
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 89–99,
Jeju, Republic of Korea, 12 July 2012. c©2012 Association for Computational Linguistics

Generative Constituent Parsing and Discriminative Dependency Reranking:
Experiments on English and French

Joseph Le Roux� Benoît Favre† Alexis Nasr† Seyed Abolghasem Mirroshandel†,?
�LIPN, Université Paris Nord – CNRS UMR 7030, Villetaneuse, France
†LIF, Université Aix-Marseille – CNRS UMR 7279, Marseille, France

?Computer Engineering Department, Sharif university of Technology, Tehran, Iran
leroux@univ-paris13.fr, benoit.favre@lif.univ-mrs.fr,

alexis.nasr@lif.univ-mrs.fr, ghasem.mirroshandel@lif.univ-mrs.fr

Abstract

We present an architecture for parsing in two
steps. A phrase-structure parser builds for
each sentence an n-best list of analyses which
are converted to dependency trees. These de-
pendency structures are then rescored by a dis-
criminative reranker. Our method is language
agnostic and enables the incorporation of ad-
ditional information which are useful for the
choice of the best parse candidate. We test
our approach on the the Penn Treebank and
the French Treebank. Evaluation shows a sig-
nificative improvement on different parse met-
rics.

1 Introduction

Two competing approaches exist for parsing natural
language. The first one, called generative, is based
on the theory of formal languages and rewriting sys-
tems. Parsing is defined here as a process that trans-
forms a string into a tree or a tree forest. It is of-
ten grounded on phrase-based grammars – although
there are generative dependency parsers – in partic-
ular context-free grammars or one of their numer-
ous variants, that can be parsed in polynomial time.
However, the independence hypothesis that under-
lies this kind of formal system does not allow for
precise analyses of some linguistic phenomena, such
as long distance and lexical dependencies.

In the second approach, known as discriminative,
the grammar is viewed as a system of constraints
over the correct syntactic structures, the words of the
sentence themselves being seen as constraints over
the position they occupy in the sentence. Parsing
boils down to finding a solution that is compatible
with the different constraints. The major problem of

this approach lies in its complexity. The constraints
can, theoretically, range over any aspect of the final
structures, which prevents from using efficient dy-
namic programming techniques when searching for
a global solution. In the worst case, final structures
must be enumerated in order to be evaluated. There-
fore, only a subset of constraints is used in imple-
mentations for complexity reasons. This approach
can itself be divided into formalisms relying on logic
to describe constraints, as the model-theoretic syn-
tax (Pullum and Scholz, 2001), or numerical for-
malisms that associate weights to lexico-syntactic
substructures. The latter has been the object of some
recent work thanks to progresses achieved in the
field of Machine Learning. A parse tree is repre-
sented as a vector of features and its accuracy is
measured as the distance between this vector and the
reference.

One way to take advantage of both approaches
is to combine them sequentially, as initially pro-
posed by Collins (2000). A generative parser pro-
duces a set of candidates structures that constitute
the input of a second, discriminative module, whose
search space is limited to this set of candidates.
Such an approach, parsing followed by reranking,
is used in the Brown parser (Charniak and Johnson,
2005). The approach can be extended in order to
feed the reranker with the output of different parsers,
as shown by (Johnson and Ural, 2010; Zhang et al.,
2009).

In this paper we are interested in applying rerank-
ing to dependency structures. The main reason is
that many linguistic constraints are straightforward
to implement on dependency structures, as, for ex-
ample, subcategorization frames or selectional con-
straints that are closely linked to the notion of de-

89



pendents of a predicate. On the other hand, depen-
dencies extracted from constituent parses are known
to be more accurate than dependencies obtained
from dependency parsers. Therefore the solution we
choose is an indirect one: we use a phrase-based
parser to generate n-best lists and convert them to
lists of dependency structures that are reranked. This
approach can be seen as trade-off between phrase-
based reranking experiments (Collins, 2000) and the
approach of Carreras et al. (2008) where a discrimi-
native model is used to score lexical features repre-
senting unlabelled dependencies in the Tree Adjoin-
ing Grammar formalism.

Our architecture, illustrated in Figure 1, is based
on two steps. During the first step, a syntagmatic
parser processes the input sentence and produces n-
best parses as well as their probabilities. They are
annotated with a functional tagger which tags syn-
tagms with standard syntactic functions subject, ob-
ject, indirect object . . . and converted to dependency
structures by application of percolation rules. In the
second step, we extract a set of features from the
dependency parses and the associated probabilities.
These features are used to reorder the n-best list
and select a potentially more accurate parse. Syn-
tagmatic parses are produced by the implementation
of a PCFG-LA parser of (Attia et al., 2010), simi-
lar to (Petrov et al., 2006), a functional tagger and
dependency converter for the target language. The
reranking model is a linear model trained with an
implementation of the MIRA algorithm (Crammer et
al., 2006)1.

