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Abstract

Chiang’s hierarchical phrase-based (HPB)
translation model advances the state-of-the-art
in statistical machine translation by expanding
conventional phrases to hierarchical phrases
– phrases that contain sub-phrases. How-
ever, the original HPB model is prone to over-
generation due to lack of linguistic knowl-
edge: the grammar may suggest more deriva-
tions than appropriate, many of which may
lead to ungrammatical translations. On the
other hand, limitations of glue grammar rules
in the original HPB model may actually pre-
vent systems from considering some reason-
able derivations. This paper presents a sim-
ple but effective translation model, called the
Head-Driven HPB (HD-HPB) model, which
incorporates head information in translation
rules to better capture syntax-driven informa-
tion in a derivation. In addition, unlike the
original glue rules, the HD-HPB model allows
improved reordering between any two neigh-
boring non-terminals to explore a larger re-
ordering search space. An extensive set of ex-
periments on Chinese-English translation on
four NIST MT test sets, using both a small
and a large training set, show that our HD-
HPB model consistently and statistically sig-
nificantly outperforms Chiang’s model as well
as a source side SAMT-style model.

1 Introduction

Chiang’s hierarchical phrase-based (HPB) transla-
tion model utilizes synchronous context free gram-
mar (SCFG) for translation derivation (Chiang,
2005; Chiang, 2007) and has been widely adopted

in statistical machine translation (SMT). Typically,
such models define two types of translation rules:
hierarchical (translation) rules which consist of both
terminals and non-terminals, and glue (grammar)
rules which combine translated phrases in a mono-
tone fashion. However, due to lack of linguistic
knowledge, Chiang’s HPB model contains only one
type of non-terminal symbol X , often making it
difficult to select the most appropriate translation
rules.1

One important research question is therefore how
to refine the non-terminal category X using linguis-
tically motivated information: Zollmann and Venu-
gopal (2006) (SAMT) e.g. use (partial) syntactic
categories derived from CFG trees while Zollmann
and Vogel (2011) use word tags, generated by ei-
ther POS analysis or unsupervised word class in-
duction. Almaghout et al. (2011) employ CCG-
based supertags. Mylonakis and Sima’an (2011) use
linguistic information of various granularities such
as Phrase-Pair, Constituent, Concatenation of Con-
stituents, and Partial Constituents, where applica-
ble.

By contrast, and inspired by previous work in
parsing (Charniak, 2000; Collins, 2003), our Head-
Driven HPB (HD-HPB) model is based on the in-
tuition that linguistic heads provide important in-
formation about a constituent or distributionally de-
fined fragment, as in HPB. We identify heads using
linguistically motivated dependency parsing, and
use head information to refine X.

Furthermore, Chiang’s HPB model suffers from
limited phrase reordering by combining translated

1Another non-terminal symbol S is used in glue rules.
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Figure 1: Example of derivations disallowed in Chiang’s
HPB model. The rules with dotted lines are not covered
in Chiang’s model.

phrases in a monotonic way with glue rules. In
addition, once a glue rule is adopted, it requires
all rules above it to be glue rules. For exam-
ple, given a Chinese-English sentence pair (昨
天/zuotian1 出席/chuxi2 会议/huiyi3, Attended2 a3

meeting3 yesterday1), a correct translation is impos-
sible via HPB derivations in Figure 1. For the deriva-
tion in Figure 1(a), swap reordering in the glue rule
(i.e., S1 → 〈S2X2, X2S2〉) is disallowed and, even
if such a swap reordering is available, it lacks useful
information for rule selection. For the derivation in
Figure 1(b), the combination of two non-terminals
(i.e., X2 → 〈X3X4, X3X4〉) is disallowed to form
a new non-terminal which in turn is a sub-phrase of
a hierarchical rule. These limitations prevent tra-
ditional HPB systems from even considering some
reasonable derivations.

To tackle the problem of glue rules, He (2010) ex-
tended the HPB model by using bracketing transduc-
tion grammar (Wu, 1996) instead of the monotone
glue rules, and trained an extra classifier for glue
rules to predict reorderings of neighboring phrases.
By contrast, our HD-HPB model refines the non-
terminal symbol X with syntactic head informa-
tion and provides flexible reordering rules, including
swap, which can mix freely with hierarchical trans-
lation rules for better interleaving of translation and
reordering in translation derivations.

Different from the soft constraint modeling
adopted in (Chan et al., 2007; Marton and Resnik,
2008; Shen et al., 2009; He et al., 2010; Huang et
al., 2010; Gao et al., 2011), our approach encodes
syntactic information in translation rules. However,
the two approaches are not mutually exclusive, as
we could also include a set of syntax-driven features
into our translation model. Our approach maintains
the advantages of Chiang’s HPB model while at the
same time incorporating head information and flex-
ible reordering in a derivation in a natural way. Ex-
periments on Chinese-English translation using four
NIST MT test sets show that our HD-HPB model
significantly outperforms Chiang’s HPB as well as a
SAMT-style refined version of HPB.

The paper is structured as follows: Section 2
describes the synchronous context-free grammar
(SCFG) in our HD-HPB translation model. Sec-
tion 3 presents our model and features, followed by
the decoding algorithm in Section 4. We report ex-
perimental results in Section 5. Finally we conclude
in Section 6.

