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Abstract

This paper investigates the impact on French
dependency parsing of lexical generalization
methods beyond lemmatization and morpho-
logical analysis. A distributional thesaurus
is created from a large text corpus and used
for distributional clustering and WordNet au-
tomatic sense ranking. The standard approach
for lexical generalization in parsing is to map
a word to a single generalized class, either re-
placing the word with the class or adding a
new feature for the class. We use a richer
framework that allows for probabilistic gener-
alization, with a word represented as a prob-
ability distribution over a space of general-
ized classes: lemmas, clusters, or synsets.
Probabilistic lexical information is introduced
into parser feature vectors by modifying the
weights of lexical features. We obtain im-
provements in parsing accuracy with some
lexical generalization configurations in exper-
iments run on the French Treebank and two
out-of-domain treebanks, with slightly better
performance for the probabilistic lexical gen-
eralization approach compared to the standard
single-mapping approach.

1 Introduction

In statistical, data-driven approaches to natural lan-
guage syntactic parsing, a central problem is that of
accurately modeling lexical relationships from po-
tentially sparse counts within a training corpus. Our
particular interests are centered on reducing lexical
data sparseness for linear classification approaches
for dependency parsing. In these approaches, linear

models operate over feature vectors that generally
represent syntactic structure within a sentence, and
feature templates are defined in part over the word
forms of one or more tokens in a sentence. Because
treebanks used for training are often small, lexical
features may appear relatively infrequently during
training, especially for languages with richer mor-
phology than English. This may, in turn, impede the
parsing model’s ability to generalize well outside of
its training set with respect to lexical features.

Past approaches for achieving lexical generaliza-
tion in dependency parsing have used WordNet se-
mantic senses in parsing experiments for English
(Agirre et al., 2011), and word clustering over large
corpora in parsing experiments for English (Koo
et al., 2008) as well as for French (Candito et al.,
2010b). These approaches map each word to a sin-
gle corresponding generalized class (synset or clus-
ter), and integrate generalized classes into parsing
models in one of two ways: (i) thereplacement
strategy, where each word form is simply replaced
with a corresponding generalized class; (ii) a strat-
egy where an additional feature is created for the
corresponding generalized class.

Our contribution in this paper is applyingprob-
abilistic lexical generalization, a richer framework
for lexical generalization, to dependency parsing.
Each word form is represented as a categorical dis-
tribution over alexical target spaceof generalized
classes, for which we consider the spaces of lemmas,
synsets, and clusters. The standard single-mapping
approach from previous work can be seen as a sub-
case: each categorical distribution assigns a proba-
bility of 1 to a single generalized class. The method
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we use for introducing probabilistic information into
a feature vector is based on that used by Bunescu
(2008), who tested the use of probabilistic part-of-
speech (POS) tags through an NLP pipeline.

In this paper, we perform experiments for French
that use the replacement strategy for integrating
generalized classes into parsing models, comparing
the single-mapping approach for lexical generaliza-
tion with our probabilistic lexical generalization ap-
proach. In doing so, we provide first results on the
application to French parsing of WordNet automatic
sense ranking (ASR), using the method of McCarthy
et al. (2004). For clustering we deviate from most
previous work, which has integrated Brown clusters
(Brown et al., 1992) into parsing models, and instead
use distributional lexical semantics to create both a
distributional thesaurus - for probabilistic general-
ization in the lemma space and ASR calculation -
and to perform hierarchical agglomerative clustering
(HAC). Though unlexicalized syntactic HAC clus-
tering has been used to improve English dependency
parsing (Sagae and Gordon, 2009), we provide first
results on using distributional lexical semantics for
French parsing. We also include an out-of-domain
evaluation on medical and parliamentary text in ad-
dition to an in-domain evaluation.

In Section 2 we describe the lexical target spaces
used in this paper, as well as the method of integrat-
ing probabilistic lexical information into a feature
vector for classification. In Section 3 we discuss de-
pendency structure and transition-based parsing. In
Section 4 we present the experimental setup, which
includes our parser implementation, the construction
of our probabilistic lexical resources, and evaluation
settings. We report parsing results both in-domain
and out-of-domain in Section 5, we provide a sum-
mary of related work in Section 6, and we conclude
in Section 7.