Charniak and Johnson (2005) and Collins (2000)
rerank phrase-structure parses and they also include
head-dependent information, in other words unla-
belled dependencies. In our approach we take into
account grammatical functions or labelled depen-
dencies.

It should be noted that the features we use are very
generic and do not depend on the linguistic knowl-
edge of the authors. We applied our method to En-
glish, the de facto standard for testing parsing tech-
nologies, and French which exhibits many aspects of
a morphologically rich language. But our approach
could be applied to other languages, provided that

1This implementation is available at https://github.
com/jihelhere/adMIRAble.

the resources – treebanks and conversion tools – ex-
ist.

(1) PCFG-LA n-best constituency parses

(2) Function annotation

(3) Conversion to dependency parses

(4) Feature extraction

(5) MIRA reranking

w

Final constituency & dependency parse

Input text

Figure 1: The parsing architecture: production of the n-
best syntagmatic trees (1) tagged with functional labels
(2), conversion to a dependency structure (3) and feature
extraction (4), scoring with a linear model (5). The parse
with the best score is considered as final.

The structure of the paper is the following: in
Section 2 we describe the details of our generative
parser and in Section 3 our reranking model together
with the features templates. Section 4 reports the re-
sults of the experiments conducted on the Penn Tree-
bank (Marcus et al., 1994) as well as on the Paris 7
Treebank (Abeillé et al., 2003) and Section 5 con-
cludes the paper.

2 Generative Model

The first part of our system, the syntactic analysis
itself, generates surface dependency structures in a
sequential fashion (Candito et al., 2010b; Candito
et al., 2010a). A phrase structure parser based on
Latent Variable PCFGs (PCFG-LAs) produces tree
structures that are enriched with functions and then
converted to labelled dependency structures, which
will be processed by the parse reranker.

90



2.1 PCFG-LAs
Probabilistic Context Free Grammars with Latent
Annotations, introduced in (Matsuzaki et al., 2005)
can be seen as automatically specialised PCFGs
learnt from treebanks. Each symbol of the gram-
mar is enriched with annotation symbols behaving
as subclasses of this symbol. More formally, the
probability of an unannotated tree is the sum of the
probabilities of its annotated counterparts. For a
PCFG-LA G, R is the set of annotated rules, D(t)
is the set of (annotated) derivations of an unanno-
tated tree t, and R(d) is the set of rules used in a
derivation d. Then the probability assigned by G to
t is:

PG(t) =
∑

d∈D(t)

PG(d) =
∑

d∈D(t)

∏
r∈R(d)

PG(r) (1)

Because of this alternation of sums and products
that cannot be optimally factorised, there is no ex-
act polynomial dynamic programming algorithm for
parsing. Matsuzaki et al. (2005) and Petrov and
Klein (2007) discuss approximations of the decod-
ing step based on a Bayesian variational approach.
This enables cubic time decoding that can be fur-
ther enhanced with coarse-to-fine methods (Char-
niak and Johnson, 2005).

This type of grammars has already been tested
on a variety of languages, in particular English
and French, giving state-of-the-art results. Let us
stress that this phrase-structure formalism is not lex-
icalised as opposed to grammars previously used in
reranking experiments (Collins, 2000; Charniak and
Johnson, 2005). The notion of lexical head is there-
fore absent at parsing time and will become avail-
able only at the reranking step.

2.2 Dependency Structures
A syntactic theory can either be expressed with
phrase structures or dependencies, as advocated for
in (Rambow, 2010). However, some information
may be simpler to describe in one of the representa-
tions. This equivalence between the modes of repre-
sentations only stands if the informational contents
are the same. Unfortunately, this is not the case
here because the phrase structures that we use do
not contain functional annotations and lexical heads,
whereas labelled dependencies do.

This implies that, in order to be converted
into labelled dependency structures, phrase struc-
ture parses must first be annotated with functions.
Previous experiments for English and French as
well (Candito et al., 2010b) showed that a sequential
approach is better than an integrated one for context-
free grammars, because the strong independence hy-
pothesis of this formalism implies a restricted do-
main of locality which cannot express the context
needed to properly assign functions. Most func-
tional taggers, such as the ones used in the following
experiments, rely on classifiers whose feature sets
can describe the whole context of a node in order to
make a decision.

3 Discriminative model

Our discriminative model is a linear model
trained with the Margin-Infused Relaxed Algorithm
(MIRA) (Crammer et al., 2006). This model com-
putes the score of a parse tree as the inner product
of a feature vector and a weight vector represent-
ing model parameters. The training procedure of
MIRA is very close to that of a perceptron (Rosen-
blatt, 1958), benefiting from its speed and relatively
low requirements while achieving better accuracy.

