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Abstract

This paper investigates the impact on French
dependency parsing of lexical generalization
methods beyond lemmatization and morpho-
logical analysis. A distributional thesaurus
is created from a large text corpus and used
for distributional clustering and WordNet au-
tomatic sense ranking. The standard approach
for lexical generalization in parsing is to map
a word to a single generalized class, either re-
placing the word with the class or adding a
new feature for the class. We use a richer
framework that allows for probabilistic gener-
alization, with a word represented as a prob-
ability distribution over a space of general-
ized classes: lemmas, clusters, or synsets.
Probabilistic lexical information is introduced
into parser feature vectors by modifying the
weights of lexical features. We obtain im-
provements in parsing accuracy with some
lexical generalization configurations in exper-
iments run on the French Treebank and two
out-of-domain treebanks, with slightly better
performance for the probabilistic lexical gen-
eralization approach compared to the standard
single-mapping approach.

Introduction

_anguiano@inria.fr, marie.candito@Ilinguist.jussieu.fr

models operate over feature vectors that generally
represent syntactic structure within a sentence, and
feature templates are defined in part over the word
forms of one or more tokens in a sentence. Because
treebanks used for training are often small, lexical
features may appear relatively infrequently during
training, especially for languages with richer mor-
phology than English. This may, in turn, impede the
parsing model’s ability to generalize well outside of
its training set with respect to lexical features.

Past approaches for achieving lexical generaliza-
tion in dependency parsing have used WordNet se-
mantic senses in parsing experiments for English
(Agirre et al., 2011), and word clustering over large
corpora in parsing experiments for English (Koo
et al., 2008) as well as for French (Candito et al.,
2010b). These approaches map each word to a sin-
gle corresponding generalized class (synset or clus-
ter), and integrate generalized classes into parsing
models in one of two ways: (i) theeplacement
strategy where each word form is simply replaced
with a corresponding generalized class; (ii) a strat-
egy where an additional feature is created for the
corresponding generalized class.

Our contribution in this paper is applyingrob-
abilistic lexical generalizationa richer framework
for lexical generalization, to dependency parsing.

In statistical, data-driven approaches to natural lafzach word form is represented as a categorical dis-
guage syntactic parsing, a central problem is that efibution over alexical target spacef generalized
accurately modeling lexical relationships from po-<classes, for which we consider the spaces of lemmas,
tentially sparse counts within a training corpus. Ousynsets, and clusters. The standard single-mapping
particular interests are centered on reducing lexicabproach from previous work can be seen as a sub-
data sparseness for linear classification approachesse: each categorical distribution assigns a proba-
for dependency parsing. In these approaches, lingaitity of 1 to a single generalized class. The method
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we use for introducing probabilistic information intocontained in a sample space represent generalized
a feature vector is based on that used by Bunescilasses in #arget vocabularyIn this paper we con-
(2008), who tested the use of probabilistic part-ofsider three possible target vocabularies, with cor-
speech (POS) tags through an NLP pipeline. responding sample spaceqQ; for lemmas,(2, for

In this paper, we perform experiments for Frenclsynsets, an€l. for clusters.
that use the replacement strategy for integratin
generalized classes into parsing models, compari
the single-mapping approach for lexical generalizan the case of the lemma space, the source and tar-
tion with our probabilistic lexical generalization ap-get vocabularies are the same. To define an ap-
proach. In doing so, we provide first results on th@ropriate categorical distribution for each lemma,
application to French parsing of WordNet automatione where the possible outcomes also correspond to
sense ranking (ASR), using the method of McCarthiemmas, we use distributional thesaurushat pro-
et al. (2004). For clustering we deviate from mosvides similarity scores for pairs of lemmas. Such
previous work, which has integrated Brown clustera thesaurus can be viewed as a similarity function
(Brown et al., 1992) into parsing models, and instead (z, y), wherez,y € V andV is the vocabulary
use distributional lexical semantics to create both #or both the source and target spaces.
distributional thesaurus - for probabilistic general- The simplest way to define a categorical distribu-
ization in the lemma space and ASR calculation tion over();, for a lemmaz € V, would be to use
and to perform hierarchical agglomerative clusteringhe following probability mass functiop,:
(HAC). Though unlexicalized syntactic HAC clus-
tering has been used to improve English dependency pa(y) = Dy (1)
parsing (Sagae and Gordon, 2009), we provide first > D,y
results on using distributional lexical semantics for ey
French parsing. We also include an out-of-domai®ne complication is the identity similarity (z, x):
evaluation on medical and parliamentary text in adalthough it can be set equal to 1 (or the similar-
dition to an in-domain evaluation. ity given by the thesaurus, if one is provided), we