2 Head-Driven HPB Translation Model

Like Chiang (2005) and Chiang (2007), our HD-
HPB translation model adopts a synchronous con-
text free grammar, a rewriting system which gen-
erates source and target side string pairs simultane-
ously using a context-free grammar. In particular,
each synchronous rule rewrites a non-terminal into
a pair of strings, s and t, where s (or t) contains ter-
minals and non-terminals from the source (or target)
language and there is a one-to-one correspondence
between the non-terminal symbols on both sides.

A good and informative inventory of non-terminal
symbols is always important, especially for a suc-
cessful SCFG-based translation model. Instead of
collapsing all non-terminals in the source language
into a single symbol X as in Chiang (2007), ideally
non-terminals should capture important information
of the word sequences they cover to be able to prop-
erly discriminate between similar and different word
sequences during translation. This motivates our
approach to provide syntax-enriched non-terminal
symbols. Given a word sequence f ij from position i
to position j, we refine the non-terminal symbol X
to reflect some of the internal syntactic structure of
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欧洲/NR 
Ouzhou 

八国/NN 
baguo 

联名/AD
lianming

支持/VV
zhichi 

美国/NR 
meiguo 

对/P
dui

策略/NN
celie 

伊/NR
yi 

root

Eight European countries jointly support America’s stand against Iraq

Figure 2: An example word alignment for a Chinese-English sentence pair with the dependency parse tree for the
Chinese sentence. Here, each Chinese word is attached with its POS tag and Pinyin.

the word sequence covered by X . A correct transla-
tion rule selection therefore not only maps terminals
into terminals, but is both constrained and guided
by syntactic information in the non-terminals. At
the same time, it is not clear whether an “ideal” ap-
proach that captures a full syntactic analysis of the
string fragment covered by a non-terminal is feasi-
ble: the diversity of syntactic structures could make
training impossible and lead to serious data sparse-
ness issues. As a compromise, given a word se-
quence f ij , we first find heads and then concatenate
the POS tags of these heads as f ij’s non-terminal
symbol.2 Our approach is guided by the intuition
that linguistic heads provide important information
about a constituent or distributionally defined frag-
ment, as in HPB. Specifically, we adopt dependency
structure to derive heads, which are defined as:

Definition 1. For word sequence f ij , word
fk (i ≤ k ≤ j) is regarded as a head if it is domi-
nated by a word outside of this sequence.

Note that this definition (i) allows for a word se-
quence to have one or more heads (largely due to
the fact that a word sequence is not necessarily lin-
guistically constrained) and (ii) ensures that heads
are always the highest heads in the sequence from a
dependency structure perspective. For example, the
word sequence ouzhou baguo lianming in Figure 2
has two heads (i.e., baguo and lianming, ouzhou is
not a head of this sequence since its headword baguo
falls within this sequence) and the non-terminal cor-
responding to the sequence is thus labeled as NN-
AD. It is worth noting that in this paper we only
refine non-terminal X on the source side to head-
informed ones, while still usingX on the target side.

2Note that instead of POS tags, it is also possible to use other
types of syntactic information associated with heads to refine
non-terminal symbols (Section 5.5.2).

In our HD-HPB model, the SCFG is defined as
a tuple 〈Σ, N,∆,Λ,<〉, where Σ is a set of source
language terminals,N is a set of non-terminals cate-
gorizing terminals in Σ, ∆ is a set of target language
terminals, Λ is a set of non-terminals categorizing
terminals in ∆, and < is a set of translation rules.
A rule γ in < is in the form of 〈Ps → s, Pt → t, φ〉,
where:

• Ps ∈ N and Pt ∈ Λ;

• s ∈ (Σ ∪N)+ and t ∈ (∆ ∪ Λ)+

• φ is a bijection between non-terminals in s and t.

According to the occurrence of terminals in s and
t, we group the rules in the HD-HPB model into two
categories: head-driven hierarchical rules (HD-HRs)
and non-terminal reordering rules (NRRs), where
the former have at least one terminal on both source
and target sides and the later have no terminals. For
rule extraction, we first identify initial phrase pairs
on word-aligned sentence pairs by using the same
criterion as most phrase-based translation models
(Och and Ney, 2004) and Chiang’s HPB model (Chi-
ang, 2005; Chiang, 2007). We extract HD-HRs and
NRRs based on initial phrase pairs, respectively.

2.1 HD-HRs: Head-Driven Hierarchical Rules
As mentioned, a HD-HR has at least one terminal
on both source and target sides. This is the same
as the hierarchical rules defined in Chiang’s HPB
model (Chiang, 2007), except that we use head POS-
informed non-terminal symbols in the source lan-
guage. We look for initial phrase pairs that con-
tain other phrases and then replace sub-phrases with
their corresponding non-terminal symbols. Given
the word alignment as shown in Figure 2, Table 1
demonstrates the difference between hierarchical
rules in Chiang (2007) and HD-HRs defined here.
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phrase pairs hierarchical rule head-driven hierarchical rule

celie, stand X→celie, stand
NN→celie,

X→stand

dui yi celie1, stand1 against Iraq X→dui yi X1, X1 against Iraq
NN→dui yi NN1,

X→X1 against Iraq

zhichi meiguo, support America’s X→zhichi meiguo, support America’s
VV-NR→zhichi meiguo,

X→support America’s
zhichi meiguo1 dui yi celie2,
support America’s1 stand2 against Iraq

X→X1 dui yi X2,
X1 X2 against Iraq

VV→VV-NR1 dui yi NN2,
X→X1 X2 against Iraq

Table 1: Comparison of hierarchical rules in Chiang (2007) and HD-HRs. Indexed underlines indicate sub-phrases
and corresponding non-terminal symbols. The non-terminals in HD-HRs (e.g., NN, VV, VV-NR) capture the head(s)
POS tags of the corresponding word sequence in the source language.

