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Abstract

Statistical phrase-based machine translation
requires no linguistic information beyond
word-aligned parallel corpora (Zens et al.,
2002; Koehn et al.,, 2003). Unfortunately,
this linguistic agnosticism often produces un-
grammatical translations. Syntax, or sentence
structure, could provide guidance to phrase-
based systems, but the “non-constituent” word
strings that phrase-based decoders manipu-
late complicate the use of most recursive syn-
tactic tools. We address these issues by
using Combinatory Categorial Grammar, or
CCQG, (Steedman, 2000), which has a much
more flexible notion of constituency, thereby
providing more labels for putative non-
constituent multiword translation phrases. Us-
ing CCG parse charts, we train a syntactic
analogue of a lexicalized reordering model by
labelling phrase table entries with multiword
labels and demonstrate significant improve-
ments in translating between Urdu and En-
glish, two language pairs with divergent sen-
tence structure.

1 Introduction

Statistical phrase-based machine translation (PMT)
is attractive, as it requires no linguistic informa-
tion beyond word-aligned parallel corpora (Zens et
al., 2002; Koehn et al., 2003). Unfortunately, this
linguistic agnosticism leaves phrase-based systems
with no precise characterization of the word order
relationships between languages, often leading to
ungrammatical translations. Syntax could provide
guidance to phrase-based systems, by steering them
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towards reorderings that reflect the structural rela-
tionships between languages, but using syntax to
guide a phrase-based system is problematic. Phrase-
based systems build the result incrementally from
the beginning of the target string to the end, and
the intermediate strings need not constitute complete
traditional syntactic constituents. It is difficult to
reconcile traditional recursive syntactic processing
with this regime, because not all intermediate strings
considered by the decoder would even have a syntac-
tic category to assess. As a result, most phrase-based
decoders control reordering using simple distance-
based distortion models, which penalize all reorder-
ing equally, and lexicalized reordering models (Till-
mann, 2004; Axelrod et al., 2005), which probabilis-
tically score various reordering configurations con-
ditioned on specific lexical translations. While un-
doubtedly better than nothing, these models perform
poorly when languages diverge considerably in sen-
tence structure. Distance-based distortion models
are too coarse-grained to distinguish correct from
incorrect reordering, while lexical reordering mod-
els suffer from data sparsity and fail to capture more
general patterns. We argue that finding a way to
label translation phrases with syntactic labels will
abstract over the observed reordering configurations
thereby address both all three deficiencies of granu-
larity, data sparsity and lack of generality.

The present work presents a novel syntactic ana-
logue of the lexicalized reordering model that uses
multiword syntactic labels to capture the general re-
ordering patterns between two languages with very
different word order. We accomplish this by using
Combinatory Categorial Grammar, or CCG (Steed-
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man, 2000), a word-centered syntax that allows a
great deal of flexibility in how sentence analyses
are formed. Syntactic derivations in CCG are mas-
sively spuriously ambiguous, i.e., there are many
ways to derive the same semantic analysis of a sen-
tence, similar to how a mathematical equation can
be reduced by canceling out variables in different
orders. Despite its name, spurious ambiguity is a
benefit to us, as it provides many different labelled
bracketings for the same dependency graph of the
same sentence, thereby increasing the chance that
any substring of that sentence will have a syntactic
label. Our approach exploits this property of CCG
to derive multiword CCG syntactic labels for target
translation strings in a phrase table, thus providing a
firmer basis on which to collect syntactic reordering
statistics. In particular:

e We show how CCG can derive constituent la-
bels for target-side phrase-table entries that
are often lamented as “non-constituents” or as
“crossing a phrase boundary”.

e Our CCG categories are not limited to single-
word supertags. Rather, as these labels are
drawn from CCG parse charts, they can span
multiple words. Further, the labels are tailored
specifically to each translation constituent’s
boundaries (Section 2.1). As a consequence,
~70% of phrase table entries receive a single
syntactic label (Section 5), largely removing
the terminological inconsistency of calling lex-
ical translation constituents “phrases”. Now,
more of them actually are syntactic phrases.

e We use these labels to train a target-language
bidirectional reordering model over CCG syn-
tactic sequences (Section 3), which, when
added to the baseline system, is found to be su-
perior to systems that use both lexicalized re-
ordering models and supertag reordering mod-
els (Section 5).