2 Probabilistic Lexical Target Spaces

Using terms from probability theory, we define alex-
ical target spaceas a sample spaceΩ over which
a categorical distribution is defined for each lexi-
cal item in a givensource vocabulary. Because we
are working with French, a language with relatively
rich morphology, we use lemmas as the base lexi-
cal items in our source vocabulary. The outcomes

contained in a sample space represent generalized
classes in atarget vocabulary. In this paper we con-
sider three possible target vocabularies, with cor-
responding sample spaces:Ωl for lemmas,Ωs for
synsets, andΩc for clusters.

2.1 Ωl Lemma Space

In the case of the lemma space, the source and tar-
get vocabularies are the same. To define an ap-
propriate categorical distribution for each lemma,
one where the possible outcomes also correspond to
lemmas, we use adistributional thesaurusthat pro-
vides similarity scores for pairs of lemmas. Such
a thesaurus can be viewed as a similarity function
D(x, y), wherex, y ∈ V andV is the vocabulary
for both the source and target spaces.

The simplest way to define a categorical distribu-
tion overΩl, for a lemmax ∈ V , would be to use
the following probability mass functionpx:

px(y) =
D(x, y)

∑

y′∈V

D(x, y′)
(1)

One complication is the identity similarityD(x, x):
although it can be set equal to 1 (or the similar-
ity given by the thesaurus, if one is provided), we
choose to assign a pre-specified probability massm

to the identity lemma, with the remaining mass used
for generalization across other lemmas. Addition-
ally, in order to account for noise in the thesaurus,
we restrict each categorical distribution to a lemma’s
k-nearest neighbors. The probability mass function
px over the spaceΩl that we use in this paper is fi-
nally as follows:

px(y) =


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






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
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m, if y = x

(1−m)D(x, y)
∑

y′∈Nx(k)

D(x, y′)
, if y ∈ Nx(k)

0, otherwise

(2)

2.2 Ωs Synset Space

In the case of the synset space, the target vacabulary
contains synsets from the Princeton WordNet sense
hierarchy (Fellbaum, 1998). To define an appro-
priate categorical distribution over synsets for each
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lemmax in our source vocabulary, we first use the
WordNet resource to identify the setSx of different
senses ofx. We then use a distributional thesaurus to
perform ASR, which determines the prevalence with
respect tox of each senses ∈ Sx, following the
approach of McCarthy et al. (2004). Representing
the thesaurus as a similarity functionD(x, y), let-
ting Nx(k) be the set ofk-nearest neighbors forx,
and lettingW (s1, s2) be a similarity function over
synsets in WordNet, we define a prevalence function
Rx(s) as follows:

Rx(s) =
∑

y∈Nx(k)

D(x, y)

max
s′ ∈ Sy

W (s, s′)

∑

t∈Sx

max
s′ ∈ Sy

W (t, s′)
(3)

This function essentially weights the semantic con-
tribution that each distributionally-similar neighbor
adds to a given sense forx. With the prevalence
scores of each sense forx having been calculated,
we use the following probability mass functionpx
over the spaceΩs, whereSx(k) is the set ofk-most
prevalent senses forx:

px(s) =























Rx(s)
∑

s′∈Sx(k)

Rx(s
′)
, if s ∈ Sx(k)

0, otherwise

(4)

Note that the first-sense ASR approach to using
WordNet synsets for parsing, which has been previ-
ously explored in the literature (Agirre et al., 2011),
corresponds to settingk=1 in Equation 4.

2.3 Ωc Cluster Space

In the case of the cluster space, any approach for
word clustering may be used to create a reduced tar-
get vocabulary of clusters. Defining a categorical
distribution over clusters would be interesting in the
case ofsoft clusteringof lemmas, in which a lemma
can participate in more than one cluster, but we have
not yet explored this clustering approach.

In this paper we limit ourselves to the simpler
hard clusteringHAC method, which uses a distri-
butional thesaurus and iteratively joins two clusters
together based on the similarities between lemmas
in each cluster. We end up with a simple probability

mass functionpx over the spaceΩc for a lemmax
with corresponding clustercx:

px(c) =

{

1, if c = cx
0, otherwise

(5)

2.4 Probabilistic Feature Generalization

In a typical classifier-based machine learning setting
in NLP, feature vectors are constructed using indi-
cator functions that encode categorical information,
such as POS tags, word forms or lemmas.

