
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 72–77,
Jeju, Republic of Korea, 12 July 2012. c©2012 Association for Computational Linguistics

Using an SVM Ensemble System for Improved Tamil Dependency Parsing

Nathan Green, Loganathan Ramasamy and Zdeněk Žabokrtský
Charles University in Prague

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics

Prague, Czech Republic
{green,ramasamy,zabokrtsky}@ufal.mff.cuni.cz

Abstract

Dependency parsing has been shown to im-
prove NLP systems in certain languages and
in many cases helps achieve state of the art re-
sults in NLP applications, in particular appli-
cations for free word order languages. Mor-
phologically rich languages are often short on
training data or require much higher amounts
of training data due to the increased size of
their lexicon. This paper examines a new
approach for addressing morphologically rich
languages with little training data to start.

Using Tamil as our test language, we cre-
ate 9 dependency parse models with a lim-
ited amount of training data. Using these
models we train an SVM classifier using only
the model agreements as features. We use
this SVM classifier on an edge by edge deci-
sion to form an ensemble parse tree. Using
only model agreements as features allows this
method to remain language independent and
applicable to a wide range of morphologically
rich languages.

We show a statistically significant 5.44%
improvement over the average dependency
model and a statistically significant 0.52% im-
provement over the best individual system.

1 Introduction

Dependency parsing has made many advancements
in recent years. A prime reason for the quick ad-
vancement has been the CoNLL shared task compe-
titions, which gave the community a common train-
ing/testing framework along with many open source
systems. These systems have, for certain languages,

achieved high accuracy ranging from on average
from approximately 60% to 80% (Buchholz and
Marsi, 2006). The range of scores are more of-
ten language dependent rather than system depen-
dent, as some languages contain more morpholog-
ical complexities. While some of these languages
are morphologically rich, we would like to addition-
ally address dependency parsing methods that may
help under-resourced languages as well, which often
overlaps with morphologically rich languages. For
this reason, we have chosen to do the experiments
in this paper using the Tamil Treebank (Ramasamy
and Žabokrtský, 2012).

Tamil belongs to Dravidian family of languages
and is mainly spoken in southern India and also in
parts of Sri Lanka, Malaysia and Singapore. Tamil
is agglutinative and has a rich set of morphologi-
cal suffixes. Tamil has nouns and verbs as two ma-
jor word classes, and hundreds of word forms can
be produced by the application of concatenative and
derivational morphology. Tamil’s rich morphology
makes the language free word order except that it is
strictly head final.

When working with small datasets it is often very
difficult to determine which dependency model will
best represent your data. One can try to pick the
model through empirical means on a tuning set but
as the data grows in the future this model may no
longer be the best choice. The change in the best
model may be due to new vocabulary or through a
domain shift. If the wrong single model is chosen
early on when training is cheap, when the model is
applied in semi supervised or self training it could
lead to significantly reduced annotation accuracy.

72

For this reason, we believe ensemble combinations
are an appropriate direction for lesser resourced lan-
guages, often a large portion of morphologically
rich languages. Ensemble methods are robust as
data sizes grow, since the classifier can easily be re-
trained with additional data and the ensemble model
chooses the best model on an edge by edge basis.
This cost is substantially less than retraining multi-
ple dependency models.

2 Related Work

Ensemble learning (Dietterich, 2000) has been used
for a variety of machine learning tasks and recently
has been applied to dependency parsing in various
ways and with different levels of success. (Surdeanu
and Manning, 2010; Haffari et al., 2011) showed
a successful combination of parse trees through a
linear combination of trees with various weight-
ing formulations. Parser combination with depen-
dency trees have been examined in terms of accu-
racy (Sagae and Lavie, 2006; Sagae and Tsujii,
2007; Zeman and Žabokrtský, 2005; Søgaard and
Rishøj, 2010). (Sagae and Lavie, 2006; Green and
Žabokrtský, 2012) differ in part since their method
guarantees a tree while our system can, in some sit-
uations, produce a forest. POS tags were used in
parser combination in (Hall et al., 2007) for combin-
ing a set of Malt Parser models with an SVM clas-
sifier with success, however we believe our work is
novel in its use of an SVM classifier solely on model
agreements. Other methods of parse combinations
have shown to be successful such as using one parser
to generate features for another parser. This was
shown in (Nivre and McDonald, 2008; Martins et
al., 2008), in which Malt Parser was used as a fea-
ture to MST Parser.