In Section 2 we describe the lexical target spaceshoose to assign a pre-specified probability mass
used in this paper, as well as the method of integrate the identity lemma, with the remaining mass used
ing probabilistic lexical information into a featurefor generalization across other lemmas. Addition-
vector for classification. In Section 3 we discuss deally, in order to account for noise in the thesaurus,
pendency structure and transition-based parsing. e restrict each categorical distribution to alemma’s
Section 4 we present the experimental setup, whiditnearest neighbors. The probability mass function
includes our parser implementation, the constructiop, over the spac&); that we use in this paper is fi-
of our probabilistic lexical resources, and evaluatiomally as follows:
settings. We report parsing results both in-domain
and out-of-domain in Section 5, we provide a sum-

Q; Lemma Space

m, fy=u
mary of related work in Section 6, and we conclude
in Section 7. (1-m)D(z,y)
W iy e Ny(k
=1 S pwy) Y @
2 Probabilistic Lexical Target Spaces yiEN (k)
0, otherwise

Using terms from probability theory, we definéea-
ical target spaceas a sample spade over which

a categorical distribution is defined for each lexi2-2 s Synset Space

cal item in a giversource vocabularyBecause we In the case of the synset space, the target vacabulary
are working with French, a language with relativelycontains synsets from the Princeton WordNet sense
rich morphology, we use lemmas as the base lexirierarchy (Fellbaum, 1998). To define an appro-
cal items in our source vocabulary. The outcomegriate categorical distribution over synsets for each



lemmazx in our source vocabulary, we first use themass functiorp,, over the spacé€l. for a lemmax

WordNet resource to identify the s&t of different with corresponding clustet,:

senses of. We then use a distributional thesaurus to _

perform ASR, which determines the prevalence with pz(c) = { L, fe=cs (5)
. 0, otherwise

respect tox of each sense € S, following the

approach of McCarthy et al. (2004). Representing.4 Probabilistic Feature Generalization

the thesaurus as a similarity functidh(z, y), let- |, 5 yypical classifier-based machine learning setting

ting N, (k) be the set ok-nearest neighbors far, i, NI p, feature vectors are constructed using indi-

and lettingV(s1, s2) be a similarity function over 4o functions that encode categorical information,
synsets in WordNet, we define a prevalence functiogy, ., as pos tags, word forms or lemmas

R.(s) as follows: In this section we will use a running example

wherea and b are token positions of interest to a

max W (s, s') classifier, and for which feature vectors are created.
Ra(s) = Z D(z,y) —— S - (3) If we lett stand for POS tag andstand for lemma,
YENa (k) Juax Wit s) afeature templatéor this pair of tokens might then

Sa . .
te be [t,l;]. Feature templates are instantiated as ac-

plual features in a vector space depending on the cat-
tribution that each distributionally-similar neighbor&90rical values they can take on. One possible in-
adds to a given sense far With the prevalence stantiation of the templaté Ji;] would then be the
scores of each sense forhaving been calculated, €ature fa=verbAl,=avocat], which indicates that

we use the following probability mass functign 'S @ ver"b and is the lemmaavocat (*avocado” or
over the spac€,, whereS, (k) is the set ofi-most lawyer”), with the following indicator function:

This function essentially weights the semantic co

prevalent senses far. i { 1 if tu=verb A ly=avocat ©
0, otherwise
LB ise s
A (Ifw(s) @ To perform probabilistic feature generalization, we
’ replace the indicator function, which represents a
0, otherwise single original feature, with a collection of weighted

functions representing a set of derived features. Sup-
Note that the first-sense ASR approach to usingose the French lemmavocat is in our source vo-
WordNet synsets for parsing, which has been previabulary and has multiple senses(in (s; for the
ously explored in the literature (Agirre et al., 2011)avocado” senses, for the “lawyer” sense, etc.),

corresponds to setting=1 in Equation 4. as well as a probability mass functign,. We
discard the old featuret]=verbAly=avocat] and
2.3 ) Cluster Space add, for eachs;, a derived feature of the form

In the case of the cluster space, any approach fbin=verbAzy=s;], wherez represents a target space
word clustering may be used to create a reduced tteneralized class, with the following weighted indi-
get vocabulary of clusters. Defining a categoricafator function:

distribution over clusters would be interesting in the

case ofsoft clusteringpf lemmas, in which a lemma o pav(ss), if ta=verb A ly=avocat
can participate in more than one cluster, but we have @)= { 0, otherwise

not yet explored this clustering approach.