Recall that parsing under this model consists in
(1) generating a n-best list of constituency parses
using the generative model, (2) annotating each of
them with function tags, (3) converting them to de-
pendency parses, (4) extracting features, (5) scoring
each feature vector against the model, (6) selecting
the highest scoring parse as output.

For training, we collect the output of feature ex-
traction (4) for a large set of training sentences and
associate each parse tree with a loss function that de-
notes the number of erroneous dependencies com-
pared to the reference parse tree. Then, model
weights are adjusted using MIRA training so that the
parse with the lowest loss gets the highest score. Ex-
amples are processed in sequence, and for each of
them, we compute the score of each parse according
to the current model and find an updated weight vec-
tor that assigns the first rank to the best parse (called
oracle). Details of the algorithm are given in the fol-
lowing sections.

91



3.1 Definitions
Let us consider a vector space of dimensionmwhere
each component corresponds to a feature: a parse
tree p is represented as a sparse vector φ(p). The
model is a weight vector w in the same space where
each weight corresponds to the importance of the
features for characterizing good (or bad) parse trees.
The score s(p) of a parse tree p is the scalar product
of its feature vector φ(p) and the weight vector w.

s(p) =

m∑
i=1

wiφi(p) (2)

Let L be the n-best list of parses produced by the
generative parser for a given sentence. The highest
scoring parse p̂ is selected as output of the reranker:

p̂ = argmax
p∈L

s(p) (3)

MIRA learning consists in using training sen-
tences and their reference parses to determine the
weight vector w. It starts with w = 0 and modifies
it incrementally so that parses closest to the refer-
ence get higher scores. Let l(p), loss of parse p,
be the number of erroneous dependencies (governor,
dependent, label) compared to the reference parse.
We define o, the oracle parse, as the parse with the
lowest loss in L.

Training examples are processed in sequence as
an instance of online learning. For each sentence,
we compute the score of each parse in the n-best
list. If the highest scoring parse differs from the or-
acle (p̂ 6= o), the weight vector can be improved.
In this case, we seek a modification of w ensuring
that o gets a better score than p̂ with a difference
at least proportional to the difference between their
loss. This way, very bad parses get pushed deeper
than average parses. Finding such weight vector
can be formulated as the following constrained opti-
mization problem:

minimize: ||w||2 (4)

subject to: s(o)− s(p̂) ≥ l(o)− l(p̂) (5)

Since there is an infinity of weight vectors that
satisfy constraint 5, we settle on the one with the
smallest magnitude. Classical constrained quadratic
optimization methods can be applied to solve this

problem: first, Lagrange multipliers are used to in-
troduce the constraint in the objective function, then
the Hildreth algorithm yields the following analytic
solution to the non-constrained problem:

w? = w + α (φ(o)− φ(p̂)) (6)

α = max
[
0,
l(o)− l(p̂)− [s(o)− s(p̂)]

||φ(o)− φ(p̂)||2

]
(7)

Here, w? is the new weight vector, α is an up-
date magnitude and [φ(o)− φ(p̂)] is the difference
between the feature vector of the oracle and that of
the highest scoring parse. This update, similar to
the perceptron update, draws the weight vector to-
wards o while pushing it away from p̂. Usual tricks
that apply to the perceptron also apply here: (a) per-
forming multiple passes on the training data, and (b)
averaging the weight vector over each update2. Al-
gorithm 1 details the instructions for MIRA training.

Algorithm 1 MIRA training
for i = 1 to t do

for all sentences in training set do
Generate n-best list L from generative parser
for all p ∈ L do

Extract feature vector φ(p)
Compute score s(p) (eq. 2)

end for
Get oracle o = argminp l(p)
Get best parse p̂ = argmaxp s(p)
if p̂ 6= o then

Compute α (eq. 7)
Update weight vector (eq. 6)

end if
end for

end for
Return average weight vector over updates.

3.2 Features
The quality of the reranker depends on the learning
algorithm as much as on the feature set. These fea-
tures can span over any subset of a parse tree, up to
the whole tree. Therefore, there are a very large set
of possible features to choose from. Relevant fea-
tures must be general enough to appear in as many

2This can be implemented efficiently using two weight vec-
tors as for the averaged perceptron.

92



parses as possible, but specific enough to character-
ize good and bad configurations in the parse tree.

We extended the feature set from (McDonald,
2006) which showed to be effective for a range of
languages. Our feature templates can be categorized
in 5 classes according to their domain of locality.
In the following, we describe and exemplify these
templates on the following sentence from the Penn
treebank, in which we target the PMOD dependency
between “at” and “watch.”