In this section we will use a running example
wherea and b are token positions of interest to a
classifier, and for which feature vectors are created.
If we let t stand for POS tag andl stand for lemma,
a feature templatefor this pair of tokens might then
be [talb]. Feature templates are instantiated as ac-
tual features in a vector space depending on the cat-
egorical values they can take on. One possible in-
stantiation of the template [talb] would then be the
feature [ta=verb∧lb=avocat], which indicates thata
is a verb andb is the lemmaavocat (“avocado” or
“lawyer”), with the following indicator function:

f =

{

1, if ta=verb ∧ lb=avocat
0, otherwise

(6)

To perform probabilistic feature generalization, we
replace the indicator function, which represents a
single original feature, with a collection of weighted
functions representing a set of derived features. Sup-
pose the French lemmaavocat is in our source vo-
cabulary and has multiple senses inΩs (s1 for the
“avocado” sense,s2 for the “lawyer” sense, etc.),
as well as a probability mass functionpav. We
discard the old feature [ta=verb∧lb=avocat] and
add, for eachsi, a derived feature of the form
[ta=verb∧xb=si], wherex represents a target space
generalized class, with the following weighted indi-
cator function:

f(i) =

{

pav(si), if ta=verb ∧ lb=avocat
0, otherwise

(7)

This process extends easily to generalizing multiple
categorical variables. Consider the bilexical feature
[la=manger∧lb=avocat], which indicates thata
is the lemmamanger (“eat”) and b is the lemma
avocat. If both lemmasmanger andavocat appear
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ouvrit

Elle porte

la

avec

clé

la

Figure 1: An unlabeled dependency tree for “Elle ouvrit
la porte avec la clé” (“She opened the door with the key”).

in our source vocabulary and have multiple senses
in Ωs, with probability mass functionspma andpav,
then for each pairi, j we derive a feature of the
form [xa=si∧xb=sj ], with the following weighted
indicator function:

f(i,j)=

{

pma(si)pav(sj), if la=manger∧lb=avocat
0, otherwise

(8)

3 Dependency Parsing

Dependency syntax involves the representation of
syntactic information for a sentence in the form of
a directed graph, whose edges encode word-to-word
relationships. An edge from agovernor to a de-
pendentindicates, roughly, that the presence of the
dependent is syntactically legitimated by the gover-
nor. An important property of dependency syntax is
that each word, except for the root of the sentence,
has exactly one governor; dependency syntax is thus
represented by trees. Figure 1 shows an example
of an unlabeled dependency tree.1 For languages
like English or French, most sentences can be rep-
resented with aprojectivedependency tree: for any
edge from wordg to wordd, g dominates any inter-
vening word betweeng andd.

Dependency trees are appealing syntactic repre-
sentations, closer than constituency trees to the se-
mantic representations useful for NLP applications.
This is true even with the projectivity requirement,
which occasionally creates syntax-semantics mis-
matches. Dependency trees have recently seen a
surge of interest, particularly with the introduction
of supervised models for dependency parsing using
linear classifiers.

1Our experiments involve labeled parsing, with edges addi-
tionally labeled with the surface grammatical function that the
dependent bears with respect to its governor.

3.1 Transition-Based Parsing

In this paper we focus on transition-based pars-
ing, whose seminal works are that of Yamada and
Matsumoto (2003) and Nivre (2003). The parsing
process applies a sequence of incremental actions,
which typically manipulate a buffer position in the
sentence and a stack for built sub-structures. In the
arc-eagerapproach introduced by Nivre et al. (2006)
the possible actions are as follows, withs0 being the
token on top of the stack andn0 being the next token
in the buffer:

− SHIFT: Pushn0 onto the stack.

− REDUCE: Pops0 from the stack.

− RIGHT-ARC(r): Add an arc labeledr from s0
to n0; pushn0 onto the stack.

− LEFT-ARC(r): Add an arc labeledr from n0

to s0; pops0 from the stack.

The parser uses a greedy approach, where the ac-
tion selected at each step is the best-scoring action
according to a classifier, which is trained on a de-
pendency treebank converted into sequences of ac-
tions. The major strength of this framework is its
O(n) time complexity, which allows for very fast
parsing when compared to more complex global op-
timization approaches.

4 Experimental Setup

We now discuss the treebanks used for training and
evaluation, the parser implementation and baseline
settings, the construction of the probabilistic lexical
resources, and the parameter tuning and evaluation
settings.

4.1 Treebanks

The treebank we use for training and in-domain
evaluation is the French Treebank (FTB) (Abeillé
and Barrier, 2004), consisting of 12,351 sentences
from theLe Mondenewspaper, converted to projec-
tive2 dependency trees (Candito et al., 2010a). For
our experiments we use the usual split of 9,881 train-
ing, 1,235 development, and 1,235 test sentences.