In this paper we limit ourselves to the simplerThis process extends easily to generalizing multiple
hard clusteringHAC method, which uses a distri- categorical variables. Consider the bilexical feature
butional thesaurus and iteratively joins two clusterfl,=mangerAly=avocat], which indicates thata
together based on the similarities between lemmas the lemmamanger (“eat”) andb is the lemma
in each cluster. We end up with a simple probabilityivocat. If both lemmasnanger andavocat appear

@)



ouvrit 3.1 Transition-Based Parsing

In this paper we focus on transition-based pars-
Eile porte avec ing, whose seminal works are that of Yamada and
| | Matsumoto (2003) and Nivre (2003). The parsing
la cle process applies a sequence of incremental actions,
ﬂa which typically manipulate a buffer position in the
sentence and a stack for built sub-structures. In the
Figure 1: An unlabeled dependency tree for “Elle ouvrity e 4qgempproach introduced by Nivre etal. (2006)
laporte avec la &' ("She opened the door with the key”). the possible actions are as follows, withbeing the

token on top of the stack ang) being the next token

in our source vocabulary and have multiple sensd® the buffer:
in 4, with probability mass functiong,,, andpg,,
then for each pait, j we derive a feature of the

form [z,=s;Axzp=s;], with the following weighted  _ REDUCE: Pops, from the stack.
indicator function:

— SHIFT: Pushng onto the stack.

RIGHT-ARC(r): Add an arc labeled from sq

i) = Pma(8i)Pav(sy), If la=manger Aly=avocat ®) to ng; pushn, onto the stack.
J 0, otherwise

— LEFT-ARC(r): Add an arc labeled from ng
3 Dependency Parsing to so; pop so from the stack.

Dependency syntax involves the representation of The parser uses a greedy approach, where the ac-
syntactic information for a sentence in the form otion selected at each step is the best-scoring action
a directed graph, whose edges encode word-to-woadcording to a classifier, which is trained on a de-
relationships. An edge from governorto ade- pendency treebank converted into sequences of ac-
pendentindicates, roughly, that the presence of théions. The major strength of this framework is its
dependent is syntactically legitimated by the gover©(n) time complexity, which allows for very fast
nor. An important property of dependency syntax iparsing when compared to more complex global op-
that each word, except for the root of the sentencémization approaches.

has exactly one governor; dependency syntax is thus _

represented by trees. Figure 1 shows an examdle Experimental Setup

of an unlabeled dependency treeFor languages e now discuss the treebanks used for training and
like English or French, most sentences can be repyajuation, the parser implementation and baseline
resented with rojectivedependency tree: for any gegings, the construction of the probabilistic lexical

edge from word; to wordd, g dominates any inter- resqrces, and the parameter tuning and evaluation
vening word betweepn andd. settings.

Dependency trees are appealing syntactic repre-
sentations, closer than constituency trees to the sél Treebanks

mantic representations useful for NLP applicationsthe treebank we use for training and in-domain
This is true even with the projectivity requirementeyaluation is the French Treebank (FTB) (Abeill
which occasionally creates syntax-semantics migmd Barrier, 2004), consisting of 12,351 sentences
matches. Dependency trees have recently seefrgm theLe Mondenewspaper, converted to projec-
surge of interest, particularly with the introductiontjye? dependency trees (Candito et al., 2010a). For
of supervised models for dependency parsing usinglr experiments we use the usual split of 9,881 train-
linear classifiers. ing, 1,235 development, and 1,235 test sentences.

1Our experiments involve labeled parsing, with edges addi- 2The projectivity constraint is linguistically valid for most
tionally labeled with the surface grammatical function that thé=rench parses: the authors repar2% non-projective edges in
dependent bears with respect to its governor. a hand-corrected subset of the converted FTB.



Moving beyond the journalistic domain, we us Feature Templates

two additional treebank resources for out-of-domainn9ram i"“f é"“f o onos tt‘*‘j; tls?; oo Cf;“;,
. . nys bnyy Yngy bngy sy bs2y bngps Ingps nop s
parsing evgluatlons. Thesg treebanks are part’of daoy ey, Logys {mbo i € [M]};
the Sequoia corpus (Candito and Seddah, 2012), {mi, :i€|M|}
and consist of text from two non-journalistic do-| Bigram | ts,tng; tsolng; lsolngi Inotnis tnotngss
. . . . g J e ge .
mains annotated using the FTB annotation scheme: tnodng,s {1msoming 245 € [M|};
. . . {tngMn, 11 € |M|}; {tsgmy, 2 i € [M|}
a medical domain treebank containing 574 develop-—- . : . .
; rgram | teots;tsgs tsitsotngs tsotnotnis tnotnilne;
ment and 544 test sentences of public assessment to tngtng; teodag, dso,

reports of medicine from the European Medicines
Agency (EMEA) originally collected in the OPUS Table 1: Arc-_eager parser fea_lture templates: coarse
project (Tiedemann, 2009), and a parliamentary d¢.OS 297 = fine POS tagyw = inflected word form/ =

main treebank containing 561 test sentences fro ﬁrrzr?ri’ri zef{peggretr;%rl]as?fhi 7-1‘,:h Ei;pnhﬂ?ﬁgzh?g

the Europan corpus. s; = i'" token on the stack. The token subscripts and

h denote partially-constructed syntactic left-most depen-
dent, right-most dependent, and head, respectively.