Probability Three features are derived from the
PCFG-LA parser, namely the posterior proba-
bility of the parse (eq. 1), its normalized prob-
ability relative to the 1-best, and its rank in the
n-best list.

Unigram Unigram features are the most simple as
they only involve one word. Given a depen-
dency between position i and position j of type
l, governed by xi, denoted xi

l→ xj , two fea-
tures are created: one for the governor xi and
one for the dependent xj . They are described
as 6-tuples (word, lemma, pos-tag, is-governor,
direction, type of dependency). Variants with
wildcards at each subset of tuple slots are also
generated in order to handle sparsity.

In our example, the dependency between
“looked” and “at” generates two features:

[at, at, IN, G, R, PMOD] and
[looked, look, NN, D, L, PMOD]

And also wildcard features such as:

[-, at, IN, G, R, PMOD], [at,
-, IN, G, R, PMOD] ...
[at, -, -, -, -, PMOD]

This wildcard feature generation is applied to
all types of features. We will omit it in the re-
mainder of the description.

Bigram Unlike the previous template, bigram fea-
tures model the conjunction of the governor
and the dependent of a dependency relation,

like bilexical dependencies in (Collins, 1997).
Given dependency xi

l→ xj , the feature cre-
ated is (word xi, lemma xi, pos-tag xi, word
xj , lemma xj , pos-tag xj , distance3 from i to
j, direction, type).

The previous example generates the following
feature:

[at, at, IN, watch, watch, NN,
2, R, PMOD]

Where 2 is the distance between “at” and
“watch”.

Linear context This feature models the linear con-
text between the governor and the dependent
of a relation by looking at the words between
them. Given dependency xi

l→ xj , for each
word from i + 1 to j − 1, a feature is created
with the pos-tags of xi and xj , and the pos tag
of the word between them (no feature is create
if j = i + 1). An additional feature is created
with pos-tags at positions i− 1, i, i+ 1, j − 1,
j, j + 1. Our example yields the following fea-
tures:

[IN, PRP$, NN], and [VBD, IN,
PRP$, PRP$, NN, .].

Syntactic context: siblings This template and the
next one look at two dependencies in two con-
figurations. Given two dependencies xi

l→ xj

and xi
m→ xk, we create the feature (word,

lemma, pos-tag for xi, xj and xk, distance from
i to j, distance from i to k, direction and type of
each of the two dependencies). In our example:

[looked, look, VBD, I, I, PRP,
at, at, IN, 1, 1, L, SBJ, R,
ADV]

Syntactic context: chains Given two dependencies
xi

l→ xj
m→ xk, we create the feature (word,

lemma, pos-tag of xi, xj and xk, distance from
i to j, distance from i to k, direction and type of
each of the two dependencies). In our example:

[looked, look, VBD, at, at, IN,
watch, watch, NN, 1, 2, R, ADV,

3In every template, distance features are quantified in 7
classes: 1, 2, 3, 4, 5, 5 to 10, more.

93



R, PMOD]

It is worth noting that our feature templates only
rely on information available in the training set, and
do not use any external linguistic knowledge.

4 Experiments

In this section, we evaluate our architecture on
two corpora, namely the Penn Treebank (Marcus et
al., 1994) and the French Treebank (Abeillé et al.,
2003). We first present the corpora and the tools
used for annotating and converting structures, then
the performances of the phrase structure parser alone
and with the discriminative reranker.

4.1 Treebanks and Tools
For English, we use the Wall Street Journal sections
of the Penn Treebank. We learn the PCFG-LA from
sections 02-214. We then use FUNTAG (Chrupała
et al., 2007) to add functions back to the PCFG-LA
analyses. For the conversion to dependency struc-
tures we use the LTH tool (Johansson and Nugues,
2007). In order to get the gold dependencies, we run
LTH directly on the gold parse trees. We use sec-
tion 22 for development and section 23 for the final
evaluation.

For French, we use the Paris 7 Treebank (or
French Treebank, FTB). As in several previous ex-
periments we decided to divide the 12,350 phrase
structure trees in three sets: train (80%), develop-
ment (10%) and test (10%). The syntactic tag set for
French is not fixed and we decided to use the one
described in (Candito and Crabbé, 2009) to be able
to compare this system with recent parsing results
on French. As for English, we learn the PCFG-LA

without functional annotations which are added af-
terwards. We use the dependency structures devel-
oped in (Candito et al., 2010b) and the conversion
toolkit BONSAÏ. Furthermore, to test our approach
against state of the art parsing results for French
we use word clusters in the phrase-based parser as
in (Candito and Crabbé, 2009).

For both languages we constructed 10-fold train-
ing data from train sets in order to avoid overfitting
the training data. The trees from training sets were
divided into 10 subsets and the parses for each sub-
set were generated by a parser trained on the other

4Functions are omitted.

