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Ondřej Bojar, Bushra Jawaid, Amir Kamran
Charles University in Prague, Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics
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Abstract

We introduce a taxonomy of factored phrase-
based translation scenarios and conduct a
range of experiments in this taxonomy. We
point out several common pitfalls when de-
signing factored setups. The paper also de-
scribes our WMT12 submissions CU-BOJAR
and CU-POOR-COMB.

1 Introduction

Koehn and Hoang (2007) introduced “factors” to
phrase-based MT to explicitly capture arbitrary fea-
tures in the phrase-based model. In essence, input
and output tokens are no longer atomic units but
rather vectors of atomic values encoding e.g. the lex-
ical and morphological information separately. Fac-
tored translation has been successfully applied to
many language pairs and with diverse types of infor-
mation encoded in the additional factors, i.a. (Bojar,
2007; Avramidis and Koehn, 2008; Stymne, 2008;
Badr et al., 2008; Ramanathan et al., 2009; Koehn et
al., 2010; Yeniterzi and Oflazer, 2010). On the other
hand, it happens quite frequently, that the factored
setup causes a loss compared to the phrase-based
baseline. The underlying reason is the complexity of
the search space which gets boosted when the model
explicitly includes detailed information, see e.g. Bo-
jar and Kos (2010) or Toutanova et al. (2008).
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Figure 1: A taxonomy of factored phrase-based models.

In this paper, we first provide a taxonomy of
(phrase-based) translation setups and then we exam-
ine a range of sample configurations in this taxon-
omy. We don’t state universal rules, because the ap-
plicability of each of the setups depends very much
on the particular language pair, text domain and
amount of data available, but we hope to draw at-
tention to relevant design decisions.

The paper also serves as the description of our
WMT12 submissions CU-BOJAR and CU-POOR-
COMB between English and Czech.

2 A Taxonomy of Factored P-B Models

Figure 1 suggests a taxonomy of various Moses se-
tups. Following the definitions of Koehn and Hoang
(2007), a search consists of several translation and
generation steps: translation steps map source fac-
tors to target factors and generation steps produce
target factors from other target factors.

The taxonomy is vaguely linked to the types of
problems that can be expected with a given config-
uration. Direct translation is likely to suffer from
out-of-vocabulary issues (due to insufficient gener-
alization) on either side. Single-step scenarios have
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a very high risk of combinatorial explosion of trans-
lation options (think cartesian product of all target
side factors) and/or of spurious ambiguity (several
derivations leading to the same output). Such added
ambiguity can lead to n-best lists with way fewer
unique items than the given n, which in turn ren-
ders MERT unstable, see also Bojar and Tamchyna
(2011). Serially connected setups (two as our Two-
Step or more) can lose relevant candidates between
the searches, unless some ambiguous representation
like lattices is passed between the steps.

An independent axis on which Moses setups can
be organized consists of the number and function of
factors on the source and the target side.

We use a very succint notation for the setups ex-
cept the “complex” one: tX-Y denotes a translation
step between the factors X in the source language
and Y in the target language. Generation steps are
denoted with gY-Z, where both Y and Z are target-
side factors. Individual mapping steps are combined
with a plus, while individual source or target factors
are combined with an “a”.

As a simple example, tF-F denotes the direct
translation from source form (F ) to the target form.
A linguistically motivated scenario with one search
can be written as tL-L+tT-T+gLaT-F : translate (1)
the lemma (L) to lemma, (2) the morphological tag
(T) to tag independently and (3) finally generate the
target form from the lemma and the tag.

We use two more operators: “:” delimits al-
ternative decoding paths (Birch et al., 2007) used
within one search and “=” delimits two independent
searches. A plausible setup is e.g. tF-LaT=tLaT-
F:tL-F motivated as follows: the source word form
is translated to the lemma and tag in the target lan-
guage. Then a second search (whose translation ta-
bles can be trained on larger monolingual data) con-
sists of two alternative decoding paths: either the
pair of L and T is translated into the target form, or
as a fallback, the tag is disregarded and the target
form is guessed only from the lemma (and the con-
text as scored by the language model). The example
also illustrated the priorities of the operators.

3 Common Settings

Throughout the experiments, we use the Moses
toolkit (Koehn et al., 2007) and GIZA++ (Och

Dataset Sents (cs/en) Toks (cs/en) Source
Small 197k parallel 4.2M/4.8M CzEng 1.0 news
Large 14.8M parallel 205M/236M CzEng 1.0 all
Mono 18M/50M 317M/1.265G WMT12 mono

Table 1: Summary of training data.