Few attempts were reported in the literature on the
development of a treebank for Tamil. Our exper-
iments are based on the openly available treebank
(TamilTB) (Ramasamy and Žabokrtský, 2012). De-
velopment of TamilTB is still in progress and the ini-
tial results for TamilTB appeared in (Ramasamy and
Žabokrtský, 2011). Previous parsing experiments in
Tamil were done using a rule based approach which
utilized morphological tagging and identification of
clause boundaries to parse the sentences. The results
were also reported for Malt Parser and MST parser.

Figure 1: Process Flow for one run of our SVM Ensemble
system. This Process in its entirety was run 100 times for
each of the 8 data set splits.

When the morphological tags were available during
both training and testing, the rule based approach
performed better than Malt and MST parsers. For
other Indian languages, treebank development is ac-
tive mainly for Hindi and Telugu. Dependency pars-
ing results for them are reported in (Husain et al.,
2010).

3 Methodology

3.1 Process Flow

When dealing with small data sizes it is often
not enough to show a simple accuracy increase.
This increase can be very reliant on the train-
ing/tuning/testing data splits as well as the sam-
pling of those sets. For this reason our experi-
ments are conducted over 7 training/tuning/testing
data split configurations. For each configuration
we randomly sample without replacement the train-
ing/tuning/testing data and rerun the experiment 100
times. These 700 runs, each on different samples,
allow us to better show the overall effect on the ac-
curacy metric as well as the statistically significant
changes as described in Section 3.5. Figure 1 shows
this process flow for one run of this experiment.

73

3.2 Parsers

A dependency tree is a special case of a depen-
dency graph that spawns from an artificial root, is
connected, follows a single-head constraint and is
acyclic. Because of this we can look at a large his-
tory of work in graph theory to address finding the
best spanning tree for each dependency graph. The
most common form of this type of dependency pars-
ing is Graph-Based parsing also called arc-factored
parsing and deals with the parameterization of the
edge weights. The main drawback of these meth-
ods is that for projective trees, the worst case sce-
nario for most methods is a complexity of O(n3)
(Eisner, 1996). However, for non-projective pars-
ing Chu-Liu-Edmond’s algorithm has a complexity
of O(n2) (McDonald et al., 2005). The most com-
mon tool for doing this is MST parser (McDonald et
al., 2005). For this parser we generate two models,
one projective and one non-projective to use in our
ensemble system.

Transition-based parsing creates a dependency
structure that is parameterized over the transitions.
This is closely related to shift-reduce constituency
parsing algorithms. The benefit of transition-based
parsing is the use greedy algorithms which have a
linear time complexity. However, due to the greedy
algorithms, longer arc parses can cause error propa-
gation across each transition (Kübler et al., 2009).
We make use of Malt Parser (Nivre et al., 2007),
which in the CoNLL shared tasks was often tied
with the best performing systems. For this parser
we generate 7 different models using different train-
ing parameters, seen in Table 1, and use them as
input into our ensemble system along with the two
Graph-based models described above. Each parser
has access to gold POS information as supplied by
the TamilTB described in 3.4.

Dependency parsing systems are often optimized
for English or other major languages. This opti-
mization, along with morphological complexities,
lead other languages toward lower accuracy scores
in many cases. The goal here is to show that
while the corpus is not the same in size or scope of
most CoNLL data, a successful dependency parser
can still be trained from the annotated data through
model combination for morphologically rich lan-
guages.