Similar to Chiang’s HPB model, our HD-HPB
model will result in a large number of rules causing
problems in decoding. To alleviate these problems,
we filter our HD-HRs according to the same con-
straints as described in Chiang (2007). Moreover,
we discard rules that have non-terminals with more
than four heads.

2.2 NRRs: Non-terminal Reordering Rules
NRRs are translation rules without terminals. Given
an initial phrase pair

〈
f ij , e

i∗
j∗

〉
, we check all other

initial phrase pairs
〈
fkl , e

k∗
l∗
〉

which satisfy k = j+1
(i.e., phrase fkl is located immediately to the right
of f ij in the source language). For their target
side translations, there are four possible positional
relationships: monotone, discontinuous monotone,
swap, and discontinuous swap. In order to differen-
tiate non-terminals from those in the target language
(i.e., X), we use Y as a variable for non-terminals in
the source language, and obtain four types of NRRs:

• Monotone 〈Y → Y1Y2, X → X1X2〉;

• Discontinuous monotone
〈Y → Y1Y2, X → X1 . . . X2〉;

• Swap 〈Y → Y1Y2, X → X2X1〉;

• Discontinuous swap
〈Y → Y1Y2, X → X2 . . . X1〉.

For example in Figure 2, the NRR for initial
phrase pairs 〈zhichi meiguo, support America’s〉
and 〈dui yi celie, stand against Iraq〉 would be
〈V V → V V -NR1NN2, X → X1X2〉.

Merging two neighboring non-terminals into a
single non-terminal, NRRs enable the translation

model to explore a wider search space. During train-
ing, we extract four types of NRRs and calculate
probabilities for each type. To speed up decoding,
we currently (i) only use monotone and swap NRRs
and (ii) limit the number of non-terminals in a NRR
to 2.

3 Log-linear Model and Features

Following Och and Ney (2002), we depart from the
traditional noisy-channel approach and use a general
log-linear model. Let d be a derivation from sen-
tence f in the source language to sentence e in the
target language. The probability of d is defined as:

P (d) ∝
∏
i

Øi (d)λi (1)

where Øi are features defined on derivations and
λi are feature weights. In particular, we use a fea-
ture set analogous to the default feature set of Chi-
ang (2007), which includes:

• Phd-hr (t|s) and Phd-hr (s|t), translation probabili-
ties for HD-HRs;

• Plex (t|s) and Plex (s|t), lexical translation proba-
bilities for HD-HRs;

• Ptyhd-hr = exp (−1), rule penalty for HD-HRs;

• Pnrr (t|s), translation probability for NRRs;

• Ptynrr = exp (−1), rule penalty for NRRs;

• Plm (e), language model;

• Ptyword (e) = exp (−|e|), word penalty.
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Algorithm 1: Decoding Algorithm

Input: Sentence f1
n in the source language

Dependency structure of f1
n

HD-HR rule set HDHR
NRR rule set NRR
Initial phrase length K

Output: Best derivation d∗

1. set chart[i, j]=NIL (1 ≤ i ≤ j ≤ n);
2. for l from 1 to n do
3. for all i, j such that j − i = l do
4. if l ≤ K do
5. for all derivations d derived from

HDHR spanning from i to j do
6. add d into chart[i, j]
7. for all derivations d derived from

NRR spanning from i to j do
8. add d into chart[i, j]
9. set d∗ as the top derivation of chart[1, n]
10.return d∗

It is worth pointing out that we define translation
probabilities for NRRs only for the direction from
source language to target language, although trans-
lation probabilities for HD-HRs are defined for both
directions. This is mostly due to the fact that a NRR
excludes terminals and has only two options on the
target side (i.e., either X → X1X2 or X → X2X1).

4 Decoding

Our decoder is based on CKY-style chart parsing
with beam search. Given an input sentence f , it finds
a sentence e in the target language derived from the
best derivation d∗ among all possible derivations D:

d∗ = arg max
d∈D

P (D) (2)

Algorithm 1 presents the decoding process. Given
a source sentence, it searches for the best deriva-
tion bottom-up. For a source span [i, j], it applies
both types of HD-HRs and NRRs. However, HD-
HRs are only applied to generate derivations span-
ning no more than K words – the initial phrase
length limit used in training to extract HD-HRs –
while NRRs are applied to derivations spanning any
length. Unlike in Chiang (2007), it is possible for
a non-terminal generated by a NRR to be included
afterwards by a HD-HR or another NRR. Similar to
Chiang (2007) in generating k-best derivations from

i to j, we make use of cube pruning (Huang and Chi-
ang, 2005) with an integrated language model for
each derivation.