Decoding Path Language Models BLEU
tF-FaLaT form + lemma + tag 13.05±0.44
tF-FaT form + tag 13.01±0.44
tF-FaLaT form + tag 12.99±0.44
tF-F (baseline) form 12.42±0.44
tF-FaT form 12.19±0.44
tF-FaLaT form 12.08±0.45

Table 2: Direct en→cs translation (a single search with
one translation step only).

and Ney, 2000). The texts were processed us-
ing the Treex platform (Popel and Žabokrtský,
2010)1, which included lemmatization and tagging
by Morce (Spoustová et al., 2007). After the tag-
ging, we tokenized further so words like “23-year”
or “Aktualne.cz” became three tokens.

Our training data is summarized in Table 1.2

In most experiments reported here, we use the
Small dataset only. The language model (LM) for
these experiments is a 5-gram one based on the
target-side of Small only.

Our WMT12 submissions are based on the Large
and Mono data. The language model for the large
experiments uses 6-grams of forms and optionally
8-grams of morphological tags. As in previous
years, the language models are interpolated (to-
wards the best cross entropy on WMT08 dataset)
from domain-specific LMs, e.g. czeng-news, czeng-
techdoc, wmtmono-2011, wmtmono-2012.

Except where stated otherwise, we tune on the of-
ficial WMT10 test set and report BLEU (Papineni et
al., 2002) scores on the WMT11 test set.

4 Direct Setups

Table 2 lists our experiments with direct translation,
various factors and language models in our notation.

1http://ufal.mff.cuni.cz/treex/
2We did not include the parallel en-cs data made available

by the WMT12 organizers. This probably explains our loss
compared to UEDIN but allows a direct comparison with CU
TECTOMT, a deep syntactic MT based on the same data.
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Decoding Paths LMs Avg. BLEU Eff. Nbl. Size
tL-L+tT-T+gLaT-F:tF-FaLaT F + L + T 13.31±0.06 12.24±1.33
tL-L+tT-T+gLaT-F F + L + T 13.30±0.05 40.33±3.82
tL-L+tT-T+gLaT-F F + T 13.17±0.01 39.91±2.58
tL-L+tT-T+gLaT-F:tF-FaLaT, 200-best-list F + L + T 13.15±0.24 20.47±5.63
tF-FaLaT F + L + T 13.13±0.06 34.28±3.08
tL-L+tT-T+gLaT-F:tF-FaLaT L + T 13.09±0.06 16.65±1.07
tF-FaT F + T 13.08±0.05 39.67±2.21
tL-L+tT-T+gLaT-F:tF-FaT F + T 13.01±0.43 14.87±5.04
tF-F (baseline) F 12.38±0.03 43.13±0.48
tL-L+tT-T+gLaT-F:tF-F F 12.30±0.03 17.83±3.27

Table 3: Results of three MERT runs of several single-step configurations.

Explicit modelling of target-side morphology im-
proves translation quality, compare tF-FaLaT with
the baseline tF-F. However, two results document
that if some detailed information is distinguished in
the output, it introduces target ambiguity and leads
to a loss in BLEU, unless the detailed information is
actually used in the language model: (1) tF-FaLaT
with LM on forms is worse than the baseline tF-F
but tF-FaLaT with all the three language models is
better, (2) tF-FaLaT with two LMs (forms and tags)
is negligibly worse than tF-FaT with the same lan-
guage models.

5 Single-Step Experiments

Single-step scenarios consist of more than one trans-
lation steps within a single search. We do not distin-
guish whether all the translation steps belong to the
same decoding path or to alternative decoding paths.

Table 3 lists several single-step configurations
(and three direct translations for a compari-
son). The single-step configurations always include
the linguistically-motivated tL-L+tT-T+gLaT-F with
varying language models and optionally with an al-
ternative decoding path to serve as the fallback.

Aware of the low stability of MERT (Clark et al.,
2011), we run MERT three times and report the av-
erage BLEU score including the standard deviation.

The last column in Table 3 lists the average num-
ber of distinct candidates per sentence in the n-
best lists during MERT, dubbed “effective n-best list
size”. Unless stated otherwise, we used 100-best
lists. We see that due to spurious ambiguity, e.g.
various segmentations of the input into phrases, the
effective size does not reach even a half of the limit.