We use our own Python implementation of the arc-

eager algorithm for transition-based parsing, based . .
on the arc-eager setting of MaltParser (Nivre et aI.F,’ reprocessec_j using the Bonsai foaind parsed us-
2007), and we train using the standard FTB trainin'gng our baseline parser.
set. Our baseline feature templates and general sgat3.2 Distributional Thesaurus

tings correspond to those obtained in a benchmark-\y,e  puild separate distributional thesauri for

ing of parsers for French (Candito et al., 2010b),,ns and for verbd,using straightforward meth-
under the setting which combined lemmas and Mo in distributional lexical semantics based primar-
phological feature$.Automatic POS-tagging is per- ily on work by Lin (1998) and Curran (2004). We

formed using MEIt (Denis and Sagot, 2009), anq,se the FreDist tool (Henestroza Anguiano and De-
lemmatization and morphological analysis are pets;q 2011) for thesaurus creation.

formed using the L# lexicon (Sagot, 2010). Ta-  Fjrst syntactic contextfor each lemma are ex-
ble 1 lists our baseline parser’s feature templates. .,-ted from the corpus. We use all syntactic de-

pendencies in which the secondary token has an
Wi d ibe th . ¢ babili open-class POS tag, with labels included in the con-
€ now describe the construction of our probabi IStexts and two-edge dependencies used in the case of

tic lexical target space resources, whose IorereqLB’repositional-phrase attachment and coordination.

sites include the automatic parsing of a large corpuE,xample contexts are shown in Figure 2. For verb

the construction of a distributional thesaurus, the US€mmas we limit contexts to dependencies in which
of ASR on WordNet synsets, and the use of HA(fhe verb is governor, and we add unlexicalized ver-

clustering. sions of contexts to account for subcategorization.
4.3.1 Automatically-Parsed Corpus For noun lemmas, we use all dependencies in which
ithe noun participates, and all contexts are lexical-
ized. The vocabulary is limited to lemmas with at
least 1,000 context occurrences, resulting in 8,171
nouns and 2,865 verbs.
Each pair of lemmax and contextc is sub-

sequently weighted by mutual informativeness us-

Nittp:/www. statmt. org/europarl __ing the point-wise mutual information metric, with
That work tested the use of Brown clusters, but obtained no

improvement compared to a setting without clusters. Thus, we 7hitp://alpage.inria.fr/statgram/frdep/fr_

4.2 Parser and Baseline Settings

4.3 Lexical Resource Construction

The text corpus we use consists of 125 mi
lion words from thel’Est Republicainnewspa-
per, 125 million words of dispatches from the
Agence France-Pressand 225 million words from
a French Wikipedia backup dufip The corpus is

do not evaluate Brown clustering in this paper. stat_dep_parsing.html
Shttp://mww.cnrtl.fr/corpus/estrepublicain/ 8We additionally considered adjectives and adverbs, but our
Shitp://dumps.wikimedia.org/ initial tests yielded no parsing improvements.



Source Evaluation Set
- One-Edge Context: 6bj— N|avocat Vocabulary| FTB Eval | EMEA Eval | Europarl
FTB train 95.35 62.87 94.69
- One-Edge Context: oebj— N Nouns| Thesaurus| 96.25 79.00 97.83
(unlexicalized) FREWN 80.51 73.09 87.06
FTB train 96.54 94.56 97.76
- Two-Edge Context: mod— P|avec —obj— N|avocat Verbs [ Thesaurus| 98.33 97.82 9954
FREWN 88.32 91.48 91.98
- Two-Edge Context: mod— P|avec —obj— N
(unlexicalized) Table 2: Lexical occurrence coverage (%) of source
vocabularies over evaluation sets. FTB Eval contains

oth the FTB development and test sets, while EMEA

Figure 2. Example dependency contexts for the VerEval contains both the EMEA development and test sets.
lemmamanger. The one-edge contexts corresponds t?’roper nouns are excluded from the analysis.