5 Experiments

We evaluate the performance of our HD-HPB model
and compare it with our implementation of Chiang’s
HPB model (Chiang, 2007), a source-side SAMT-
style refined version of HPB (SAMT-HPB), and the
Moses implementation of HPB. For fair compari-
son, we adopt the same parameter settings for HD-
HPB, HPB and SAMT-HPB systems, including ini-
tial phrase length (as 10) in training, the maximum
number of non-terminals (as 2) in translation rules,
maximum number of non-terminals plus terminals
(as 5) on the source, prohibition of non-terminals
to be adjacent on the source, beam threshold β (as
10−5) (to discard derivations with a score worse than
β times the best score in the same chart cell), beam
size b (as 200) (i.e. each chart cell contains at most
b derivations). For Moses HPB, we use “grow-diag-
final-and” to obtain symmetric word alignments, 10
for the maximum phrase length, and the recom-
mended default values for all other parameters.

5.1 Experimental Settings

To examine the efficacy of our approach on training
datasets of different scales, we first train translation
models on a small-sized corpus, and then scale to a
larger one. We use the 2002 NIST MT evaluation
test data (878 sentence pairs) as the development
data, and the 2003, 2004, 2005, 2006-news NIST
MT evaluation test data (919, 1788, 1082, and 616
sentence pairs, respectively) as the test data. To find
heads, we parse the source sentences with the Berke-
ley Parser3 (Petrov and Klein, 2007) trained on Chi-
nese TreeBank 6.0 and use the Penn2Malt toolkit4

to obtain dependency structures.
We obtain the word alignments by running

GIZA++ (Och and Ney, 2000) on the corpus in
both directions, applying “grow-diag-final-and” re-
finement (Koehn et al., 2003). We use the SRI lan-
guage modeling toolkit to train a 5-gram language
model on the Xinhua portion of the Gigaword corpus
and standard MERT (Och, 2003) to tune the feature

3http://code.google.com/p/berkeleyparser/
4http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html/
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weights on the development data.
For evaluation, the NIST BLEU script (version

12) with the default settings is used to calculate the
NIST and the BLEU scores, which measures case-
insensitive matching of n-grams with n up to 4. To
test whether a performance difference is statistically
significant, we conduct significance tests following
the paired bootstrap approach (Koehn, 2004). In this
paper, ‘**’ and ‘*’ denote p-values less than
0.01 and in-between [0.01, 0.05), respectively.

5.2 Results on Small Data
To test the HD-HPB models, we firstly carried out
experiments using the FBIS corpus as training data,
which contains ˜240K sentence pairs. Table 2 lists
the rule table sizes. The full rule table size (includ-
ing HD-HRs and NRRs) of our HD-HPB model is
about 1.5 times that of Chiang’s, largely due to re-
fining the non-terminal symbolX in Chiang’s model
into head-informed ones in our model. It is also
unsurprising, that the test set-filtered rule table size
of our model is only about 0.8 times that of Chi-
ang’s: this is due to the fact that some of the re-
fined translation rule patterns required by the test
set are unattested in the training data. Furthermore,
the rule table size of NRRs is much smaller than
that of HD-HRs since a NRR contains only two
non-terminals. Table 3 lists the translation perfor-
mance with NIST and BLEU scores. Note that our
re-implementation of Chiang’s original HPB model
performs on a par with Moses HPB. Table 3 shows
that our HD-HPB model significantly outperforms
Chiang’s HPB model with an average improvement
of 1.32 in BLEU and 0.16 in NIST (and similar im-
provements over Moses HPB).

Although HD-HPB has small size of phrase ta-
bles compared to HPB, it still consumes more time
in decoding (e.g., 15.1 vs. 11.0), mostly due to the
flexible reordering of NRRs.

5.3 Results on Large Data
We also conduct experiments on larger training
data with ˜1.5M sentence pairs from the LDC
dataset.5 Table 4 lists the rule table sizes and Ta-
ble 5 presents translation performance with NIST

5This dataset includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06

and BLEU scores. It shows that our HD-HPB model
consistently outperforms Chiang’s HPB model with
an average improvement of 1.91 in BLEU and 0.35
in NIST (similar for Moses HPB). Compared to the
improvement achieved on the small data, it is en-
couraging to see that our HD-HPB model benefits
more from larger training data with little adverse ef-
fect on decoding time which increases only slightly
from 15.1 to 16.6 seconds per sentence.

5.4 Comparison with SAMT-HPB

Comparing the performance of SAMT-HPB with
regular HPB in Table 3 and Table 5, it is interest-
ing to see that in general the SAMT-style approach
leads to a deterioration of translation performance
for the small training set (e.g., 30.09 for SAMT-HPB
vs. 30.64 for HPB) while it comes into its own for
the large training set (e.g., 33.54 for SAMT-HPB vs.
32.95 for HPB), indicating that the SAMT-style ap-
proach is more prone to data sparseness than HPB
(or, indeed, HD-HPB).