We make three observations here:

(1) In this small data setting with a very morpho-
logically rich language, the complex setup tL-L+tT-
T+gLaT-F does not even need the alternative decod-
ing path tF-F. Ramanathan et al. (2009) report gains
in English-to-Hindi translation and also probably do
not use alternative decoding paths.

(2) Reducing the range of language models used
leads to worse scores, which is in line with the ob-
servation made with direct setups. We are surprised
by the relative importance of the lemma-based LM.

(3) Alternative decoding paths significantly re-
duce effective n-best list size to just 12–18 unique
candidates per sentence. However, we don’t see
an obvious relation to the stability of MERT: the
standard deviations of BLEU average are very
similar except for two outliers: 13.15±0.24 and
13.01±0.43. One of the outliers, 13.15, is actually
a repeated run of the 13.31 with n-best-list size set
to 200. Here we see a slight increase in the effec-
tive size (20 instead of 12) but also a slight loss
in BLEU. We repeated the 13.31 experiment also
with n ∈ {300, 400, 500, 600}, three MERT runs for
each n. All the runs reached BLEU of about 13.30
except for one (n = 600) where the score dropped
to 11.50. The low result was obtained when MERT
ended at 25 iterations, the standard limit. On the
other hand, several successful runs also exhausted
the limit.

Figure 2 plots the BLEU scores in the 25 itera-
tions of the underperforming run with n = 600. The
MERT implementation in the Moses toolkit reports
at each iteration what we call “predicted BLEU”,
i.e. the BLEU of translations selected by the current
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Figure 2: Predicted and real devset BLEU scores.

weight settings from the (accumulated) n-best list.
We plot this predicted BLEU twice: once on the y2
axis alone and for the second time on the primary
y axis together with the real BLEU, i.e. the BLEU
of the dev set when Moses is actually run with the
weight settings. The real BLEU drops several times,
indicating that the prediction was misleading. Sim-
ilar drops were observed in all runs. With bad luck
as here, the iteration limit is reached when the opti-
mization is still recovering from such a drop.

To avoid such a pitfall, one should check the real
BLEU and continue or simply rerun the optimization
if the iteration limit was reached.

6 Two-Step Experiments

The linguistically motivated setups used in the pre-
vious sections are prohibitively expensive for large
data, see also Bojar et al. (2009). A number of
researchers have thus tried diving the complexity
of search into two independent phases: (1) transla-
tion and reordering, and (2) conjugation and declina-
tion. The most promising results were obtained with
the second step predicting individual morphological
features using a specialized tool (Toutanova et al.,
2008; Fraser et al., 2012). Here, we simply use one
more Moses search as Bojar and Kos (2010).

In the first step, source English gets translated to
a simplified Czech and in the second step, the sim-
plified Czech gets fully inflected.

6.1 Factors in Two-Step Setups

Two-step setups can use factors in the source, middle
or the target language. We experiment with factors
only in the middle language (affecting both the first
and the second search) and use only the form in both

source and target sides.
In the middle language, we experiment with one

or two factors. For presentation purposes, we always
speak about two factors: “LOF” (“lemma or form”,
i.e. a representation of the lexical information) and
“MOT” (“modified tag”, i.e. representing the mor-
phological properties). In the single-factor experi-
ments the LOF and MOT are simply concatenated
into a token in the shape LOF+MOT.

Figure 3 illustrates the range of LOFs and MOTs
we experimented with. LOF0 and MOT0 are identi-
cal to the standard Czech lemma and morphological
tag as used e.g. in the Prague Dependency Treebank
(Hajič et al., 2006).

LOF1 and MOT1 together make what Bojar and
Kos (2010) call “pluslemma”. MOT1 is less com-
plex than the full tag by disregarding morphological
attributes not generally overt in the English source
side. For most words, LOF1 is simply the lemma,
but for frequent words, the full form is used. This
includes punctuation, pronouns and the verbs “být”
(to be) and “mı́t” (to have).

MOT2 uses a more coarse grained part of speech
(POS) than MOT1. Depending on the POS, dif-
ferent attributes are included: gender and number
for nouns, pronouns, adjectives and verbs; case for
nouns, pronouns, adjectives and prepositions; nega-
tion for nouns and adjectives; tense and voice for
verbs and finally grade for adjectives. The remain-
ing grammatical categories are encoded using POS,
number, grade and negation.