the phrase “manger un avocat” (“eat an avocado”), and
the two-edge contexts corresponds to the phrase “manger

avec un avocat” (“eat with a lawyer”). 4.3.4 HAC Clustering

For the HAC clustering experiments in this paper,
probabilities estimated using frequency counts:  we use the CLUTO packade The distributional
thesauri described above are taken as input, and the
I(z,c) = log (pl()giéna)) (99 UPGMA setting is used for cluster agglomeration.
We test varying levels of clustering, with a parame-

Finally, we use the cosine metric to calculate the did€" z Which determines the proportion of cluster vo-

tributional similarity between pairs of lemmasy: ~ cabulary size with respect to the original vocabulary
size (8,171 for nouns and 2,865 for verbs).
> 1z, 0)1(y,0)

o) 4.3.5 Resource Coverage

\/(Zf(x,c)Z) X (ZI(y, c)2> The coverage of our lexical resources over the
e e FTB and two out-of-domain evaluation sets, at the
level of token occurrences of verbs and common

4.3.3 WordNet ASR nouns, is described in Table 2. We can see that
For WordNet synset experiments we use thghe FTB training set vocabulary provides better cov-
French EurowordN&t (FREWN). A WordNet erage than the FREWN for both nouns and verbs,

synset mappintf allows us to convert synsets in theyhile the coverage of the thesauri (and derived clus-
FREWN to Princeton WordNet VeI‘SiOI’l 30, and af‘ters) is the h|ghest overa”_

ter discarding a small number of synsets that are
not covered by the mapping we retain entries fo4.4 Tuning and Evaluation

9,833 nouns and 2,220_ver_bs. We use NLTK, th9\/e evaluate four lexical target space configurations
Natural Language Toolkit (Bird et al., 2009), to Cal'against the baseline of lemmatization, tuning pa-

culate similarity between synsets. As explained i'? meters using ten-fold cross-validation on the FTB
aining set. The feature templates are the same as

Section 2.2, ASR is performed using the method
those in Table 1, with the difference that features

D(z,y) =

McCarthy et al. (2004). We uge=8 for the distri-

bhutlonal neafrest—r|1e|ghbors tg conS|derr\]/vhen ranklr,]ﬂvolving lemmas are modified by the probabilistic
the senses for a lemma, and we use the synset sifga,, o generalization technique described in Sec-

:]Ila:clty IIgn;:tlon ,?f Jlangt antd Corlra;h (19|\|9L?|_)l’<w'trtion 2.4, using the appropriate categorical distribu-
€ault information content counts from Cations. In all configurations, we exclude the French

culated over the British National Corplds auxiliary verbsétre andavoir from participation in

®http://www.illc.uva.nl/EurowordNet/ lexical generalization, and we replace proper nouns
lOhttp://nlp.Isi.upc.edu/tools/download-map.

php 12http://glaros.dtc.umn.edu/gkhome/cluto/
11http://www.natcorp.ox.ac.uk/ cluto/download



with a special lemm&. Below we describe the Parse Evaluation Set LAS
tuned parameters for each configuration. Configuratior] FTB Test EMEA Dev| EMEA Test Europarl
[ Forms [ 86.85 [ 8408 [ 8541 | 86.01 |

— RC: Replacement with cluster in€,. | Lemmas [ 87.30 [ 8434 [ 8541 | 86.26 |
. *
For clusters and the parametelcf. Section RC 8732 | 8428 | 8571* | 86.28
4.3.4), we settled on relative cluster vocabulary PrIL 87.46 84,657 8582 | 8626
2 RS 87.34 84.48 85.54 | 86.34
size z=0.6 for nouns and:=0.7 for verbs. We PKPS 87 41 84.63% 8568 | 86.22

also generalized lemmas not appearing in the

class (FTB) and out-of-domain (EMEA, Europarl) evaluation

sets for the baseline (Lemmas) and four lexical general-
ization configurations (RC, PKNL, RS, PKPS). Signif-

— PKNL: Probabilistic k-nearestlemmasirf); . : .
For the parameters andm (cf. Section 2.1) icant improvements over the baseline are starred. For
P ) *—/1 comparison, we also include a simpler setting (Forms),

we settled ork=4 andm=0.5 for both nouns \ynich does not use lemmas or morphological features.
and verbs. We also use the unknown class for

low-frequency lemmas, as in the RC configura-
tion. 5.1 In-Domain Results
o _ Our in-domain evaluation yields slight improve-

— RS:Replacementwith first-sensek=1) in 25 ments in LAS for some lexical generalization con-