9 subsets. Development and test parses are given by
a parser using the whole training set. Development
sets were used to choose the best reranking model.

For lemmatisation, we use the MATE lemmatiser
for English and a home-made lemmatiser for French
based on the lefff lexicon (Sagot, 2010).

4.2 Generative Model
The performances of our parser are summarised in
Figure 2, (a) and (b), where F-score denotes the Par-
seval F-score5, and LAS and UAS are respectively
the Labelled and Unlabelled Attachment Score of
the converted dependency structures6. We give or-
acle scores (the score that our system would get if
it selected the best parse from the n-best lists) when
the parser generates n-best lists of depth 10, 20, 50
and 100 in order to get an idea of the effectiveness
of the reranking process.

One of the issues we face with this approach is
the use of an imperfect functional annotator. For
French we evaluate the loss of accuracy on the re-
sulting dependency structure from the gold develop-
ment set where functions have been omitted. The
UAS is 100% but the LAS is 96.04%. For English
the LAS from section 22 where functions are omit-
ted is 95.35%.

From the results presented in this section we can
make two observations. First, the results of our
parser are at the state of the art on English (90.7%
F-score) and on French (85.7% F-score). So the
reranker will be confronted with the difficult task of
improving on these scores. Second, the progression
margin is sensible with a potential LAS error reduc-
tion of 41% for English and 40.2% for French.

4.3 Adding the Reranker
4.3.1 Learning Feature Weights

The discriminative model, i.e. template instances
and their weights, is learnt on the training set parses
obtained via 10-fold cross-validation. The genera-
tive parser generates 100-best lists that are used as
learning example for the MIRA algorithm. Feature
extraction produces an enormous number of fea-
tures: about 571 millions for English and 179 mil-

5We use a modified version of evalb that gives the ora-
cle score when the parser outputs a list of candidates for each
sentence.

6All scores are measured without punctuation.

94



(a) Oracle Scores on PTB dev set (b) Oracle Scores on FTB dev set

89
90

91
92

93
94

95
96

97

1 10 20 50 100
Size of n-best list

UAS
LAS

F-score
O

ra
cl

e 
sc

or
e

86
88

90
92

94
86

88
90

92
94

1 10 20 50 100
Size of n−best list

O
ra

cl
e 

sc
or

e

UAS
LAS

F-score

(c) Reranker scores on PTB dev set (d) Reranker scores on FTB dev set

89
90

91
92

93
94

1 10 20 50 100
Size of n-best list

UAS
LAS

F-score

R
er

an
ke

d 
sc

or
e

86
87

88
89

90
91

1 10 20 50 100
Size of n−best list

UAS
LAS

F-score

R
er

an
ke

r 
sc

or
e

Figure 2: Oracle and reranker scores on PTB and FTB data on the dev. set, according to the depth of the n-best.

lions for French. Let us remark that this large set of
features is not an issue because our discriminative
learning algorithm is online, that is to say it consid-
ers only one example at a time, and it only gives
non-null weights to useful features.

4.3.2 Evaluation
In order to test our system we first tried to eval-

uate the impact of the length of the n-best list over
the reranking predictions7. The results are shown in
Figure 2, parts (c) and (d).

For French, we can see that even though the LAS
and UAS are consistently improving with the num-
ber of candidates, the F-score is maximal with 50
candidates. However the difference between 50 can-
didates and 100 candidates is not statistically signifi-
cant. For English, the situation is simpler and scores
improve continuously on the three metrics.

Finally we run our system on the test sets for both
treebanks. Results are shown8 in Table 1 for En-
glish, and Table 2 for French. For English the im-
provement is 0.9% LAS, 0.7% Parseval F-score and

7The model is always trained with 100 candidates.
8F < 40 is the parseval F-score for sentences with less than

40 words.

0.8% UAS.

Baseline Reranker
F 90.4 91.1
F < 40 91.0 91.7
LAS 88.9 89.8
UAS 93.1 93.9

Table 1: System results on PTB Test set

For French we have improvements of 0.3/0.7/0.9.
If we add a template feature indicating the agree-
ment between part-of-speech provided by the PCFG-
LA parser and a part-of-speech tagger (Denis
and Sagot, 2009), we obtain better improvements:
0.5/0.8/1.1.