6.2 Decoding Paths in Two-Step Setups
Each of the searches in the two-step setup can be
as complex as the various single-step configurations.
We test just one decoding path for the one or two
factors in the middle language.

All experiments with one middle factor (i.e. “+”)
follow this config: tF-LOF+MOT = tLOF+MOT-F,
i.e. two direct translations where the first one pro-
duces the concatenated LOF and MOT tokens and
the second one consumes them. The first step uses a
5-gram LOF+MOT language model and the second
step uses a 5-gram LM based on forms.

This setup has the capacity to improve transla-
tion quality by producing forms of words never seen
aligned with a given source form. For example the
English word green would be needed in the parallel
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Word Form LOF0 LOF1 MOT0 MOT1 MOT2 Gloss
lidé člověk člověk NNMP1-----A---1 NPA- NMP1-A people
by být by Vc------------- c--- V----- would
neočekávali očekávat očekávat VpMP---XR-NA--- pPN- VMP-RA expect

Figure 3: Examples of LOFs and MOTs used in our experiments.

Middle Factors 1 2
+ |

LOF0 +/|MOT0 11.11±0.48 12.42±0.48
LOF1 +/|MOT1 12.10±0.48 11.85±0.42
LOF1 +/|MOT2 11.87±0.51 12.47±0.51

Table 4: Two-step experiments.

data with all the morphological variants of the Czech
word zelený. Adding the middle step with appro-
priately reduced morphological information so that
only features overt in the source are represented in
the middle tokens (e.g. negation and number but not
the case) allows the model to find the necessary form
anywhere in the target-side data only:

green→ zelený+NSA-→
{ zeleného (genitive)

zelenému (dative)
. . .

The experiments with two middle factors (i.e. “|”)
use this path: tF-LOFaMOT = tLOFaMOT-F:LOF-
F. The first step is identical, except that now we use
two separate LMs, one for LOFs and one for MOTs.
The second step has two alternative decoding paths:
(1) as before, producing the form from both the LOF
and the MOT, and (2) ignoring the morphological
features from the source altogether and using just
target-side context to choose an appropriate form of
the word. This setup is capable of sacrificing ade-
quacy for a more fluent output.

6.3 Experiments with Two-Step Setups

Table 4 reports the BLEU scores when changing the
number of factors (“+” vs. “|”) in the middle lan-
guage and the type of the LOF and MOT.

We see an interesting difference between MOT1

and MOT0 or 2. The more fine-grained MOT0 or 2
work better in the two-factor “|” setup that allows
to disregard the MOT, while MOT1 works better in
the direct translation “+”.

Overall, we see no improvement over the tF-F

baseline (BLEU of 12.42) and this is mainly due to
to the fact that we used Small data in both steps.

7 A Complex Moses Setup

Obviously, many setups fall under the “complex”
category of our taxonomy, including also some sys-
tem combination approaches. We tried to combine
three Moses systems: (1) CU-BOJAR as described
below, (2) same setup like CU-BOJAR but optimized
towards 1-TER (Snover et al., 2006), and (3) a large-
data two-step setup.3 The system combination is
performed using a fourth Moses search that gets a
lattice (Dyer et al., 2008) of individual systems’ out-
puts, performs an identity translation and scores the
candidates by language models and other features.
The lattice is created from the individual system out-
puts in the ROVER style (Matusov et al., 2008) uti-
lizing the source-to-hypothesis word alignments as
produced by the individual systems. We use our sim-
ple implementation for constructing the confusion
networks and converting them to the lattices. The
“combination Moses” was tuned on the WMT11 test
set towards BLEU. The resulting system is called
CU-POOR-COMB, because we felt it underperformed
the individual systems not only in BLEU but also in
an informal subjective evaluation.

