builder, a customizable vi-
sualization of the results, web-client interface,
and a command-line interface.

• two interchangeable engines that evaluate
queries: a very efficient engine that requires
the treebank to be converted into a relational
database, and a somewhat slower engine which
operates directly on treebank files and is useful
especially for data in the process of annotation.

The PML-TQ language offers the following dis-
tinctive features:

• selecting all occurrences of one or more nodes
from the treebanks with given properties and in
given relations with respect to the tree topol-
ogy, cross-referencing, surface ordering, etc.

• support for bounded or unbounded iteration
(i.e. transitive closure) of relations10

• support for multi-layered or aligned treebanks
with structured attribute values

• quantified or negated subqueries (as in “find all
clauses with exactly three objects but no sub-
ject”)

• referencing among nodes (find parent and child
that have the same case and gender but different
number)

• natural textual and graphical representation of
the query (the structure of the query usually
corresponds to the structure of the matched
subtree)

10For example, descendant{1,3} (iterating parent rela-
tion) or coref gram.rf{1,} (iterating coreference pointer
in PDT), sibling{-1,1} (immediately preceding or follow-
ing sibling), order-precedes{-1,1} (immediately pre-
ceding or following node in the ordering of the sentence)

17

• sublanguage for post-processing and generat-
ing reports (extracting values from the matched
nodes and applying one or more layers of filter-
ing, grouping, aggregating, and sorting)

• support for regular expressions, basic arith-
metic and string operations in the query and
post-processing

For example, to get a frequency table of functions
in the Penn Treebank, one can use the following
query:
nonterminal $n := []
>> for $n.functions

give $1, count()
sort by $2 desc

Which means: select all non-terminals. Take their
functions and count the number of occurrences of
each of them, sort them by this number. The output
starts like the following:

738953
SBJ 116577
TMP 27189
LOC 19919
PRD 19793
CLR 18345

...

To extract a grammar behind the tree annotation
of the Penn Treebank is a bit more complex task:
nonterminal $p := [* $ch := []]
>> give $p, $p.cat,

first_defined($ch.cat,$ch.pos),
lbrothers($ch)

>> give $2 & " -> "
& concat($3," " over $1 sort by $4)

>> for $1 give count(),$1
sort by $1 desc

Which means: search for all non-terminals with a
child of any type. Return the identifier of the par-
ent, its category, the category or part-of-speech of
the child, and the number of the child’s left brothers.
From this list, return the second column (the par-
ent’s category), add an arrow, and concatenate the
third column (child’s category or part-of-speech) of
all the children with the same parent (first column)
sorted according to the original word order. In this
list, output number of occurrences of each line plus
the line itself, sorted by the number of occurrences.

Running it on the Penn Treebank produces the fol-
lowing output:
189856 PP -> IN NP
128140 S -> NP VP
87402 NP -> NP PP

Figure 4: Sample sentence in the feat annotation tool

72106 NP -> DT NN
65508 S -> NP VP .
45995 NP -> -NONE-
36078 NP -> DT JJ NN
31916 VP -> TO VP
28796 NP -> NNP NNP
23272 SBAR -> IN S
...

More elaborate examples can be found in (Pajas and
Štěpánek, 2009; Štěpánek and Pajas, 2010).

3.4 Other Tools
In addition to the versatile TrEd tree editor, there
are several tools intended for annotation of non-tree
structures or for specific purposes:

MEd is an annotation tool in which linearly-
structured annotations of text or audio data can
be created and edited. The tool supports mul-
tiple stacked layers of annotations that can be
interconnected by links. MEd can also be used
for other purposes, such as word-to-word align-
ment of parallel corpora.

Law (Lexical Annotation Workbench) is an edi-
tor for morphological annotation. It supports
simple morphological annotation (assigning a
lemma and tag to a word), integration and com-
parison of different annotations of the same
text, searching for particular word, tag etc. It
natively supports PML but can import from and
export to several additional formats.

11http://ufal.mff.cuni.cz/˜hana/feat.html

18

Feat11 is an environment for layered error annota-
tion of learners corpora (see Figure 4). It has
been used in the Czesl project (e.g. Hana et al.,
2010; Hana et al., 2012) to correct and anno-
tate texts produced by non-native speakers of
Czech. The corpus and its annotation is en-
coded in several interconnected layers: scan
of the original document, its transcription, to-
kenized text encoding author’s corrections and
two layers of error correction and annotation.
Tokens on the latter three layers are connected
by hyper-edges.

Capek12 (e.g. Hana and Hladká, 2012) is an anno-
tation editor tailored to school children to in-
volve them in text annotation. Using this edi-
tor, they practice morphology and dependency-
based syntax in the same way as they nor-
mally do at (Czech) schools, without any spe-
cial training.