Training Parameter Model Description
nivreeager Nivre arc-eager

nivrestandard Nivre arc-standard
stackproj Stack projective

stackeager Stack eager
stacklazy Stack lazy

planar Planar eager
2planar 2-Planar eager

Table 1: Table of the Malt Parser Parameters used during
training. Each entry represents one of the parsing algo-
rithms used in our experiments. For more information see
http://www.maltparser.org/options.html

3.3 Ensemble SVM System

We train our SVM classifier using only model agree-
ment features. Using our tuning set, for each cor-

rectly predicted dependency edge, we create
(

N

2

)
features where N is the number of parsing models.
We do this for each model which predicted the cor-
rect edge in the tuning data. So for N = 3 the
first feature would be a 1 if model 1 and model 2
agreed, feature 2 would be a 1 if model 1 and model
3 agreed, and so on. This feature set is novel and
widely applicable to many languages since it does
not use any additional linguistic tools.

For each edge in the ensemble graph, we use our
classifier to predict which model should be correct,
by first creating the model agreement feature set
for the current edge of the unknown test data. The
SVM predicts which model should be correct and
this model then decides to which head the current
node is attached. At the end of all the tokens in a
sentence, the graph may not be connected and will
likely have cycles. Using a Perl implementation of
minimum spanning tree, in which each edge has a
uniform weight, we obtain a minimum spanning for-
est, where each subgraph is then connected and cy-
cles are eliminated in order to achieve a well formed
dependency structure. Figure 2 gives a graphical
representation of how the SVM decision and MST
algorithm create a final Ensemble parse tree which
is similar to the construction used in (Hall et al.,
2007; Green and Žabokrtský, 2012). Future itera-
tions of this process could use a multi-label SVM
or weighted edges based on the parser’s accuracy on
tuning data.

74

Figure 2: General flow to create an Ensemble parse tree

3.4 Data Sets

Table 2 shows the statistics of the TamilTB Tree-
bank. The last 2 rows indicate how many word types
have unique tags and how many have two tags. Also,
Table 2 illustrates that most of the word types can
be uniquely identified with single morphological tag
and only around 120 word types take more than one
morphological tag.

Description Value
#Sentences 600
#Words 9581
#Word types 3583
#Tagset size 234
#Types with unique tags 3461
#Types with 2 tags 112

Table 2: TamilTB: data statistics

Since this is a relatively small treebank and in or-
der to confirm that our experiments are not heavily
reliant on one particular sample of data we try a va-
riety of data splits. To test the effects of the train-
ing, tuning, and testing data we try 7 different data
splits. The tuning data in the Section 4 use the for-
mat training-tuning-testing. So 70-20-10 means we
used 70% of the TamilTB for training, 20% for tun-
ing the SVM classifier, and 10% for evaluation.

3.5 Evaluation

Made a standard in the CoNLL shared tasks com-
petition, two standard metrics for comparing depen-

dency parsing systems are typically used. Labeled
attachment score (LAS) and unlabeled attachment
score (UAS). UAS studies the structure of a depen-
dency tree and assesses whether the output has the
correct head and dependency arcs. In addition to the
structure score in UAS, LAS also measures the accu-
racy of the dependency labels on each arc (Buchholz
and Marsi, 2006). Since we are mainly concerned
with the structure of the ensemble parse, we report
only UAS scores in this paper.

To test statistical significance we use Wilcoxon
paired signed-rank test. For each data split we have
100 iterations each with different sampling. Each
model is compared against the same samples so a
paired test is appropriate in this case. We report sta-
tistical significance values for p < 0.01 and p <
0.05.