With only minor modifications, we incorporate these
enhancements into a state-of-the-art PMT decoder
(Koehn et al., 2007), achieving significant improve-
ments over two competitive baselines in an Urdu-
English translation task (Sections 5). This language
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pair was chosen to highlight the promise of this ap-
proach for languages with considerable, but syntac-
tically governed, word-order differences to one an-
other. Finally, in a small discussion we provide qual-
itative evidence that the improvements in automatic
metric scores correspond to real gains in target lan-
guage fluency.

2 Syntax, Constituency and Phrase-based
MT

Consider the following German-English PMT
phrase pair that we have extracted from a parallel
European parliamentary transcript:!

Ich hoffe, daB| < |Ihope that

Neither word string is a well-formed constituent in
traditional theories of syntax. But tradition is at odds
with the intuition that that such “non-constituent”
sequences are still well-formed substrings, governed
by rules of how they can be combined with other
word strings — e.g., declarative sentence translation
rules like | es moglich sein wird | < ‘ it will be possible

can grammatically extend each, but a noun phrase
rule cannot.

As Figure 1 illustrates, putative non-constituent
word sequences abound in phrase-based MT. Here a
translation “phrase” is simply any contiguous word
string that is consistent with a word alignment (a
relation between source and target words), usually
produced by a language-independent alignment pro-
cedure (Zens et al., 2002). The figure also high-
lights the need for linguistic syntax in controlling
how translations are assembled; the successful trans-
lation is merely one among many possible reorder-
ings, many of which (despite their ungrammatical-
ity) might score well on a word n-gram model. But
rather than changing the word alignments or PMT
“phrase” boundaries to fit a syntactic theory, we
choose to use a flexible syntax which can produce a
wider range of bracketings to accommodate the re-
sults of alignment-derived translations. To this end,
we use Combinatory Categorial Grammar, or CCG,
(Steedman, 2000). To understand how CCG allows
this, we illustrate its use with some simple examples.

!"Throughout this paper, the term “PMT phrase” refers to an
unbroken sequence of words used by a PMT system, whereas
“phrase” (without context) refers to a syntactic constituent.



tIch hoffe

, daB’es moglich sein wird

>

hope that /it will be possible

thls

I hope that

pave ‘ the way for an early ‘ ‘ resumption of the ‘ debate

Figure 1: Two phrase-based MT word groups are extracted from aligned words (the dashed outlines) and then used to form a new
translation (bottom). [Adapted from parallel sentences in the Europarl German-English corpus, v6.]

2.1 CCQG, Spurious Ambiguity and PMT:
Turning ‘“Phrases” into Phrases

CCG is a derivational syntax, where words are as-
signed a lexical category’ and sentence structures
are then recursively built using a small set of de-
ductive rule schemata known as combinators (Steed-
man, 2000). Lexical syntactic categories can be
richly structured in CCG, indicating how words can
combine. A syntactic category of the form X/Y,
e.g., states that a category of type X can be formed if
combined with a Y to its right —i.e., a function from
rightward Y's to X. This can be accomplished with
the forward function application combinator (>),3
which is written in derivational form as follows:*

X/Y Y
X>

This derivation of the symbol X is known as the
normal-form derivation (Steedman, 2000), since it
uses function application whenever possible. But
CCG has the ability to construct the same result
by using a different, non-normal-form sequence of
combinatory inferences. For example, by using the
backward type-raising combinator (T.) and then
backward function application (<), we can arrive at
the same result:

2When represented by a strings, lexical categories are called
supertags.

3CCG actually respects the rule-to-rule hypothesis (Bach,
1976), where, for every syntactic term built, there is a corre-
sponding semantic term, but, for simplicity of exposition, we
focus only on syntax here.

“The reader will notice that CCG derivations are in fact
trees, but that they “grow” in the direction opposite to how parse
trees are often depicted in NLP.
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XY Y

T
X\(X/Y
X

This derivation shows how the argument Y to the
functional type X/Y> can “raise” its type to be-
come a function that consumes that functional type,
X\(X/Y), only to produce same result as before,
namely X. This property of CCG is often referred
to as “spurious ambiguity”, because there are many
ways of reaching the same result as the canonical,
normal-form derivation.