Comparing the performance of SAMT-HPB with
HD-HPB, shows that our head-driven non-terminal
refining approach consistently outperforms the
SAMT-style approach on an extensive set of ex-
periments (for each test set p < 0.01), indicating
that head information is more effective than (par-
tial) CFG categories. To make the comparison fair,
it is important to note that our implementation of
source-side SAMT-HPB includes the same sophis-
ticated non-terminal re-ordering NRR rules as HD-
HPB (Section 2.2 ). Thus the performance differ-
ences reported here are not due to different reorder-
ing capabilities, but to the discriminative impact of
the head information in HD-HPB over SAMT-style
annotation. Taking lianming zhichi in Figure 2 as an
example, HD-HPB labels the span VV, as lianming
is dominated by zhichi, effecively ignoring lianming
in the translation rule, while the SAMT label is
ADVP:AD+VV6 which is more susceptible to data
sparsity (Table 2 and Table 4). In addition, SAMT
resorts to X if a text span fails to satisify pre-defined
categories. Examining initial phrases extracted from
the SAMT training data shows that 28% of them are
labeled as X. Finally, for Chinese syntactic analy-

6The constituency structure for lianming zhichi is (VP
(ADVP (AD lianming)) (VP (VV zhichi) ...)).
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System Total Rules MT 03 MT 04 MT 05 MT 06 Avg.
HPB 39.6M 2.8M 4.7M 3.3M 3.0M 3.4M

HD-HPB 59.5/0.6M 1.9/0.1M 3.4/0.2M 2.3/0.2M 2.0/0.1M 2.4/0.2M
SAMT-HPB 70.1/0.4M 2.2/0.2M 4.0/0.2M 2.7/0.2M 2.3/0.2M 2.8/0.2M

Table 2: Rule table sizes of different models trained on small data. Note: 1) SAMT-HPB indicates our HD-HPB model
with the non-terminal scheme of Zollmann and Venugopal (2006); 2) For HD-HPB and SAMT-HPB, the rule sizes
separated by / indicate HD-HRs and NRRs, respectively; 2) Except for “Total Rules”, the figures correspond to rules
filtered on the corresponding test set.

System MT 03 MT 04 MT 05 MT 06 Avg. TimeNIST BLEU NIST BLEU NIST BLEU NIST BLEU NIST BLEU
Moses HPB 7.377 29.67 8.209 33.60 7.571 29.49 6.773 28.90 7.483 30.42 NA
HPB 8.137 29.75 9.050 34.06 8.264 30.09 7.788 28.64 8.310 30.64 11.0
HD-HPB 8.308 31.01** 9.211 35.11** 8.426 31.57** 7.930 30.15** 8.469 31.96 15.1
SAMT-HPB 7.886 29.14* 8.703 33.32** 7.961 29.49* 7.307 28.41 7.964 30.09 17.3
HD-HR+Glue 7.966 29.51 8.826 33.68 8.116 29.84 7.474 28.51 8.095 30.39 5.4

Table 3: NIST and BLEU (%) scores of different models trained on small data. Note: 1) HD-HR+Glue indicates our
HD-HPB model replacing NRRs with glue rules; 2) Significance tests for Moses HPB, HD-HPB, SAMT-HPB and
HD-HR+Glue are done against HPB.

System Total Rules MT 03 MT 04 MT 05 MT 06 Avg.
HPB 206.8M 11.3M 17.6M 12.9M 10.4M 13.0M

HD-HPB 318.6/2.3M 7.3/0.3M 12.2/0.4M 8.5/0.3M 6.7/0.2M 8.7/0.3M
SAMT-HPB 371.0/1.1M 8.6/0.3M 14.3/0.4M 10.1/0.3M 7.9/0.3M 10.2/0.3M

Table 4: Rule table sizes of different models trained on large data.

System MT 03 MT 04 MT 05 MT 06 Avg. TimeNIST BLEU NIST BLEU NIST BLEU NIST BLEU NIST BLEU
Moses HPB 7.914 32.94* 8.429 35.16 7.962 32.18 6.483 29.88* 7.697 32.54 NA
HPB 8.583 33.59 9.114 35.39 8.465 32.20 7.532 30.60 8.423 32.95 13.7
HD-HPB 8.885 35.50** 9.494 37.61** 8.871 34.56** 7.839 31.78** 8.772 34.86 16.6
SAMT-HPB 8.644 34.07 9.245 36.52** 8.618 32.90* 7.543 30.66 8.493 33.54 19.1
HD-HR+Glue 8.831 34.58** 9.435 36.55** 8.821 33.84** 7.863 31.06 8.737 34.01 6.7

Table 5: NIST and BLEU (%) scores of different models trained on large data. Note: System labels and significance
testing as in Table 3.
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sis, dependency structure is more reliable than con-
stituency structure. Moreover, SAMT-HPB takes
more time in decoding than HD-HPB due to larger
phrase tables.

5.5 Discussion

5.5.1 Individual Contribution of HD-HRs and
NRRs

Examining translation output shows that on aver-
age each sentence employs 16.6/5.2 HD-HRs/NRRs
in our HD-HPB model, compared to 15.9/3.6 hier-
archical rules/glue rules in Chiang’s model, provid-
ing further indication of the importance of NRRs in
translation. In order to separate out the individual
contributions of the novel HD-HRs and NRRs, we
carry out an additional experiment (HD-HR+Glue)
using HD-HRs with monotonic glue rules only (ad-
justed to refined rule labels, but effectively switching
off the extra reordering power of full NRRs) both
on the small and the large datasets, with interest-
ing results: Table 3 (HD-HR+Glue) shows that for
the small training set most of the improvement of
our full HD-HPB model comes from the NRRs, as
RR+Glue performs on the same level as Chiang’s
original and Moses HPB (the differences are not
statistically significant), perhaps indicating sparse-
ness for the refined HD-HRs given the small train-
ing set. Table 5 shows that for the large training
set, HD-HRs come into their own: on average more
than half of the improvement over HPB (Chiang and
Moses) comes from the refined HD-HRs, the rest
from NRRs.