4 Results and Discussion

Data Average % Increase % Increase
Split SVM UAS over Avg over Best

70-20-10 76.50% 5.13% 0.52%
60-20-20 76.36% 5.68% 0.72%
60-30-10 75.42% 5.44% 0.52%
60-10-30 75.66% 4.83% 0.10%
85-5-10 75.33% 3.10% -1.21%
90-5-5 75.42% 3.19% -1.10%

80-10-10 76.44% 4.84% 0.48%

Table 3: Average increases and decreases in UAS score
for different Training-Tuning-Test samples. The average
was calculated over all 9 models while the best was se-
lected for each data split

For each of the data splits, Table 3 shows the per-
cent increase in our SVM system over both the av-
erage of the 9 individual models and over the best
individual model. As the Table 3 shows, our ap-
proach seems to decrease in value along with the de-
crease in tuning data. In both cases when we only
used 5% tuning data we did not get any improve-
ment in our average UAS scores. Examining Table
4, shows that the decrease in the 90-5-5 split is not
statistically significant however the decrease in 85-
5-10 is a statistically significant drop. However, the
increases in all data splits are statistically significant
except for the 60-20-20 data split. It appears that

75

Model 70-20-10 60-20-20 60-30-10 60-10-30 85-5-10 90-5-5 80-10-10
2planar * * * * * * **

mstnonproj * * * * * * **
mstproj * * * * * * **

nivreeager * * * * ** x *
nivrestandard * * ** x * * *

planar * * * * * * **
stackeager * * * x * ** *
stacklazy * * * x * ** *
stackproj ** * * x ** ** **

Table 4: Statistical Significance Table for different Training-Tuning-Test samples. Each experiment was sampled
100 times and Wilcoxon Statistical Significance was calculated for our SVM model’s increase/decrease over each
individual model. ∗ = p < 0.01 , ∗ ∗ p =< 0.05, x = p ≥ 0.05

the size of the tuning and training data matter more
than the size of the test data given the low variance
in Table 5. Since the TamilTB is relatively small
when compared to other CoNLL treebanks, we ex-
pect that this ratio may shift more when additional
data is supplied since the amount of out of vocab-
ulary, OOV, words will decrease as well. As OOV
words decrease, we expect the use of additional test
data to have less of an effect.

Data Splits SVM Variance
70-20-10 0.0011
60-20-20 0.0005
60-30-10 0.0010
60-10-30 0.0003
85-5-10 0.0010
90-5-5 0.0028

80-10-10 0.0010

Table 5: Variance of the UAS Scores of our Ensemble
SVM System over 100 data splits

The traditional approach of using as much data as
possible for training does not seem to be as effec-
tive as partitioning more data for tuning an SVM.
For instance the highest training percentage we use
is 90% applied to training with 5% for tuning and
testing each. In this case the best individual model
had a UAS of 76.25% and the SVM had a UAS of
75.42%. One might think using 90% of the data
would achieve a higher overall UAS than using less
training data. On the contrary, we achieve a better
UAS score on average using only 60%, 70%, 80%,

and 85% of the data towards training. This addi-
tional data spent for tuning appears to be worth the
cost.

5 Conclusion

We have shown a new SVM based ensemble parser
that uses only dependency model agreement fea-
tures. The ability to use only model agreements al-
lows us to keep this approach language independent
and applicable to a wide range of morphologically
rich languages. We show a statistically significant
5.44% improvement over the average dependency
model and a statistically significant 0.52% improve-
ment over the best individual system.

In the future we would like to examine how our
data splits’ results change as more data is added.
This might be a prime use for self training. Since
the tuning data size for the SVM seems most impor-
tant, the UAS may be improved by only adding self
training data to our tuning sets. This would have the
additional benefit of eliminating the need to retrain
the individual parsers, thus saving computation time.
The tuning size may have a reduced effect for larger
treebanks but in our experiments it is critical to the
smaller treebank. Additionally, a full comparison of
various ensemble parsing error distributions will be
needed.

6 Acknowledgments

This research has received funding from the Euro-
pean Commission’s 7th Framework Program (FP7)
under grant agreement n◦ 238405 (CLARA)

76

References
Sabine Buchholz and Erwin Marsi. 2006. CoNLL-

X shared task on multilingual dependency parsing.
In Proceedings of the Tenth Conference on Compu-
tational Natural Language Learning, CoNLL-X ’06,
pages 149–164, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Thomas G. Dietterich. 2000. Ensemble methods in ma-
chine learning. In Proceedings of the First Interna-
tional Workshop on Multiple Classifier Systems, MCS
’00, pages 1–15, London, UK. Springer-Verlag.