Since the FREWN has a lower-coverage Vofigyrations, with PKNL performing the best. How-

cabulary, we did not use an unknown class fogyer, the improvements are not statistically signifi-

out-of-vocabulary lemmas; instead, we mappegant. A potential explanation for this disappointing

them to unique senses. In addition, we did Nofegylt is that the FTB training set vocabulary cov-

perform lexical generalization for verbs, due tQy 5 the FTB test set at high rates for both nouns

low cross-validation performance. (95.25%) and verbs (96.54%), meaning that lexi-
cal data sparseness is perhaps not a big problem
. . . for in-domain dependency parsing. While WordNet
:i:rcr)1rit tf;l:‘ Z’etg:]g }[Iéetr?eeclfrz(i ?a::;:ioﬂa;etﬁg%ynsets cpuld be expecteq to provide the added be_n—
Aumber o;‘ senses for different lemmas Asem of_ taking word sense into account, sense ambi-
. . . ' guity is not really treated due to ASR not providing
in the RS configuration, we mapped out-of- ord sense disambiguation in context
vocabulary lemmas to unique senses and di\g '

not perform lexical generalization for verbs. 52 Qut-Of-Domain Results

— PKPS: Probabilistic k-prevalent senses iff2;

5 Results Our evaluation on the medical domain yields statisti-
cally significant improvements in LAS, particularly
Table 3 shows labeled attachment score (LAS) rder the two probabilistic target space approaches.
sults for our baseline parser (Lemmas) and four [eXeKNL and PKPS improve parsing for both the
ical generalization configurations. For comparisorEMEA dev and test sets, while RC improves pars-
we also include results for a setting that only usetng for only the EMEA test set and RS does not sig-
word forms (Forms), which was the baseline for prenificantly improve parsing for either set. As in our
vious work on French dependency parsing (Canditm-domain evaluation, PKNL performs the best over-
et al., 2010b). Punctuation tokens are not scored|l, though not significantly better than other lexi-
and significance is calculated using Dan Bikel's raneal generalization settings. One explanation for the
domized parsing evaluation comparafopat signif- improvement in the medical domain is the substan-
icance levep=0.05. tial increase in coverage of nouns in EMEA afforded

*Proper nouns tend to have sparse counts, but for computito a single class.
tional reasons we did not include them in our distributional the-  4http:/www.cis.upenn.edu/ ~ dbikel/software.
saurus construction. We thus chose to simply generalize theimml



by the distributional thesaurus-26%) and FREWN P_arse . Lexical Feats Average Lexical Feature Use
(+16%) over the base coverage afforded by the prigonfiguration In Model [FTB TrainFTB DeyEMEA Dev
training set. | Lemmas [ 294k [ 6.0 [ 55 [ 47 |
Our evaluation on the parliamentary domain PEEL ;gg:ﬁ 12'2 12'.2 13'_3
yields no improvement in LAS across the differen RS 553K 6.0 56 29
lexical generalization configurations. Interestingly,” PKPS 500k 9.2 8.6 7.0

Candito and Seddah (2012) note that while Europarl _ _ .
is rather different from FTB in its syntax, its vocabu-12Plé 4: Parsing model lexical features (rounded to near-
est thousand) and average lexical feature use in classifi-

lary is surprisingly similar. From Table 2 we can SeeCation instances across different training and evaluation

that the FTB training set vocabulary has about th@ets, for the baseline (Lemmas) and four lexical general-

same high level of coverage over Europarl (94.69%ation configurations (PKNL, RC, PKPS, and RS).
for nouns and 97.76% for verbs) as it does over the

FTB evaluation sets (95.35% for nouns and 96.54%
for verbs). Thus, we can use the same reasoning gyaluation sets, though their higher absolute ALFU
in our in-domain evaluation to explain the lack ofM&y help explain the strong medical domain parsing
improvement for lexical generalization methods ifPerformance for these configurations.
the parliamentary domain. 5.4 Impact on Running Time
5.3 Lexical Feature Use During Parsing Another factor to note when evaluating lexical gen-
Since lexical generalization modifies the lexical feaeralization is the effect that it has on running time.
ture space in different ways, we also provide an anaGompared to the baseline, the single-mapping con-
ysis of the extent to which each parsing model’s lexfigurations (RC, RS) speed up feature extraction and
ical features are used during in-domain and out-oprediction time, due to reduced dimensionality of
domain parsing. Table 4 describes, for each confighe feature space. On the other hand, the proba-
uration, the number of lexical features stored in theilistic generalization configurations (PKNL, PKPS)
parsing model along with thaverage lexical fea- slow down feature extraction and prediction time,
ture usg(ALFU) of classification instances (each in-due to an increased dimensionality of the feature
stance represents a parse transition) during trainispace and a higher ALFU. Running time is there-
and parsing® fore a factor that favors the single-mapping approach
Lexical feature use naturally decreases wheover our proposed probabilistic approach.
moving from the training set to the evaluation sets, Taking a larger view on our findings, we hy-
due to holes in lexical coverage outside of a parsingothesize that in order for lexical generalization
model’s training set. The single-mapping configurato improve parsing, an approach needs to achieve
tions (RC, RS) do not increase the number of lexicalvo objectives: (i) generalize sufficiently to ensure
features in a classification instance, which explainghat lemmas not appearing in the training set are
the fact that their ALFU on the FTB training set (6.0)nonetheless associated with lexical features in the
is the same as that of the baseline. However, the diearned parsing model; (ii) substantially increase
crease in ALFU when parsing the evaluation sets igxical coverage over what the training set can pro-
less severe for these configurations than for the basgee. The first of these objectives seems to be ful-
line: when parsing EMEA Dev with the RC configu-filled through our lexical generalization methods, as
ration, where we obtain a significant LAS improve-indicated in Table 4. The second objective, how-
ment over the baseline, the reduction in ALFU isever, seems difficult to attain when parsing text in-
only 13% compared to 22% for the baseline parsedomain, or even out-of-domain if the domains have
For the probabilistic generalization configurationsa high lexical overlap (as is the case for Europarl).
we also see decreases in ALFU when parsing th@nly for our parsing experiments in the medical do-