Despite the name, this property is useful for our
purposes. Considering the target translation in Fig-
ure 1, we then observe in Figure 2 how CCG can
derive not only a bracketing similar to a more tra-
ditional Penn Treebank-style parse, but also a non-
normal-form variant that gives us a single category
for the English translation string —
namely the category S[dcl]/S[dcl] (a declarative sen-
tence lacking a declarative sentence complement to
its right).

We use this fact about CCG to label a wider
range of PMT phrases with genuine syntactic con-
stituent labels. First we parse the English sen-
tences in our training data with the C&C parser, a
state-of-the-art, treebank-trained CCG parser (Clark
and Curran, 2007), producing normal-form CCG
derivations. We then enumerate all non-normal-
form derivations that result in the same top-level
symbol, packing all derivations (normal-form and
non-normal-form) into a parse chart (see Figure 4).

/\\//\

5 Also referred to as a functor.



S I hope that it will ...
P NP (S[dcl]\NP)/S[em] S[em]/S[dcl] S[dcl]>
N‘P VP S[em] N
I VBP SBAR S[dcl]\@
‘ S[dcl]
hope  WNP S
\ _ I hope that it will ...
wor il NP (SI4c\NP)/S[em]  Slem/S[dcl] Sidal]
that S[del]/(S[del]\NP)
S{del]/Sem] .
S[del] /Sldel] -
S[ddl] -

Figure 2: Left: a traditional syntactic derivation; top right: a normal-form CCG derivation with the same subject+predicate
bracketing; bottom right: one of many non-normal-form variants. Combinator symbol key: >=forward function application,
<=backward function application, T~ =forward type-raising, B> =forward composition. Note: the CCG dependencies that are
discharged in different orders are indicated by color-coding (if available in your medium) and underlining the appropriate categories
(type-raising discharges no dependencies). Both CCG derivations lead to the same symbol (S[dcl]), and dependencies.

UR.-EN.
SINGLE-LABEL COVERAGE 69%
AVE. EN. PHRASE LEN. 2.8 wds
AVE. CCG LABEL SPAN 2.3 wds
AVE. CCG LABS/ENTRY 1.4

Table 1: Training data statistics (top to bottom): (1) % of sin-
gle CCG labels spanning entire English translation phrases, (2)
average length of English translation phrase, (3) average CCG
label span and (4) average CCG labels per English translation
phrase. (Maximum translation phrase length is 7 words.)

For the English string of each phrase table entry, we
inspect the chart for the English-side sentence that
it came from and extract a list of labels as in Fig-
ure 3. For each span, this procedure either (lines
5-9) finds the topmost single label, only using type-
raised categories when no others exist,® or (lines 10—
19) recursively and greedily finds the longest span-
ning labels from left to right, if no single label ex-
ists. The degenerate case is the single-word level
(supertags). In this way we find single labels for
69% of the English-side phrase training instances.
Table 1 gives more details.

SType-raisings are almost always possible, and will always
be closer to the top-level symbol. Many type-raisings, however,
are superfluous —i.e., produce no novel bracketings. Therefore
we only use type-raised symbols to derive a label for a span of
words when necessary.
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GETLABELS(C,s)

1 > C:apacked chart of derivations of E

2 > s = (e, er): aspan in target sentence E

3 > RETURN: a list of labels covering all words
4 > from E in span s

5 if EXISTSSINGLESPANNINGLABEL(C,S)

6 then > Get the topmost label

7 > non-type-raised, if possible

8 Ib «— GETTOPMOSTLABEL(C,s)

9 return [ 1b ]
10 else > Get the longest label starting at e;
11 fori — (e, —1)to (e, + 1)
12 do lbs «— GETLABELS(C,(e;,17))
13 if LENGTH(Ibs)=1
14 theney «— i+ 1
15 Ib «— HEAD(Ibs)
16 BREAK
17 else CONTINUE
18 return
19 CoNs(Ib,GETLABELS(C,(ey, e;,)))

Figure 3: Algorithm for labeling English sides of phrase
table instances.



\ S/(S\NP)

S[dcl] /S[em]

@ Ich @ hoffe @ ,

@ €s

@ regnen @ wird @

Figure 4: A packed CCG parse chart with multiple semantically equivalent derivations and two word-aligned strings. (Not all

derivations are depicted.)