It is not surprising that compared to the others
HD-HR+Glue takes much less time in decoding.
This is due to the fact that 1) compared to HPB, the
refined translation rule patterns on the source side
have fewer entries in phrase table; 2) compared to
HD-HPB, HD-HR+Glue switches off the extra re-
ordering of NRRs. The decoding time for HD-HPB
and HD-HR+Glue suggests that NRRs are more than
doubling the time required to decode.

5.5.2 Different Head Label Sets
Examining initial phrases extracted from the large

size training data shows that there are 63K types
of refined non-terminals with respect to 33 types of
POS tags. Considering the sparseness in translation
rules caused by this comparatively detained POS tag

set, we carry out an experiment with a reduced set
of non-terminal types by using a less granular POS
tag set (C-HPB). Moreover, due to the fact that con-
catenation of POS tags of heads mostly captures in-
ternal structure of a text span, it is interesting to ex-
amine the effect of other syntactic labels, in partic-
ular dependency labels, to try to better capture the
impact of the external context on the text span. To
this end, we replace the POS tag of head with its
incoming dependency label (DL-HPB), or the com-
bination of (the original fine-grained) POS tag and
its dependency label (POS-DL-HPB). For C-HPB
we use the coarse POS tag set obtained by group-
ing the 33 types of Chinese POS tags into 11 types
following Xia (2000). For example, we generalize
all verbal tags (e.g., VA, VC, VE, and VV ) and all
nominal tags (e.g., NR, NT, and NN) into Verb and
Noun, respectively. We use the dependency labels
in Penn2Malt which defines 9 types of dependency
labels for Chinese, including AMOD, DEP, NMOD,
P, PMOD, ROOT, SBAR, VC, and VMOD.7

Table 6 shows the results trained on large data.
Although the number of non-terminal types de-
creased sharply from 63K to 3K, using the coarse
POS tag set in C-HPB surprisingly lowers the per-
formance with 1.1 BLEU scores on average (e.g.,
33.75 vs. 34.86), indicating that grouping POS
tags using simple linguistic rules is inappropriate for
HD-HPB. We still believe that this initial negative
finding should be supplemented by future work on
groupping POS tags using machine learning tech-
niques considering contextual information.

Table 6 also shows that replacing POS tags
of heads with their dependency labels (DL-HPB)
substantially lowers the average performance from
34.86 on BLEU score to 32.54, probably due to
the very coarse granularity of the dependency la-
bels used. In addition, replacing non-terminal label
with more refined tags (e.g., combination of original
POS tag and dependency label) also lowers trans-
lation performance (POS-DL-HPB). Further experi-
ments with more fine-grained dependency labels are
required.

7Some other types of dependency labels (e.g., SUB, OBJ)
are generated from function tags which are not available in our
automatic parse trees.
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VV-NR1 dui yi NN2 VV→ , X→ X1 X2 against Iraq 

(b) zhichi meiguo1 dui yi celie2,  

support America’s1 stand2 against Iraq  

VV-NR→ zhichi meiguo , X→ support America’s 

(a) zhichi meiguo, support America’s 

Figure 3: Examples of pharse pairs and their head-driven
translation rules with dependency relation, regarding Fig-
ure 2

System MT 03 MT 04 MT 05 MT 06 Avg.
HPB 33.59 35.39 32.20 30.60 32.95
HD-HPB 35.50 37.61 34.56 31.78 34.86
C-HPB 34.10 36.43 33.46 31.00 33.75
DL-HPB 32.81 35.19 32.27 29.89 32.54
POS-DL-HPB 34.08 36.78 33.14 30.43 33.61
HD-DEP-HPB 35.48 38.17 34.81 32.38 35.21

Table 6: BLEU (%) scores of models trained on large
data.

5.5.3 Encoding Full Dependency Relations in
Translation Rule

Xie et al. (2011) present a dependency-to-string
translation model with a complete dependency struc-
ture on the source side and a moderate average im-
provement of 0.46 BLEU over the HPB baseline. By
contrast, in our HD-HPB approach, dependency in-
formation is used to identify heads in the strings cov-
ered by non-terminals in HD-HR rules, and to refine
non-terminal labels accordingly, with an average im-
provement of 1.91 in BLEU over the HPB baseline
(when trained on the large data). This raises the
question whether and to what extent complete (un-
labeled) dependency information between the string
and the heads in head-labeled non-terminal parts of
the source side of SCFGs in HD-HPB can further
improve results.

Given the source side of a translation rule (ei-
ther HD-HR or NRR), say Ps → s1 . . . sm (where
each si is either a terminal or a head POS in a re-
fined non-terminal), in a further set of experiments
we keep the full unlabeled dependency relations be-

tween s1 . . . sm so as to capture contextual syntactic
information in translation rules. For example, on the
source side of Figure 3 (b) where VV-NR maps into
words zhichi and meiguo while NN maps into word
celie, we keep the full unlabeled dependency rela-
tions among words {zhichi, meiguo, dui, yi, celie}.
HD-DEP-HPB (Table 6) augments translation rules
in HD-HPB with full dependency relations on the
source side. This further boosts the performance
by 0.35 BLEU scores on average over HD-HPB and
outperforms the HPB baseline by 2.26 BLEU scores
on average.