2The projectivity constraint is linguistically valid for most
French parses: the authors report< 2% non-projective edges in
a hand-corrected subset of the converted FTB.
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Moving beyond the journalistic domain, we use
two additional treebank resources for out-of-domain
parsing evaluations. These treebanks are part of
the Sequoia corpus (Candito and Seddah, 2012),
and consist of text from two non-journalistic do-
mains annotated using the FTB annotation scheme:
a medical domain treebank containing 574 develop-
ment and 544 test sentences of public assessment
reports of medicine from the European Medicines
Agency (EMEA) originally collected in the OPUS
project (Tiedemann, 2009), and a parliamentary do-
main treebank containing 561 test sentences from
the Europarl3 corpus.

4.2 Parser and Baseline Settings

We use our own Python implementation of the arc-
eager algorithm for transition-based parsing, based
on the arc-eager setting of MaltParser (Nivre et al.,
2007), and we train using the standard FTB training
set. Our baseline feature templates and general set-
tings correspond to those obtained in a benchmark-
ing of parsers for French (Candito et al., 2010b),
under the setting which combined lemmas and mor-
phological features.4 Automatic POS-tagging is per-
formed using MElt (Denis and Sagot, 2009), and
lemmatization and morphological analysis are per-
formed using the Lefff lexicon (Sagot, 2010). Ta-
ble 1 lists our baseline parser’s feature templates.

4.3 Lexical Resource Construction

We now describe the construction of our probabilis-
tic lexical target space resources, whose prerequi-
sites include the automatic parsing of a large corpus,
the construction of a distributional thesaurus, the use
of ASR on WordNet synsets, and the use of HAC
clustering.

4.3.1 Automatically-Parsed Corpus

The text corpus we use consists of 125 mil-
lion words from theL’Est Republicainnewspa-
per5, 125 million words of dispatches from the
Agence France-Presse, and 225 million words from
a French Wikipedia backup dump6. The corpus is

3http://www.statmt.org/europarl/
4That work tested the use of Brown clusters, but obtained no

improvement compared to a setting without clusters. Thus, we
do not evaluate Brown clustering in this paper.

5http://www.cnrtl.fr/corpus/estrepublicain/
6http://dumps.wikimedia.org/

Feature Templates
Unigram tn0

; ln0
; cn0

; wn0
; ts0 ; ls0 ; cs0 ; ws0 ; ds0 ;

tn1
; ln1

; tn2
; tn3

; ts1 ; ts2 ; tn0l
; ln0l

; dn0l
;

ds0l ; ds0r ; ls0h ; {mi
n0

: i ∈ |M |};
{mi

s0
: i ∈ |M |}

Bigram ts0tn0
; ts0 ln0

; ls0 ln0
; ln0

tn1
; tn0

tn0l
;

tn0
dn0l

; {mi
s0
mj

n0
: i; j ∈ |M |};

{tn0
mi

n0
: i ∈ |M |}; {ts0m

i
s0

: i ∈ |M |}

Trigram ts2ts1 ts0 ; ts1ts0 tn0
; ts0 tn0

tn1
; tn0

tn1
tn2

;
tn1

tn2
tn3

; ts0ds0lds0r

Table 1: Arc-eager parser feature templates.c = coarse
POS tag,t = fine POS tag,w = inflected word form,l =
lemma,d = dependency label,mi = morphological fea-
ture from setM . For tokens,ni = ith token in the buffer,
si = ith token on the stack. The token subscriptsl, r, and
h denote partially-constructed syntactic left-most depen-
dent, right-most dependent, and head, respectively.

preprocessed using the Bonsai tool7, and parsed us-
ing our baseline parser.

4.3.2 Distributional Thesaurus

We build separate distributional thesauri for
nouns and for verbs,8 using straightforward meth-
ods in distributional lexical semantics based primar-
ily on work by Lin (1998) and Curran (2004). We
use the FreDist tool (Henestroza Anguiano and De-
nis, 2011) for thesaurus creation.

First, syntactic contextsfor each lemma are ex-
tracted from the corpus. We use all syntactic de-
pendencies in which the secondary token has an
open-class POS tag, with labels included in the con-
texts and two-edge dependencies used in the case of
prepositional-phrase attachment and coordination.
Example contexts are shown in Figure 2. For verb
lemmas we limit contexts to dependencies in which
the verb is governor, and we add unlexicalized ver-
sions of contexts to account for subcategorization.
For noun lemmas, we use all dependencies in which
the noun participates, and all contexts are lexical-
ized. The vocabulary is limited to lemmas with at
least 1,000 context occurrences, resulting in 8,171
nouns and 2,865 verbs.