The last three of the above tools are written Java
on top of the Netbeans platform, they are open and
can be extended via plugins. Moreover, the Capek
editor also has an iOS version for iPad.

4 Related Work

TEI The Text Encoding Initiative (TEI) provides
guidelines13 for representing a variety of literary and
linguistic texts. The XML-based format is very rich
and among other provides means for encoding lin-
guistic annotation as well as some generic markup
for graphs, networks, trees, feature-structures, and
links. On the other hand, it lacks explicit support
for stand-off annotation style and makes use of enti-
ties, an almost obsoleted feature of XML, that orig-
inates in SGML. There are no tools supporting the
full specification.

ISO LAF, MAF, SynAF, GrAF The Linguistic
Annotation Format (LAF; Ide and Romary, 2004;
Suderman and Ide, 2006) was developed roughly at
the same time as PML. It encodes linguistics struc-
tures as directed graphs; both nodes and edges might
be annotated with feature structures. LAF is very

12http://ufal.mff.cuni.cz/styx/
13http://www.tei-c.org/Guidelines/P5/

similar to PML, they both support stand-off annota-
tions, feature structures, alternatives, etc. The fol-
lowing points are probably the main differences be-
tween the frameworks:

• LAF is an abstract format, independent of its
serialization to XML, which is specified by the
Graph Annotation Format (GrAF; Ide and Su-
derman, 2007). PML is an XML based format,
but in principle it could be encoded in other
structured languages such as JSON.

• While PML allows encoding general graphs
in the same way as GrAF, for certain specific
graphs it is recommended to use encoding by
XML structures: simple paths by a sequence of
XML elements and trees by embedding. This
greatly simplifies parsing and validation and
prevent lots of errors. (In theory, these errors
should be prevented by the use of appropriate
applications, but in practice the data are often
modified by hand or low level tools.) In addi-
tion, many problems can be solved significantly
faster for trees or sequences than for general
graphs.

• PML is supported with a rich set of tools (TrEd
and other tools described in this paper). We
were not able to find a similar set of tools for
LAF.

Plain text There are many advantages of a struc-
tured format over a plain-text vertical format (e.g.
popular CoNLL Shared Task format). The main
drawbacks of the simpler plain-text format is that
it does not support standard encoding of meta in-
formation, and that complex structures (e.g. lists of
lists) and relations in multi-layered annotation are
encoded in an ad-hoc fashion which is prone to er-
rors. For details, see (Straňák and Štěpánek, 2010).

EXMARaLDA We have also used PML to encode
the Czesl learner corpus. As the corpus uses lay-
ered annotation, the only established alternative was
the tabular format used by EXMARaLDA (Schmidt,
2009). However, the format has several disadvan-
tages (see, e.g. Hana et al., 2010; Hana et al., 2012).
Most importantly, the correspondences between the
original word form and its corrected equivalents or
annotations at other levels may be lost, especially

19

for errors in discontinuous phrases. The feat editor
supports import from and export to several formats,
including EXMARaLDA.

5 Future Work

In the current specification, PML instances use a
dedicated namespace. A better solution would be
to let the user specify his or her own namespace
in a PML schema. Support for handling additional
namespaces would also be desirable (one might
use it e.g. to add documentation or comments to
schemas and data), however, this feature need much
more work: if some PML elements are moved or
deleted by an application, should it also move or
delete the foreign namespace content?

List members and alternative members are always
represented by <LM>, resp. <AM> XML elements.
Several users requested a possibility to define a dif-
ferent name in a PML schema. This change would
make the data more readable for human eyes, but it
might complicate the internal data representation.

We would also like to extend support of PML in
Java and add support for additional languages.

Finally, we plan to perform a detailed comparison
with the LAF-based formats and create conversion
tools between PML and LAF.

Acknowledgements

This work has been using language resources de-
veloped and/or stored and/or distributed by the
LINDAT-Clarin project of the Ministry of Education
of the Czech Republic (project LM2010013). This
paper and the development of the framework were
also supported by the Grant Agency of the Czech
Republic (grants 406/10/P193 and 406/10/P328).

References
Sašo Džeroski, Tomaž Erjavec, Nina Ledinek, Petr Pa-

jas, Zdeněk Žabokrtský, and Andreja Žele. 2006. To-
wards a Slovene Dependency Treebank. In Proceed-
ings of the 5th International Conference on Language
Resources and Evaluation (LREC 2006), pages 1388–
1391.

Jan Hajič, Jarmila Panevová, Eva Hajičová, Petr
Sgall, Petr Pajas, Jan Štěpánek, Jiřı́ Havelka, Marie
Mikulová, Zdeněk Žabokrtský, and Magda Ševčı́ková-
Razı́mová. 2006. Prague Dependency Treebank 2.0.

Linguistic Data Consortium, Philadelphia. CD-ROM,
CAT: LDC2001T10.