Surprisingly, CU-POOR-COMB won the WMT12
automatic evaluation in TER. In the retrospect, this
is caused by TER overemphasizing word-level pre-
cision. CU-POOR-COMB skipped words not con-
firmed by several systems and its hypotheses are
shorter (18.1 toks/sent) than those by CU-BOJAR

(20.1 toks/sents) or the reference (21.9 toks/sent).
A quick manual inspection of 32 sentences suggests
that about one third or quarter of CU-POOR-COMB

suffer from some information loss whereas the rest
are acceptable or even better paraphrases. Prelim-

3The large two-step setup is identical to the one by (Bojar
and Kos, 2010), except that we use only the current Large and
Mono datasets as described in Section 3.
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Our Scoring matrix.statmt.org
Test Set newstest-2011 newstest-2012
Metric BLEU TER*100 BLEU TER*100 BLEU TER

→cs

CU-POOR-COMB –used–for– –tuning– 14.17±0.53 64.07±0.53 14.0 0.741
CU-BOJAR (tFaT-FaT, lex. r.) 18.10±0.55 62.84±0.71 16.07±0.55 65.52±0.59 15.9 0.759
As ↑ but towards 1-TER 16.10±0.54 61.64±0.59 14.13±0.54 64.28±0.55 – –
Large Two-Step 17.34±0.57 63.47±0.66 15.37±0.54 65.85±0.57 – –

Unused (tFaT-FaT, dist. reord.) 18.07±0.56 62.74±0.70 15.92±0.57 65.50±0.60 – –
Unused (tF-FaT, dist. reord.) 17.85±0.58 63.13±0.68 15.73±0.55 65.85±0.58 – –
Unused (tF-F, lex. reord.) 17.73±0.58 63.04±0.68 15.61±0.57 65.76±0.58 – –
Unused (tFaT-F, dist. reord.) 17.62±0.56 62.97±0.70 15.33±0.58 65.70±0.59 – –
Unused (tF-F, dist. reord.) 17.51±0.57 63.32±0.69 15.48±0.56 65.79±0.58 – –

→en CU-BOJAR (tF-F:tL-F, dist. reord.) 24.65±0.60 58.54±0.66 23.09±0.59 61.24±0.68 21.5 0.726
Unused (tF-F, dist. reord.) 24.62±0.59 58.66±0.66 22.90±0.56 61.63±0.67 – –

Table 5: Summary of large data runs and systems submitted to WMT12 manual evaluation. The upper part lists the
two submissions in en→cs translation and two more systems used in CU-POOR-COMB. The lower part of the table
shows the scores for CU-BOJAR when translating to English. All systems reported here use the Large and Mono data.

inary results of WMT 12 manual ranking indicate
that overall, our system combination performs poor.

8 Overview of Systems Submitted

Table 5 summarizes the scores for our two sys-
tem submissions. We report the scores in our to-
kenization on the official test sets of WMT11 and
WMT12 and also the scores as measured by http:
//matrix.statmt.org. Note that for the lat-
ter, we use the detokenized outputs processed by the
recommended normalization script.4

8.1 Details of CU-BOJAR for en→cs
We deliberately used only direct setups for the large
data and due to time constraints, we ran just a few
configurations, see Table 5.

We knew from previous years that including En-
glish (source) POS tag improves overall target sen-
tence structure: English words are often ambiguous
between noun and verb, so without the POS infor-
mation, verbs got often translated as nouns, render-
ing the sentence incomprehensible. Tagging and in-
cluding the source tag helps, as confirmed by the
tFaT-F setup being somewhat better than tF-F.

We also knew that target-side tag LM is helpful
(esp. if we can afford up to 8-grams in the LM).
This was confirmed by tF-FaT being better than tF-
F. Ultimately, we use tags on both sides: tFaT-FaT

4http://www.statmt.org/wmt11/
normalize-punctuation.perl

and get the best scores. This confirms that our par-
allel data is sufficiently large so that even the added
sparsity due to tags does not cause any trouble.

A little gain comes from a lexicalized reorder-
ing model (or-bi-fe) based on word forms, see CU-
BOJAR reaching 18.10 BLEU on WMT11 test set.

8.2 Details of CU-BOJAR for cs→en

For the translation into English, we tested just two
setups: tF-F and tF-F:tL-T. The latter setup falls
back to the Czech lemma, if the exact form is not
available. The gain is only small, because our paral-
lel data is already quite large.

9 Conclusion

We introduced a simple taxonomy of factored
phrase-based setups and conducted several probes
for English→Czech translation. We gained small
improvements in both small and large data settings.

We also warned about some common pitfalls: (1)
all target-side factors should be accompanied with a
language model to compensate for the added sparse-
ness, (2) alternative decoding paths significantly re-
duce the effective n-best list size, and (3) the infa-
mous instability of MERT can be caused by bad luck
at exhausted iteration limit.

On a general note, we learnt that a breadth-first
search for best configurations should be automated
as much as possible so that more human effort can
be invested into analysis.
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