5\We define the lexical feature use of a classification instancrtyaln do both objectlves appear to be fulfilled, as

to be the number of lexical features in the parsing model th&videnced by our LAS improvements when parsing
receive non-zero values in the instance’s feature vector. EMEA with lexical generalization.



6 Related Work a corpus of auto-parsed phrase-structure trees, and
) ) . HAC clustering is performed using cosine similarity.
We now discuss previous work concerning the use ¢d, semantic word classes, (Agirre et al., 2011) inte-
lexical generalization for parsing, both in the classig e WordNet senses into a transition-based parser
in-domain setting and in the more recently populaf, gngjish, reporting small but significant improve-
out-of-domain setting. ments in LAS (+0.26% with synsets and +0.36%
with semantic files) on the full Penn Treebank with
first-sense information from Semcor.
The use of word classes for parsing dates back to thewwe puild on previous work by attempting to
first works on generative constituency-based Pargeproduce, for French, past improvements for in-
ing, whether using semantic classes obtained frogpmain English dependency parsing with general-
hand-built resources or less-informed classes crered |exical classes. Unfortunately, our results for
ated automatically. Bikel (2000) tried incorporat-French do not replicate the improvements for En-
ing WordNet-based word sense disambiguation inigjish using semantic sense information (Agirre et al.,
a parser, but failed to obtain an improvement. Xion@on) or word clustering (Sagae and Gordon, 2009).
et al. (2005) generalized bilexical dependencies ifie primary difference between our paper and previ-
a generative parsing model using Chinese semanfigs work, though, is our evaluation of a novel prob-

resources (CiLin and HowNet), obtaining improve-pjilistic approach for lexical generalization.
ments for Chinese parsing. More recently, Agirre

et al. (2008) show that replacing words with Word6.3  Out-Of-Domain Parsing

N mantic cl improves English generativ . . . .
et semantic classes improves English generat (?oncernlng techniques for improving out-of-

parsing. Lin et al. (2009) use the HowNet resourcgOmain parsing, a related approach has been to use

within the split-merge PCFG framework (Petrov et . . - ; i e :
) . . self-training with auto-parsed out-of-domain data,

al., 2006) for Chinese parsing: they use the first: . .
. as McClosky and Charniak (2008) do for English

sense heuristic to append the most general hyper- " . :
nym to the POS of a token, obtaining a semanticall constituency parsing, though in that approach
ny . ' g : lexical generalization is not explicitly performed.
informed symbol refinement, and then guide furthe&andito et al. (2011) use word clustering for do-
symbol splits using the HowNet hierarchy. Other :

work has used less-informed classes, notably unsgn adaptation of a PCFG-LA parser for French,

pervised word clusters. Candito and Crak{B009) Henvmg clusters from a corpus c_ontamlng text
. . from both thesourceandtarget domains, and they
use Brown clusters to replace words in a generati

ve . T ) .
PCFG-LA framework, obtaining substantial parsinqci/b;a;e Fr)fgts :V%ar';nz;ovreg;ttss V\I/r;rkbgT ﬂ:j;rS:én;
improvements for French. P

lexical generalization for improving out-of-domain
6.2 Results in Dependency Parsing dependency parsing.