Each pair of lemmax and contextc is sub-
sequently weighted by mutual informativeness us-
ing the point-wise mutual information metric, with

7http://alpage.inria.fr/statgram/frdep/fr_
stat_dep_parsing.html

8We additionally considered adjectives and adverbs, but our
initial tests yielded no parsing improvements.
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· One-Edge Context: –obj→ N |avocat

· One-Edge Context: –obj→ N

(unlexicalized)

· Two-Edge Context: –mod→ P |avec –obj→ N |avocat

· Two-Edge Context: –mod→ P |avec –obj→ N

(unlexicalized)

Figure 2: Example dependency contexts for the verb
lemmamanger. The one-edge contexts corresponds to
the phrase “manger un avocat” (“eat an avocado”), and
the two-edge contexts corresponds to the phrase “manger
avec un avocat” (“eat with a lawyer”).

probabilities estimated using frequency counts:

I(x, c) = log

(

p(x, c)

p(x)p(c)

)

(9)

Finally, we use the cosine metric to calculate the dis-
tributional similarity between pairs of lemmasx, y:

D(x, y) =

∑

c

I(x, c)I(y, c)

√

(

∑

c

I(x, c)2
)

×

(

∑

c

I(y, c)2
)

(10)

4.3.3 WordNet ASR

For WordNet synset experiments we use the
French EuroWordNet9 (FREWN). A WordNet
synset mapping10 allows us to convert synsets in the
FREWN to Princeton WordNet version 3.0, and af-
ter discarding a small number of synsets that are
not covered by the mapping we retain entries for
9,833 nouns and 2,220 verbs. We use NLTK, the
Natural Language Toolkit (Bird et al., 2009), to cal-
culate similarity between synsets. As explained in
Section 2.2, ASR is performed using the method of
McCarthy et al. (2004). We usek=8 for the distri-
butional nearest-neighbors to consider when ranking
the senses for a lemma, and we use the synset sim-
ilarity function of Jiang and Conrath (1997), with
default information content counts from NLTK cal-
culated over the British National Corpus11.

9http://www.illc.uva.nl/EuroWordNet/
10http://nlp.lsi.upc.edu/tools/download-map.

php
11http://www.natcorp.ox.ac.uk/

Source Evaluation Set
Vocabulary FTB Eval EMEA Eval Europarl

Nouns
FTB train 95.35 62.87 94.69
Thesaurus 96.25 79.00 97.83
FREWN 80.51 73.09 87.06

Verbs
FTB train 96.54 94.56 97.76
Thesaurus 98.33 97.82 99.54
FREWN 88.32 91.48 91.98

Table 2: Lexical occurrence coverage (%) of source
vocabularies over evaluation sets. FTB Eval contains
both the FTB development and test sets, while EMEA
Eval contains both the EMEA development and test sets.
Proper nouns are excluded from the analysis.

4.3.4 HAC Clustering

For the HAC clustering experiments in this paper,
we use the CLUTO package12. The distributional
thesauri described above are taken as input, and the
UPGMA setting is used for cluster agglomeration.
We test varying levels of clustering, with a parame-
ter z which determines the proportion of cluster vo-
cabulary size with respect to the original vocabulary
size (8,171 for nouns and 2,865 for verbs).

4.3.5 Resource Coverage

The coverage of our lexical resources over the
FTB and two out-of-domain evaluation sets, at the
level of token occurrences of verbs and common
nouns, is described in Table 2. We can see that
the FTB training set vocabulary provides better cov-
erage than the FREWN for both nouns and verbs,
while the coverage of the thesauri (and derived clus-
ters) is the highest overall.

4.4 Tuning and Evaluation

We evaluate four lexical target space configurations
against the baseline of lemmatization, tuning pa-
rameters using ten-fold cross-validation on the FTB
training set. The feature templates are the same as
those in Table 1, with the difference that features
involving lemmas are modified by the probabilistic
feature generalization technique described in Sec-
tion 2.4, using the appropriate categorical distribu-
tions. In all configurations, we exclude the French
auxiliary verbsêtre andavoir from participation in
lexical generalization, and we replace proper nouns

12http://glaros.dtc.umn.edu/gkhome/cluto/
cluto/download
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with a special lemma13. Below we describe the
tuned parameters for each configuration.