3 Reordering Models: from Words to
Supertags to Parses

In phrase-based MT systems, the standard reorder-
ing model that controls the order in which the
source string is translated is the lexicalized reorder-
ing model (Tillmann, 2004; Axelrod et al., 2005). In
its simplest form, a lexicalized reordering model es-
timates, for each translation phrase pair (f;._;, e ;)
(where the indices sit “in-between” words, as in Fig-
ure 4), the probability of p(o | f;. ;,e; ), where
0 € {MONO, SWAP, DISCONTINUOUS} (abbrevi-
ated M, S and D) is the orientation of the phrase pair
(fi..j,er.;) wrt. the previously translated source
phrase f,, . If v = ¢, then 0 = M; if u = j, then
0 = S; otherwise 0 = D. This model, known as
a unidirectional MSD lexicalized reordering model,
can also be enriched with statistics over orientations
to the next source phrase translated (i.e., it can be
a bidirectional model), as well as with more fine-
grained distinctions in the third class D (i.e., whether
it iS Dygpr or Dgigur). All models in the present
work are bidirectional MSD models.

During decoding, orientations are predicted based
on previously translated (or following) phrases in
the decoder’s search state, but, when extracting ori-
entation statistics, there are many different possi-
ble phrasal segmentations of both strings. A sim-
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ple solution, known as word-based extraction, is to
look for neighboring alignment points that support
the various orientations. In Figure 4, e.g., a word-
based extraction regime would count the phrase
hoffe | < hope | as being in orientation D w.r.t. to
what follows, because its rightmost index, 2, is dis-
contiguous with the next aligned source point, (3,4).
Another approach, known as phrase-based extrac-
tion aims to remedy this situation by conditioning
the extraction of orientations on translation phrases
consistent with the alignment. In Figure 4 there is a
translation phrase that follows the phrase in question
— viz., & — and an orientation of M
is therefore tallied.

Regardless of the method of extraction, lexi-
calized reordering model statistics rely on exact
word-string pairs, (f,e), which can lead problems
with data sparsity. Moreover, even given ample
data, cross-phrasal reordering generalizations will
be missed. E.g., the fact that & has
orientation S w.r.t. the previous phrase pair does not
support the fact that other infinitival German verbs
should also behave similarly in relative clausal envi-
ronments.

To remedy this we might substitute abstract sym-
bols for each word in e, and train a syntactic bidirec-
tional MSD reordering model. For this we use CCG
supertags (cf. the single-word labels in the parse




chart in Figure 4), which are richly structured parts
of speech that describe their potential to combine
with other words (cf. Section 2.1). Given the same
phrase from Figure 4, we can estimate the proba-
bility of orientation S, given [regnen| <> | S[b]\NP .
A further level of abstraction is to use CCG parse
charts packed with all derivations. The phrase
’daB es‘ = ’that it‘ can therefore be abstracted to

daBes| < ’S[em]/(S[ch]\NP)‘ (a “that” clause
lacking a verb phrase to the right).

Except in cases of high ambiguity, the source
phrase effectively encodes the target phrase, mean-
ing that these extensions will suffer from data spar-
sity similarly to the baseline lexicalized model. We
therefore omit the source phrase in our syntactic
reordering models, estimating probability distribu-
tions p(O|LAB(e)) where LAB(e) is the syntactic la-
bel sequence derived from the chart (or supertagged
string, as the case may be) using the algorithm in
Figure 3.7 Orientations are determined using the
phrase-based extraction regime described in (Till-
mann, 2004), but statistics are tallied only for the
syntactic label sequence of the target string. More
precisely, for phrase pair (f; ;,es ;), if a phrase
(fa..i,€p. k) exists in the alignment grid, an orien-
tation of M is assigned to LAB(ey. ;) . Otherwise,
if a phrase (f;. , ;) exists in the alignment grid,
an orientation of S is assigned. In all other cases, an
orientation of D is assigned.

Using these statistics, we deploy target-side re-
ordering models, as described below.

4 Related Work

As noted, lexicalized reordering models can be
trained and configured in many different ways. In
addition to the standard word-based extraction (Ax-
elrod et al., 2005) and phrase-based extraction (Till-
mann, 2004) cases, more recent work has explored
using dynamic programming to extract and later
score orientations based on hierarchical configura-
tions of phrases consistent with an alignment (Gal-
ley and Manning, 2008). This means that the re-
ordering model can be conditioned on an unbounded
amount of context and can capture the fact that

"Note that a tagged string can be viewed as a very impover-
ished parse chart, and so the algorithm defined in Figure 3 can
be applied to the supertagging case as well.
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many translations are monotonic w.r.t. the previ-
ously translated block, but are mistakenly identified
as having orientation S or D.