Jirka Hana and Barbora Hladká. 2012. Getting more
data – Schoolkids as annotators. In Proceedings of the
Eighth Conference on Language Resources and Eval-
uation (LREC 2012), Istanbul. accepted.

Jirka Hana, Alexandr Rosen, Svatava Škodová, and
Barbora Štindlová. 2010. Error-tagged Learner Cor-
pus of Czech. In Proceedings of The Fourth Linguistic
Annotation Workshop (LAW IV), Uppsala.

Jirka Hana, Alexandr Rosen, Barbora Štindlová, and Petr
Jäger. 2012. Building a learner corpus. In Proceed-
ings of the Eighth Conference on Language Resources
and Evaluation (LREC 2012), Istanbul. accepted.

Nancy Ide and Laurent Romary. 2004. International
standard for a linguistic annotation framework. Nat.
Lang. Eng., 10(3-4):211–225, September.

Nancy Ide and Keith Suderman. 2007. Graf: a graph-
based format for linguistic annotations. In Proceed-
ings of the Linguistic Annotation Workshop, LAW ’07,
pages 1–8.

Petr Pajas and Jan Štěpánek. 2006. XML-based rep-
resentation of multi-layered annotation in the PDT
2.0. In Richard Erhard Hinrichs, Nancy Ide, Martha
Palmer, and James Pustejovsky, editors, Proceedings
of the LREC Workshop on Merging and Layering Lin-
guistic Information (LREC 2006), pages 40–47.

Petr Pajas and Jan Štěpánek. 2008. Recent advances in
a feature-rich framework for treebank annotation. In
Donia Scott and Hans Uszkoreit, editors, The 22nd
International Conference on Computational Linguis-
tics – Proceedings of the Conference, volume 2, pages
673–680, Manchester.

Petr Pajas and Jan Štěpánek. 2009. System for query-
ing syntactically annotated corpora. In Gary Lee and
Sabine Schulte im Walde, editors, Proceedings of the
ACL-IJCNLP 2009 Software Demonstrations, pages
33–36, Singapore. Association for Computational Lin-
guistics.

Martin Popel and Zdeněk Žabokrtský. 2010. TectoMT:
Modular NLP framework. In Proceedings of IceTAL,
7th International Conference on Natural Language
Processing, pages 293–304, Reykjavik.

Prokopis Prokopidis, Elina Desypri, Maria Koutsom-
bogera, Haris Papageorgiou, and Stelios Piperidis.
2005. Theoretical and practical issues in the construc-
tion of a Greek dependency treebank. In In Proc. of
the 4th Workshop on Treebanks and Linguistic Theo-
ries (TLT), pages 149–160.

Thomas Schmidt. 2009. Creating and working with spo-
ken language corpora in EXMARaLDA. In LULCL
II: Lesser Used Languages & Computer Linguistics II,
pages 151–164.

20

Otakar Smrž and Petr Pajas. 2004. MorphoTrees of
Arabic and their annotation in the TrEd environment.
In Mahtab Nikkhou, editor, Proceedings of the NEM-
LAR International Conference on Arabic Language
Resources and Tools, pages 38–41, Cairo. ELDA.

Jan Štěpánek and Petr Pajas. 2010. Querying diverse
treebanks in a uniform way. In Proceedings of the 7th
International Conference on Language Resources and
Evaluation (LREC 2010), pages 1828–1835. European
Language Resources Association.

Pavel Straňák and Jan Štěpánek. 2010. Representing lay-
ered and structured data in the CoNLL-ST format. In
Alex Fang, Nancy Ide, and Jonathan Webster, editors,
Proceedings of the Second International Conference
on Global Interoperability for Language Resources,
pages 143–152, Hong Kong.

Keith Suderman and Nancy Ide. 2006. Layering and
merging linguistic annotations. In Proceedings of the
5th Workshop on NLP and XML: Multi-Dimensional
Markup in Natural Language Processing, NLPXML
’06, pages 89–92.

Marko Tadić. 2007. Building the Croatian Dependency
Treebank: the initial stages. In Contemporary Linguis-
tics, volume 63, pages 85–92.

Jantine Trapman and Paola Monachesi. 2006. Manual
for the annotation of semantic roles in D-Coi. Techni-
cal report, University of Utrecht.

Leonoor van der Beek, Gosse Bouma, Robert Malouf,
and Gertjan van Noord. 2002. The Alpino Depen-
dency Treebank. In Computational Linguistics in the
Netherlands CLIN 2001, Amsterdam.

Lonneke van der Plas, Tanja Samardzic, and Paola Merlo.
2010. Cross-lingual validity of PropBank in the man-
ual annotation of French. In Proceedings of The
Fourth Linguistic Annotation Workshop (LAW IV), Up-
psala.

21