Baseline Reranker Rerank + MElt
F 86.6 87.3 87.4
F < 40 88.7 89.0 89.2
LAS 87.9 89.0 89.2
UAS 91.0 91.9 92.1

Table 2: System results on FTB Test set

95



4.3.3 Comparison with Related Work
We compare our results with related parsing re-

sults on English and French.
For English, the main results are shown in Ta-

ble 3. From the presented data, we can see that
indirect reranking on LAS may not seem as good
as direct reranking on phrase-structures compared to
F-scores obtained in (Charniak and Johnson, 2005)
and (Huang, 2008) with one parser or (Zhang et
al., 2009) with several parsers. However, our sys-
tem does not rely on any language specific feature
and can be applied to other languages/treebanks. It
is difficult to compare our system for LAS because
most systems evaluate on gold data (part-of-speech,
lemmas and morphological information) like Bohnet
(2010).

Our system also compares favourably with the
system of Carreras et al. (2008) that relies on a more
complex generative model, namely Tree Adjoining
Grammars, and the system of Suzuki et al. (2009)
that makes use of external data (unannotated text).

F LAS UAS
Huang, 2008 91.7 – –
Bohnet, 2010 – 90.3 –
Zhang et al, 2008 91.4 – 93.2
Huang and Sagae, 2010 – – 92.1
Charniak et al, 2005 91.5 90.0 94.0
Carreras et al. 2008 – – 93.5
Suzuki et al. 2009 – – 93.8
This work 91.1 89.8 93.9

Table 3: Comparison on PTB Test set

For French, see Table 4, we compare our system
with the MATE parser (Bohnet, 2010), an improve-
ment over the MST parser (McDonald et al., 2005)
with hash kernels, using the MELT part-of-speech
tagger (Denis and Sagot, 2009) and our own lemma-
tiser.

We also compare the French system with results
drawn from the benchmark performed by Candito et
al. (2010a). The first system (BKY-FR) is close to
ours without the reranking module, using the Berke-
ley parser adapted to French. The second (MST-
FR) is based on MSTParser (McDonald et al., 2005).
These two system use word clusters as well.

The next section takes a close look at the models

of the reranker and its impact on performance.

F < 40 LAS UAS
This work 89.2 89.2 92.1
MATE + MELT – 89.2 91.8
BKY-FR 88.2 86.8 91.0
MST-FR – 88.2 90.9

Table 4: Comparison on FTB Test set

4.3.4 Model Analysis
It is interesting to note that in the test sets, the

one-best of the syntagmatic parser is selected 52.0%
of the time by the reranker for English and 34.3% of
the time for French. This can be explained by the
difference in the quantity of training data in the two
treebanks (four times more parses are available for
English) resulting in an improvement of the quality
of the probabilistic grammar.

We also looked at the reranking models, specifi-
cally at the weight given to each of the features. It
shows that 19.8% of the 571 million features have
a non-zero weight for English as well as 25.7% of
the 179 million features for French. This can be ex-
plained by the fact that for a given sentence, features
that are common to all the candidates in the n-best
list are not discriminative to select one of these can-
didates (they add the same constant weight to the
score of all candidates), and therefore ignored by the
model. It also shows the importance of feature engi-
neering: designing relevant features is an art (Char-
niak and Johnson, 2005).

We took a closer look at the 1,000 features of
highest weight and the 1,000 features of lowest
weight (negative) for both languages that represent
the most important features for discriminating be-
tween correct and incorrect parses. For English,
62.0% of the positive features are backoff features
which involve at least one wildcard while they are
85.9% for French. Interestingly, similar results hold
for negative features. The difference between the
two languages is hard to interpret and might be due
in part to lexical properties and to the fact that these
features may play a balancing role against towards
non-backoff features that promote overfitting.

Expectedly, posterior probability features have
the highest weight and the n-best rank feature has the
highest negative weight. As evidenced by Table 5,

96



en (+) en (-) fr (+) fr (-)
Linear 30.4 36.1 44.8 44.0
Unigram 20.7 16.3 9.7 8.2
Bigram 27.4 29.1 20.8 24.4
Chain 15.4 15.3 13.7 19.4
Siblings 5.8 3.0 10.8 3.6

Table 5: Repartition of weight (in percentage) in the
1,000 highest (+) and lowest (-) weighted features for En-
glish and French.

among the other feature templates, linear context oc-
cupies most of the weight mass of the 1,000 highest
weighted features. It is interesting to note that the
unigram and bigram templates are less present for
French than for English while the converse seems to
be true for the linear template. Sibling features are
consistently less relevant.

In terms of LAS performance, on the PTB test
set the reranked output is better than the baseline
on 22.4% of the sentences while the opposite is true
for 10.4% of the sentences. In 67.0% of the sen-
tences, they have the same LAS (but not necessar-
ily the same errors). This emphasises the difficulty
of reranking an already good system and also ex-
plains why oracle performance is not reached. Both
the baseline and reranker output are completely cor-
rect on 21.3% of the sentences, while PCFG-LA cor-
rectly parses 23% of the sentences and the MIRA

brings that number to 26%.
Figures 3 and 4 show hand-picked sentences for

which the reranker selected the correct parse. The
French sentence is a typical difficult example for
PCFGs because it involves a complex rewriting rule
which might not be well covered in the training
data (SENT → NP VP PP PONCT PP PONCT PP
PONCT). The English example is tied to a wrong
attachment of the prepositional phrase to the verb
instead of the date, which lexicalized features of the
reranker handle easily.