− RC: Replacement with cluster inΩc

For clusters and the parameterz (cf. Section
4.3.4), we settled on relative cluster vocabulary
sizez=0.6 for nouns andz=0.7 for verbs. We
also generalized lemmas not appearing in the
distributional thesaurus into a single unknown
class.

− PKNL: Probabilistic k-nearest lemmas inΩl

For the parametersk andm (cf. Section 2.1),
we settled onk=4 andm=0.5 for both nouns
and verbs. We also use the unknown class for
low-frequency lemmas, as in the RC configura-
tion.

− RS: Replacement with first-sense (k=1) in Ωs

Since the FREWN has a lower-coverage vo-
cabulary, we did not use an unknown class for
out-of-vocabulary lemmas; instead, we mapped
them to unique senses. In addition, we did not
perform lexical generalization for verbs, due to
low cross-validation performance.

− PKPS: Probabilistic k-prevalent senses inΩs

For this setting we decided to not place any
limit on k, due to the large variation in the
number of senses for different lemmas. As
in the RS configuration, we mapped out-of-
vocabulary lemmas to unique senses and did
not perform lexical generalization for verbs.

5 Results

Table 3 shows labeled attachment score (LAS) re-
sults for our baseline parser (Lemmas) and four lex-
ical generalization configurations. For comparison,
we also include results for a setting that only uses
word forms (Forms), which was the baseline for pre-
vious work on French dependency parsing (Candito
et al., 2010b). Punctuation tokens are not scored,
and significance is calculated using Dan Bikel’s ran-
domized parsing evaluation comparator14, at signif-
icance levelp=0.05.

13Proper nouns tend to have sparse counts, but for computa-
tional reasons we did not include them in our distributional the-
saurus construction. We thus chose to simply generalize them

Parse Evaluation Set LAS
Configuration FTB Test EMEA Dev EMEA Test Europarl

Forms 86.85 84.08 85.41 86.01

Lemmas 87.30 84.34 85.41 86.26

RC 87.32 84.28 85.71* 86.28
PKNL 87.46 84.63* 85.82* 86.26

RS 87.34 84.48 85.54 86.34
PKPS 87.41 84.63* 85.68* 86.22

Table 3: Labeled attachment score (LAS) on in-domain
(FTB) and out-of-domain (EMEA, Europarl) evaluation
sets for the baseline (Lemmas) and four lexical general-
ization configurations (RC, PKNL, RS, PKPS). Signif-
icant improvements over the baseline are starred. For
comparison, we also include a simpler setting (Forms),
which does not use lemmas or morphological features.

5.1 In-Domain Results

Our in-domain evaluation yields slight improve-
ments in LAS for some lexical generalization con-
figurations, with PKNL performing the best. How-
ever, the improvements are not statistically signifi-
cant. A potential explanation for this disappointing
result is that the FTB training set vocabulary cov-
ers the FTB test set at high rates for both nouns
(95.25%) and verbs (96.54%), meaning that lexi-
cal data sparseness is perhaps not a big problem
for in-domain dependency parsing. While WordNet
synsets could be expected to provide the added ben-
efit of taking word sense into account, sense ambi-
guity is not really treated due to ASR not providing
word sense disambiguation in context.

5.2 Out-Of-Domain Results

Our evaluation on the medical domain yields statisti-
cally significant improvements in LAS, particularly
for the two probabilistic target space approaches.
PKNL and PKPS improve parsing for both the
EMEA dev and test sets, while RC improves pars-
ing for only the EMEA test set and RS does not sig-
nificantly improve parsing for either set. As in our
in-domain evaluation, PKNL performs the best over-
all, though not significantly better than other lexi-
cal generalization settings. One explanation for the
improvement in the medical domain is the substan-
tial increase in coverage of nouns in EMEA afforded

into a single class.
14http://www.cis.upenn.edu/ ˜ dbikel/software.

html
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by the distributional thesaurus (+26%) and FREWN
(+16%) over the base coverage afforded by the FTB
training set.

Our evaluation on the parliamentary domain
yields no improvement in LAS across the different
lexical generalization configurations. Interestingly,
Candito and Seddah (2012) note that while Europarl
is rather different from FTB in its syntax, its vocabu-
lary is surprisingly similar. From Table 2 we can see
that the FTB training set vocabulary has about the
same high level of coverage over Europarl (94.69%
for nouns and 97.76% for verbs) as it does over the
FTB evaluation sets (95.35% for nouns and 96.54%
for verbs). Thus, we can use the same reasoning as
in our in-domain evaluation to explain the lack of
improvement for lexical generalization methods in
the parliamentary domain.