5.5.4 Error Analysis
We carried out a manual error analysis compar-

ing the outputs of our HD-HPB system with those
of Chiang’s (both trained on the large data). We ob-
serve that improved BLEU score often correspond to
better topological ordering of phrases in the hierar-
chical structure of the source side, with a direct im-
pact on which words in a source sentence should be
translated first, and which later. As ungrammatical
translations are often due to inappropriate topologi-
cal orderings of phrases in the hierarchical structure,
guiding the translation through appropriate topolog-
ical ordering should improve translation quality. To
give an example, consider the following input sen-
tence from the 04 NIST MT test data and its two
translation results:

• Input: 中国0 派团1 赴2 美3 采购4 二十多亿5 美
元6高7科技8设备9

• HPB: chinese delegation to us dollar purchase of
more high technology equipment

• HD-HPB: chinese delegation went to the united
states to buy more us high - tech equipment

Figure 4 demonstrates the topological orderings
in the two hierarchical structures. In addition to dis-
fluency and some grammar errors (e.g., a main verb
is missing), the basic HPB system also makes mis-
takes in reordering (e.g., 采购4 二十多亿5 美元6

translated as dollar purchase of more). The poor
translation quality, unsurprisingly, is caused by in-
appropriate topological ordering (Figure 4(a)). By
comparison, the topological ordering reflected in the
hierarchical structure of our HD-HPB model bet-
ter respects syntactic structure (Figure 4(b)). Let

240



中国 
0 

派团 
1 

赴 
2 

美 
3 

采购 
4 

二十多亿 
5 

美元 
6 

高 
7 

科技 
8 

设备 
9 

X[4‐4]  X[6‐6] 

X[4‐6] 

X[3‐7] 

X[3‐8] 

X[2‐9] 

X[1‐9] 

X[0‐9] 

S[0‐9] 

(a). Topological orderings of phrases in Chiang’s HPB.  (b). Improved topological orderings of phrases in HD‐HPB.

1. S
[0‐9] → X[0‐9],  

                  X[0‐9] 
2. X[0‐9] → 中国[0‐0] X[1‐9],  
                   chinese X[1‐9] 
3. X[1‐9] → 派团[1‐1] X[2‐9],  
                  delegation X[2‐9] 
4. X[2‐9] → 赴[2‐2] X[3‐8] 设备[9‐9],  
                  to X[3‐8] equipment 
5. X[3‐8] → X[3‐7] 科技,  

X[3‐7] technology 
6. X[3‐7] → 美[3‐3] X[4‐6] 高[7‐7],  

us X[4‐6] high 
7. X[4‐6] → X[4‐4] 二十多亿[5‐5] X[6‐6], 

X[6‐6] X[4‐4] of more 
8. X[4‐4] → 采购[4‐4],  

purchase 
9. X[6‐6] → 美元[6‐6],  

dollar

1. VV[0‐9] → NN[0‐1] VV[2‐9],  
             X → X[0‐1] X[2‐9] 
2. NN[0‐1] → 中国[0‐0] NN[1‐1],  
              X → chinese X[1‐1]  
3. NN[1‐1] → 派团[1‐1],  
              X → delegation 
4. VV[2‐9] → 赴[2‐2] 美[3‐3] VV[4‐9],   
     X → went to the united states to X[4‐9] 
5. VV[4‐9] → VV‐M[4‐6] 高[7‐7] 科技[8‐8] NN[9‐9], 
            X → X[4‐6] high –tech X[9‐9]  
6. VV‐M[4‐6] → 采购[4‐4] M[5‐6], 
                  X → buy X[5‐6]  
7. M[5‐6] → CD[5‐5] M[6‐6],  
            X → X[5‐5] X[6‐6] 
8. CD[5‐5] → 二十多亿[5‐5],  
             X → more 
9. M[6‐6] → 美元[6‐6],  
            X → us 
10. NN[9‐9] → 设备[9‐9],  
             X → equipment 

root

中国

NR
0 

派团

NN
1 

赴

VV
2

美

NR
3

采购 

VV 
4 

二十多亿

CD 
5 

美元

M 
6 

高

JJ
7

科技

NN
8 

设备

NN
9

CD[5-5] M[6-6]

M[5-6]

VV-M[4-6]

VV[4-9]

VV[2-9] 

NN

 VV[0-9]

[0-1]

NN NN[1-1] [9-9]

Figure 4: An example Chinese sentence and its two hierarchical structures. Note: subscript [i-j] represents spanning
from word i to word j on the source side.

us refer to the HD-HPB hierarchical structure on
the source side as translation parse tree and to the
treebank-based parser derived tree as syntactic parse
tree from which we obtain unlabeled dependency
structure. Examining the translation parse trees of
our HD-HPB model shows that phrases with 1/2/3/4
heads account for 64.9%/23.1%/8.8%/3.2%, respec-
tively. Compared to 37.9% of the phrases in the
translation parse trees of the HPB model, 43.2% of
the phrases of our HD-HPB model correspond to a
linguistically motivated constituent in the syntactic
parse tree with exactly the same text span. In sum,
therefore, instead of simply enforcing hard linguistic
constraints imposed by a full syntactic parse struc-
ture, our model opts for a successful mix of linguis-
tically motivated and combinatorial (matching sub-
phrases in HPB) constraints.