5 Conclusion

We showed that using a discriminative reranker, on
top of a phrase structure parser, based on converted
dependency structures could lead to significant im-
provements over dependency and phrase structure
parse results. We experimented on two treebanks
for two languages, English and French and we mea-

sured the improvement of parse quality on three dif-
ferent metrics: Parseval F-score, LAS and UAS,
with the biggest error reduction on the latter. How-
ever the gain is not as high as expected by looking
at oracle scores, and we can suggest several possible
improvements on this method.

First, the sequential approach is vulnerable to cas-
cading errors. Whereas the generative parser pro-
duces several candidates, this is not the case of the
functional annotators: these errors are not amend-
able. It should be possible to have a functional tag-
ger with ambiguous output upon which the reranker
could discriminate. It remains an open question as
how to integrate ambiguous output from the parser
and from the functional tagger. The combination
of n-best lists would not scale up and working on
the ambiguous structure itself, the packed forest as
in (Huang, 2008), might be necessary. Another pos-
sibility for future work is to let the phrase-based
parser itself perform function annotation, but some
preliminary tests on French showed disappointing
results.

Second, designing good features, sufficiently gen-
eral but precise enough, is, as already coined
by Charniak and Johnson (2005), an art. More for-
mally, we can see several alternatives. Dependency
structures could be exploited more thoroughly using,
for example, tree kernels. The restricted number of
candidates enables the use of more global features.
Also, we haven’t used any language-specific syntac-
tic features. This could be another way to improve
this system, relying on external linguistic knowledge
(lexical preferences, subcategorisation frames, cop-
ula verbs, coordination symmetry . . . ). Integrating
features from the phrase-structure trees is also an op-
tion that needs to be explored.

Third this architecture enables the integration of
several systems. We experimented on French using a
part-of-speech tagger but we could also use another
parser and either use the methodology of (Johnson
and Ural, 2010) or (Zhang et al., 2009) which fu-
sion n-best lists form different parsers, or use stack-
ing methods where an additional parser is used as
a guide for the main parser (Nivre and McDonald,
2008).

Finally it should be noted that this system does not
rely on any language specific feature, and thus can
be applied to languages other that French or English

97



NNS
Stocks

NP

VBD
were

CD
698

CD
million

QP

NNS
bushels

NP

IN
on

NNP
May

CD
31

NP

IN
of

DT
this

NN
year

NP

PP

NP

PP

VP

.

.

S

NNS
Stocks

NP

VBD
were

CD
698

CD
million

QP

NNS
bushels

NP

IN
on

NNP
May

CD
31

NP

PP

IN
of

DT
this

NN
year

NP

PP

VP

.

.

S
d

e
p

e
n
d

e
n
cy

p
a
rs

e
s

sy
n
ta

g
m

a
ti

c
p

a
rs

e
s

Before reranking After reranking

Figure 3: English sentence from the WSJ test set for which the reranker selected the correct tree while the first
candidate of the n-best list suffered from an incorrect attachment.

SENT

NP VN

PP

PONCT

NP

PONCTNPP NPP V VPP P

AP

DET ADJ PONCT P ADJADJ

SENT

NP VN

PP

PONCT

NP

PONCTNPP NPP V VPP P

AP

P NC PONCT P ADJADJ

NP

PP PP

NPP NPP V VPP P ADJ PONCT DET ADJ PONCT P ADJ PONCT NPP NPP V VPP P ADJ PONCT P NC PONCT P ADJ PONCTd
e
p
e
n
d
e
n
cy

p
a
rs

e
s

sy
n
ta

g
m

a
ti

c
p
a
rs

e
s

Before reranking After reranking

Figure 4: Sentence from the FTB for which the best parse according to baseline was incorrect, probably due to the
tendency of the PCFG-LA model to prefer rules with more support. The reranker selected the correct parse.

without re-engineering new reranking features. This
makes this architecture suitable for morphologically
rich languages.

Acknowledgments

This work has been funded by the French Agence
Nationale pour la Recherche, through the project
SEQUOIA (ANR-08-EMER-013).

References

Anne Abeillé, Lionel Clément, and Toussenel François,
2003. Treebanks, chapter Building a treebank for
French. Kluwer, Dordrecht.

M. Attia, J. Foster, D. Hogan, J. Le Roux, L. Tounsi, and
J. van Genabith. 2010. Handling Unknown Words in
Statistical Latent-Variable Parsing Models for Arabic,
English and French. In Proceedings of SPMRL.