5.3 Lexical Feature Use During Parsing

Since lexical generalization modifies the lexical fea-
ture space in different ways, we also provide an anal-
ysis of the extent to which each parsing model’s lex-
ical features are used during in-domain and out-of-
domain parsing. Table 4 describes, for each config-
uration, the number of lexical features stored in the
parsing model along with theaverage lexical fea-
ture use(ALFU) of classification instances (each in-
stance represents a parse transition) during training
and parsing.15

Lexical feature use naturally decreases when
moving from the training set to the evaluation sets,
due to holes in lexical coverage outside of a parsing
model’s training set. The single-mapping configura-
tions (RC, RS) do not increase the number of lexical
features in a classification instance, which explains
the fact that their ALFU on the FTB training set (6.0)
is the same as that of the baseline. However, the de-
crease in ALFU when parsing the evaluation sets is
less severe for these configurations than for the base-
line: when parsing EMEA Dev with the RC configu-
ration, where we obtain a significant LAS improve-
ment over the baseline, the reduction in ALFU is
only 13% compared to 22% for the baseline parser.
For the probabilistic generalization configurations,
we also see decreases in ALFU when parsing the

15We define the lexical feature use of a classification instance
to be the number of lexical features in the parsing model that
receive non-zero values in the instance’s feature vector.

Parse Lexical Feats Average Lexical Feature Use
Configuration In Model FTB Train FTB Dev EMEA Dev

Lemmas 294k 6.0 5.5 4.7

RC 150k 6.0 5.8 5.2
PKNL 853k 15.7 14.8 12.0

RS 253k 6.0 5.6 4.9
PKPS 500k 9.2 8.6 7.0

Table 4: Parsing model lexical features (rounded to near-
est thousand) and average lexical feature use in classifi-
cation instances across different training and evaluation
sets, for the baseline (Lemmas) and four lexical general-
ization configurations (PKNL, RC, PKPS, and RS).

evaluation sets, though their higher absolute ALFU
may help explain the strong medical domain parsing
performance for these configurations.

5.4 Impact on Running Time

Another factor to note when evaluating lexical gen-
eralization is the effect that it has on running time.
Compared to the baseline, the single-mapping con-
figurations (RC, RS) speed up feature extraction and
prediction time, due to reduced dimensionality of
the feature space. On the other hand, the proba-
bilistic generalization configurations (PKNL, PKPS)
slow down feature extraction and prediction time,
due to an increased dimensionality of the feature
space and a higher ALFU. Running time is there-
fore a factor that favors the single-mapping approach
over our proposed probabilistic approach.

Taking a larger view on our findings, we hy-
pothesize that in order for lexical generalization
to improve parsing, an approach needs to achieve
two objectives: (i) generalize sufficiently to ensure
that lemmas not appearing in the training set are
nonetheless associated with lexical features in the
learned parsing model; (ii) substantially increase
lexical coverage over what the training set can pro-
vide. The first of these objectives seems to be ful-
filled through our lexical generalization methods, as
indicated in Table 4. The second objective, how-
ever, seems difficult to attain when parsing text in-
domain, or even out-of-domain if the domains have
a high lexical overlap (as is the case for Europarl).
Only for our parsing experiments in the medical do-
main do both objectives appear to be fulfilled, as
evidenced by our LAS improvements when parsing
EMEA with lexical generalization.
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6 Related Work

We now discuss previous work concerning the use of
lexical generalization for parsing, both in the classic
in-domain setting and in the more recently popular
out-of-domain setting.

6.1 Results in Constituency-Based Parsing

The use of word classes for parsing dates back to the
first works on generative constituency-based pars-
ing, whether using semantic classes obtained from
hand-built resources or less-informed classes cre-
ated automatically. Bikel (2000) tried incorporat-
ing WordNet-based word sense disambiguation into
a parser, but failed to obtain an improvement. Xiong
et al. (2005) generalized bilexical dependencies in
a generative parsing model using Chinese semantic
resources (CiLin and HowNet), obtaining improve-
ments for Chinese parsing. More recently, Agirre
et al. (2008) show that replacing words with Word-
Net semantic classes improves English generative
parsing. Lin et al. (2009) use the HowNet resource
within the split-merge PCFG framework (Petrov et
al., 2006) for Chinese parsing: they use the first-
sense heuristic to append the most general hyper-
nym to the POS of a token, obtaining a semantically-
informed symbol refinement, and then guide further
symbol splits using the HowNet hierarchy. Other
work has used less-informed classes, notably unsu-
pervised word clusters. Candito and Crabbé (2009)
use Brown clusters to replace words in a generative
PCFG-LA framework, obtaining substantial parsing
improvements for French.