Jason Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Proceed-
ings of the 16th International Conference on Com-
putational Linguistics (COLING-96), pages 340–345,
Copenhagen, August.

Nathan Green and Zdeněk Žabokrtský. 2012. Hybrid
Combination of Constituency and Dependency Trees
into an Ensemble Dependency Parser. In Proceedings
of the Workshop on Innovative Hybrid Approaches to
the Processing of Textual Data, pages 19–26, Avignon,
France, April. Association for Computational Linguis-
tics.

Gholamreza Haffari, Marzieh Razavi, and Anoop Sarkar.
2011. An ensemble model that combines syntactic
and semantic clustering for discriminative dependency
parsing. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pages 710–714, Port-
land, Oregon, USA, June. Association for Computa-
tional Linguistics.

Johan Hall, Jens Nilsson, Joakim Nivre, Gülsen Eryigit,
Beáta Megyesi, Mattias Nilsson, and Markus Saers.
2007. Single Malt or Blended? A Study in Mul-
tilingual Parser Optimization. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007,
pages 933–939.

Samar Husain, Prashanth Mannem, Bharat Ram Ambati,
and Phani Gadde. 2010. The icon-2010 tools contest
on indian language dependency parsing. In Proceed-
ings of ICON-2010 Tools Contest on Indian Language
Dependency Parsing, pages 1–8.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency parsing. Synthesis lectures on hu-
man language technologies. Morgan & Claypool, US.

André F. T. Martins, Dipanjan Das, Noah A. Smith, and
Eric P. Xing. 2008. Stacking dependency parsers.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’08,
pages 157–166, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005. Non-projective dependency pars-

ing using spanning tree algorithms. In Proceedings of
Human Language Technology Conference and Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 523–530, Vancouver, British Columbia,
Canada, October. Association for Computational Lin-
guistics.

Joakim Nivre and Ryan McDonald. 2008. Integrating
graph-based and transition-based dependency parsers.
In Proceedings of ACL-08: HLT, pages 950–958,
Columbus, Ohio, June. Association for Computational
Linguistics.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gulsen Eryigit, Sandra Kübler, Svetoslav Marinov,
and Erwin Marsi. 2007. MaltParser: A language-
independent system for data-driven dependency pars-
ing. Natural Language Engineering, 13(2):95–135.

Loganathan Ramasamy and Zdeněk Žabokrtský. 2011.
Tamil dependency parsing: results using rule based
and corpus based approaches. In Proceedings of the
12th international conference on Computational lin-
guistics and intelligent text processing - Volume Part I,
CICLing’11, pages 82–95, Berlin, Heidelberg.

Loganathan Ramasamy and Zdeněk Žabokrtský. 2012.
Prague dependency style treebank for Tamil. In Pro-
ceedings of LREC 2012, İstanbul, Turkey.

Kenji Sagae and Alon Lavie. 2006. Parser combina-
tion by reparsing. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Com-
panion Volume: Short Papers, pages 129–132, New
York City, USA, June. Association for Computational
Linguistics.

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency pars-
ing and domain adaptation with LR models and parser
ensembles. In Proceedings of the CoNLL Shared Task
Session of EMNLP-CoNLL 2007, pages 1044–1050,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

Anders Søgaard and Christian Rishøj. 2010. Semi-
supervised dependency parsing using generalized tri-
training. In Proceedings of the 23rd International
Conference on Computational Linguistics (Coling
2010), pages 1065–1073, Beijing, China, August.

Mihai Surdeanu and Christopher D. Manning. 2010. En-
semble models for dependency parsing: cheap and
good? In HLT: The 2010 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics, HLT ’10, pages 649–652,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Daniel Zeman and Zdeněk Žabokrtský. 2005. Improving
parsing accuracy by combining diverse dependency
parsers. In In: Proceedings of the 9th International
Workshop on Parsing Technologies.

77