Bernd Bohnet. 2010. Top Accuracy and Fast Depen-
dency Parsing is not a Contradiction. In Proceedings
of COLING.

M.-H. Candito and B. Crabbé. 2009. Improving Gen-
erative Statistical Parsing with Semi-Supervised Word
Clustering. In Proceedings of IWPT 2009.

M.-H. Candito, J. Nivre, P. Denis, and E. Henestroza An-
guiano. 2010a. Benchmarking of Statistical Depen-
dency Parsers for French. In Proceedings of COL-
ING’2010.

Marie Candito, Benoît Crabbé, and Pascal Denis. 2010b.
Statistical French Dependency Parsing : Treebank
Conversion and First Results. In Proceedings of
LREC2010.

Xavier Carreras, Michael Collins, and Terry Koo. 2008.
TAG, Dynamic Programming and the Perceptron for
Efficient, Feature-rich Parsing. In CONLL.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-Fine n-Best Parsing and MaxEnt Discriminative
Reranking. In Proceedings of ACL.

98



Grzegorz Chrupała, Nicolas Stroppa, Josef van Genabith,
and Georgiana Dinu. 2007. Better training for func-
tion labeling. In Proceedings of RANLP, Borovets,
Bulgaria.

Michael Collins. 1997. Three Generative, Lexicalised
Models for Statistical Parsing. In Proceedings of the
35th Annual Meeting of the ACL.

Michael Collins. 2000. Discriminative Reranking for
Natural Language Parsing. In Proceedings of ICML.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
ShalevShwartz, and Yoram Singer. 2006. Online
Passive-Aggressive Algorithm. Journal of Machine
Learning Research.

Pascal Denis and Benoît Sagot. 2009. Coupling an anno-
tated corpus and a morphosyntactic lexicon for state-
of-the-art pos tagging with less human effort. In Pro-
ceedings PACLIC 23, Hong Kong, China.

Liang Huang. 2008. Forest Reranking: Discriminative
Parsing with Non-Local Features. In Proceedings of
ACL.

Richard Johansson and Pierre Nugues. 2007. Extended
constituent-to-dependency conversion for English. In
Proceedings of NODALIDA 2007, pages 105–112,
Tartu, Estonia, May 25-26.

Mark Johnson and Ahmet Engin Ural. 2010. Rerank-
ing the Berkeley and Brown Parsers. In Human Lan-
guage Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 665–668, Los An-
geles, California, June. Association for Computational
Linguistics.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz,
Robert MacIntyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. 1994. The penn tree-
bank: Annotating predicate argument structure. In
Proceedings of the ARPA Speech and Natural Lan-
guage Workshop.

Takuya Matsuzaki, Yusuke Miyao, and Jun ichi Tsujii.
2005. Probabilistic CFG with Latent Annotations. In
Proceedings of ACL.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Online Large-Margin Training of Dependency
Parsers. In Association for Computational Linguistics
(ACL).

Ryan McDonald. 2006. Discriminative Training and
Spanning Tree Algorithms for Dependency Parsing.
Ph.D. thesis, University of Pennsylvania.

J. Nivre and R. McDonald. 2008. Integrating graph-
based and transition-based dependency parsers. In
Proceedings of ACL, pages 950–958.

Slav Petrov and Dan Klein. 2007. Improved Infer-
ence for Unlexicalized Parsing. In HLT-NAACL, pages
404–411.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning Accurate, Compact, and In-
terpretable Tree Annotation. In ACL.

Geoffrey K. Pullum and Barbara C. Scholz. 2001. On the
distinction between model-theoretic and generative-
enumerative syntactic frameworks. In Logical Aspects
of Computational Linguistics.

Owen Rambow. 2010. The Simple Truth about Depen-
dency and Phrase Structure Representations: An Opin-
ion Piece. In NAACL HLT.

Frank Rosenblatt. 1958. The Perceptron: A Probabilistic
Model for Information Storage and Organization in the
Brain. Psychological Review.

Benoît Sagot. 2010. The lefff, a freely available and
large-coverage lexicon for french. In Proceedings of
LREC 2010, La Valette, Malta.

J. Suzuki, H. Isozaki, X. Carreras, and M. Collins. 2009.
An empirical study of semi-supervised structured con-
ditional models for dependency parsing. In Proceed-
ings of the 2009 Conference on Empirical Methods in
Natural Language Processing: Volume 2-Volume 2,
pages 551–560. Association for Computational Lin-
guistics.

Hui Zhang, Min Zhang, Chew Lim Tan, and Haizhou
Li. 2009. K-best combination of syntactic parsers.
In Proceedings of EMNLP.

99