6.2 Results in Dependency Parsing

In dependency parsing, word classes are integrated
as features in underlying linear models. In a seminal
work, Koo et al. (2008) use Brown clusters as fea-
tures in a graph-based parser, improving parsing for
both English and Czech. However, attempts to use
this technique for French have lead to no improve-
ment when compared to the use of lemmatization
and morphological analysis (Candito et al., 2010b).
Sagae and Gordon (2009) augment a transition-
based English parser with clusters using unlexical-
ized syntactic distributional similarity: each word is
represented as a vector of counts of emanating un-
lexicalized syntactic paths, with counts taken from

a corpus of auto-parsed phrase-structure trees, and
HAC clustering is performed using cosine similarity.
For semantic word classes, (Agirre et al., 2011) inte-
grate WordNet senses into a transition-based parser
for English, reporting small but significant improve-
ments in LAS (+0.26% with synsets and +0.36%
with semantic files) on the full Penn Treebank with
first-sense information from Semcor.

We build on previous work by attempting to
reproduce, for French, past improvements for in-
domain English dependency parsing with general-
ized lexical classes. Unfortunately, our results for
French do not replicate the improvements for En-
glish using semantic sense information (Agirre et al.,
2011) or word clustering (Sagae and Gordon, 2009).
The primary difference between our paper and previ-
ous work, though, is our evaluation of a novel prob-
abilistic approach for lexical generalization.

6.3 Out-Of-Domain Parsing

Concerning techniques for improving out-of-
domain parsing, a related approach has been to use
self-training with auto-parsed out-of-domain data,
as McClosky and Charniak (2008) do for English
constituency parsing, though in that approach
lexical generalization is not explicitly performed.
Candito et al. (2011) use word clustering for do-
main adaptation of a PCFG-LA parser for French,
deriving clusters from a corpus containing text
from both thesourceand target domains, and they
obtain parsing improvements in both domains.
We are not aware of previous work on the use of
lexical generalization for improving out-of-domain
dependency parsing.

7 Conclusion

We have investigated the use of probabilistic lexi-
cal target spaces for reducing lexical data sparse-
ness in a transition-based dependency parser for
French. We built a distributional thesaurus from an
automatically-parsed large text corpus, using it to
generate word clusters and perform WordNet ASR.
We tested a standard approach to lexical gener-
alization for parsing that has been previously ex-
plored, where a word is mapped to a single cluster
or synset. We also introduced a novel probabilis-
tic lexical generalization approach, where a lemma
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is represented by a categorical distribution over the
space of lemmas, clusters, or synsets. Probabilities
for the lemma space were calculated using the dis-
tributional thesaurus, and probabilities for the Word-
Net synset space were calculated using ASR sense
prevalence scores, with probabilistic clusters left for
future work.

Our experiments with an arc-eager transition-
based dependency parser resulted in modest but sig-
nificant improvements in LAS over the baseline
when parsing out-of-domain medical text. However,
we did not see statistically significant improvements
over the baseline when parsing in-domain text or
out-of-domain parliamentary text. An explanation
for this result is that the French Treebank training set
vocabulary has a very high lexical coverage over the
evaluation sets in these domains, suggesting that lex-
ical generalization does not provide much additional
benefit. Comparing the standard single-mapping ap-
proach to the probabilistic generalization approach,
we found a slightly (though not significantly) better
performance for probabilistic generalization across
different parsing configurations and evaluation sets.
However, the probabilistic approach also has the
downside of a slower running time.

Based on the findings in this paper, our focus
for future work on lexical generalization for de-
pendency parsing is to continue improving parsing
performance on out-of-domain text, specifically for
those domains where lexical variation is high with
respect to the training set. One possibility is to
experiment with building a distributional thesaurus
that uses text from both the source and target do-
mains, similar to what Candito et al. (2011) did
with Brown clustering, which may lead to a stronger
bridgingeffect across domains for probabilistic lex-
ical generalization methods.
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