6 Conclusion

In this paper, we present a head-driven hierarchi-
cal phrase-based translation model, which adopts
head information (derived through unlabeled depen-
dency analysis) in the definition of non-terminals
to better differentiate among translation rules. In
addition, improved and better integrated reorder-
ing rules allow better reordering between consecu-
tive non-terminals through exploration of a larger
search space in the derivation. Our model main-
tains the strengths of Chiang’s HPB model while at
the same time it addresses the over-generation prob-
lem caused by using a uniform non-terminal symbol.

Experimental results on Chinese-English translation
across a wide range of training and test sets demon-
strate significant and consistent improvements of our
HD-HPB model over Chiang’s HPB model as well
as over a source side version of the SAMT-style
model.

Currently, we only consider head information in a
word sequence. In the future work, we will exploit
more syntactic and semantic information to system-
atically and automatically define the inventory of
non-terminals (in source and target). For example,
for a non-terminal symbol VV, we believe it will
benefit translation if we use fine-grained dependency
labels (subject, object etc.) used to link it to its gov-
erning head elsewhere in the translation rule.

Acknowledgments

This work was supported by Science Foundation Ire-
land (Grant No. 07/CE/I1142) as part of the Cen-
tre for Next Generation Localisation (www.cngl.ie)
at Dublin City University. It was also partially
supported by Project 90920004 under the National
Natural Science Foundation of China and Project
2012AA011102 under the “863” National High-
Tech Research and Development of China. We
thank the reviewers for their insightful comments.

References
Hala Almaghout, Jie Jiang, and Andy Way. 2011. CCG

contextual labels in hierarchical phrase-based SMT. In
Proceedings of EAMT 2011, pages 281–288.

241



Yee Seng Chan, Hwee Tou Ng, and David Chiang. 2007.
Word sense disambiguation improves statistical ma-
chine translation. In Proceedings of ACL 2007, pages
33–40.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of NAACL 2000, pages 132–
139.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings of
ACL 2005, pages 263–270.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing. Computational Linguis-
tics, 29(4):589–637.

Yang Gao, Philipp Koehn, and Alexandra Birch. 2011.
Soft dependency constraints for reordering in hierar-
chical phrase-based translation. In Proceedings of
EMNLP 2011, pages 857–868.

Zhongjun He, Yao Meng, and Hao Yu. 2010. Maxi-
mum entropy based phrase reordering for hierarchical
phrase-based translation. In Proceedings of EMNLP
2010, pages 555–563.

Liang Huang and David Chiang. 2005. Better k-best
parsing. In Proceedings of IWPT 2005, pages 53–64.

Zhongqiang Huang, Martin Cmejrek, and Bowen Zhou.
2010. Soft syntactic constraints for hierarchical
phrase-based translation using latent syntactic distri-
butions. In Proceedings of EMNLP 2010, pages 138–
147.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of NAACL 2003, pages 48–54.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
EMNLP 2004, pages 388–395.

Yuval Marton and Philip Resnik. 2008. Soft syntactic
constraints for hierarchical phrased-based translation.
In Proceedings of ACL-HLT 2008, pages 1003–1011.

Markos Mylonakis and Khalil Sima’an. 2011. Learning
hierarchical translation structure with linguistic anno-
tations. In Proceedings of ACL-HLT 2011, pages 642–
652.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. In Proceedings of ACL
2000, pages 440–447.

Franz Josef Och and Hermann Ney. 2002. Discrimina-
tive training and maximum entropy models for statisti-
cal machine translation. In Proceedings of ACL 2002,
pages 295–302.

Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine transla-
tion. Computational Linguistics, 30(4):417–449.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proceedings of ACL
2003, pages 160–167.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Proceedings of NAACL
2007, pages 404–411.

Libin Shen, Jinxi Xu, Bing Zhang, Spyros Matsoukas,
and Ralph Weischedel. 2009. Effective use of linguis-
tic and contextual information for statistical machine
translation. In Proceedings of EMNLP 2009, pages
72–80.

Dekai Wu. 1996. A polynomial-time algorithm for sta-
tistical machine translation. In Proceedings of ACL
1996, pages 152–158.

Fei Xia. 2000. The part-of-speech tagging guidelines for
the Penn Chinese Treebank (3.0). Technical Report
IRCS-00-07, University of Pennsylvania Institute for
Research in Cognitive Science Technical.

Jun Xie, Haitao Mi, and Qun Liu. 2011. A novel
dependency-to-string model for statistical machine
translation. In Proceedings of EMNLP 2011, pages
216–226.

Andreas Zollmann and Ashish Venugopal. 2006. Syntax
augmented machine translation via chart parsing. In
Proceedings of NAACL 2006 - Workshop on Statistical
Machine Translation, pages 138–141.

Andreas Zollmann and Stephan Vogel. 2011. A word-
class approach to labeling PSCFG rules for machine
translation. In Proceedings of ACL-HLT 2011, pages
1–11.

242