In dependency parsing, word classes are integrated cgnclusion

as features in underlying linear models. In a seminal

work, Koo et al. (2008) use Brown clusters as feaWe have investigated the use of probabilistic lexi-
tures in a graph-based parser, improving parsing faal target spaces for reducing lexical data sparse-
both English and Czech. However, attempts to usgess in a transition-based dependency parser for
this technique for French have lead to no improveFrench. We built a distributional thesaurus from an
ment when compared to the use of lemmatizatioautomatically-parsed large text corpus, using it to
and morphological analysis (Candito et al., 2010bgenerate word clusters and perform WordNet ASR.
Sagae and Gordon (2009) augment a transitioWe tested a standard approach to lexical gener-
based English parser with clusters using unlexicahklization for parsing that has been previously ex-
ized syntactic distributional similarity: each word isplored, where a word is mapped to a single cluster
represented as a vector of counts of emanating uar synset. We also introduced a novel probabilis-
lexicalized syntactic paths, with counts taken frontic lexical generalization approach, where a lemma

6.1 Results in Constituency-Based Parsing



is represented by a categorical distribution over thg. Agirre, T. Baldwin, and D. Martinez. 2008. Improv-
space of lemmas, clusters, or synsets. Probabilitiesing parsing and PP attachment performance with sense
for the lemma space were calculated using the dis- information. InProceedings of the 46th Annual Meet-
tributional thesaurus, and probabilities for the Word- "9 Of the Association for Computational Linguistics
Net synset space were calculated using ASR senge|Dages 317-325, Columbus, Ohio, June.

revalence scores, with probabilistic clusters left for Agirre, K. Bengoetxea, K. Gojenola, and J. Nivre.
?t K ’ P 2011. Improving dependency parsing with semantic
uture work.

classes. IProceedings of the 49th Annual Meeting of
Our experiments with an arc-eager transition- the Association for Computational Linguistigsages

based dependency parser resulted in modest but sig-699-703, Portland, Oregon, June.

nificant improvements in LAS over the baselineD.M. Bikel. 2000. A statistical model for parsing and

when parsing out-of-domain medical text. However, word-sense disambiguation. roceedings of the

we did not see statistically significant improvements EMNLP/VLC-2000pages 155-163, Hong Kong, Oc-

over the baseline when parsing in-domain text or ©Per-

. . . S. Bird, E. Loper, and E. Klein. 200¥atural Language
out-of-domain parliamentary text. An explanation
P y P Processing with PythornO’Reilly Media Inc.

for this resultis that the I.:rench. Treebank training S(:'Ig.F. Brown, P.V. Desouza, R.L. Mercer, V.J.D. Pietra, and
vocabu!ary has .a very high Ie>.<|cal Covefage over the J.C. Lai. 1992. Class-based n-gram models of natural
evaluation sets in these domains, suggesting that lex-janguage Computational Linguisticsl8(4):467—479.
ical generalization does not provide much additionat c. Bunescu. 2008. Learning with probabilistic fea-
benefit. Comparing the standard single-mapping ap- tures for improved pipeline models. Rroceedings of
proach to the probabilistic generalization approach, the Conference on Empirical Methods in Natural Lan-
we found a slightly (though not significantly) better guage Processingages 670-679, Honolulu, Hawaii,
performance for probabilistic generalization across October.

different parsing configurations and evaluation set§/- Candito and B. Crattn 2009. Improving generative

However, the probabilistic approach also has the statistical parsing with semi-supervised word cluster-

d ide of a sl ina ti ing. In Proceedings of the 11th International Confer-
ownside ofa s OV\-/er-runnllng "_ne' ence on Parsing Technologigsages 138-141, Paris,
Based on the findings in this paper, our focus prance, October.
for future Work_ on lexical generglizatiqn for d?'M. Candito and D. Seddah. 2012. Le corpus Sequoia :
pendency parsing is to continue improving parsing annotation syntaxique et exploitation pour I'adaptation
performance on out-of-domain text, specifically for d'analyseur par pont lexical. IActes de la 18me
those domains where lexical variation is high with conrence sur le traitement automatique des langues
respect to the training set. One possibility is to naturelles Grenoble, France, June. To Appear.
experiment with building a distributional thesaurud¥!- Candito, B. Crab, and P. Denis. 2010a. Statistical
that uses text from both the source and target do- French dependency parsing: Treebank conversion and
mains, similar to what Candito et al. (2011) did first results. InProceedings of the 7th International

. ) i Conference on Language Resources and Evaluation
with Brown clustering, which may lead to a stronger \sjetta. Malta May.

bridging effect across domains for probabilistic lex-\. candito, J. Nivre, P. Denis, and E. Henestroza An-

ical generalization methods. guiano. 2010b. Benchmarking of statistical depen-
dency parsers for French. Rroceedings of the 23rd
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