Su and colleagues (2010) observe that the space
of phrase pairs consistent with an alignment can
be viewed in its entirety, as a graph of phrases,
thereby collecting reordering statistics w.r.t. the en-
tire space of surrounding phrases. Ling and col-
leagues (2011) extend this approach by weighting
orientation counts with multiple scored alignments.
All of these more sophisticated reordering extrac-
tion approaches are compatible with the current ap-
proach, and could be straightforwardly applied to
our labelled target-side word strings.

Syntax-driven reordering approaches in phrase-
based MT abound, but, perhaps due to the incom-
patibility of phrase table entries and traditional syn-
tactic constituency, most research has avoided using
recursive target-side syntax during decoding. Till-
mann (2008) presents an algorithm that reorders us-
ing part-of-speech based permutation patterns dur-
ing the decoding process. Others have side-stepped
the issue by restructuring the source language be-
fore decoding to resemble the target language using
syntactic rules, either automatically extracted (Xia
and McCord, 2004), or hand-crafted (Collins et al.,
2005; Wang et al., 2007; Xu and Seneff, 2008).

The flexibility of CCG syntax is also gaining
recognition as a useful tool for constraining statis-
tical MT decoders. Hassan (2009) describes an in-
cremental CCG parsing language model, although
his model does not beat a supertag factored PMT
approach. Almaghout and colleagues (2010) also
use a CCG chart to improve translation, augment-
ing SCFG rules by consulting the multiple deriva-
tions in the parse chart of Clark and Curran’s (2007)
CCG parser. We note two key differences to our
use of spurious ambiguity. First, they use a chart
packed with multiple dependency analyses, unlike
our spuriously ambiguous reworkings of the parser’s
single-best analysis. Second, the C&C parser re-
strains type-raising to a small number of possi-
bilities, thereby blocking many non-normal-form
derivations that we do not.

Two SCFG approaches that employ catego-
rial syntax that resembles CCG are the syntax-
augmented MT (SAMT) system described in (Venu-
gopal et al., 2007), and the target dependency lan-



guage model of of (Shen et al., 2008). (Venu-
gopal et al., 2007) uses a Penn Treebank-trained
CFG parser to label target strings and then re-
works the CFG parse trees, if needed,x to ac-
count for non-traditional constituents. This on-
demand reworking process, however, is bounded by
tree depth, and sometimes produces conjoined cat-
egories, rather than consistently produce the func-
tional “slash” categories that a full CCG would —
e.g.,a ‘ subject + transitive verb ‘ string might some-

times be labelled | NP + V | and other times | S/NP |.

The approach in (Shen et al., 2010) uses a simple
categorial grammar with only a single atomic sym-
bol — i.e., every functional category has the form
C\X or C/X, where X is either C or another slash
category C\X or C/X. In contrast to these two ap-
proaches, the CCG parser we use is trained on a
CCQG treebank that is the result of a carefully engi-
neered Penn Treebank-to-CCG conversion (Hocken-
maier and Steedman, 2007) and we impose no limits
on deriving categorial functional categories (X/Y).
We view our reworking of CCG charts as a poten-
tially useful extension to such approaches.

5 Experimental Results

We empirically validate our technique by translat-
ing from Urdu into English. Urdu has a canoni-
cal word order of SOV — subject, object(s), verb
— whereas English has SVO, leading to indefinitely
long distances between corresponding verbs and ob-
jects. This language pair is therefore a strong test
case for a reordering model.

For decoding we use Moses (Koehn et al., 2007),
a state-of-the-art PMT decoder, with IRST LM (Fed-
erico and Cettolo, 2007) for language model infer-
ence. For Urdu-English parallel data, we use the
OpenMT 2008 training set which consists of 88
thousand sentence-level translations and a transla-
tion dictionary of ~114 thousand word and phrase
translations. We use half of the OpenMT 2008 Urdu-
English evaluation data for development and per-
form development testing on the other half. Both
halves are ~900 sentences long and were balanced
to contain approximately the same number of to-
kens. Our blind test set is the entire OpenMT 2009
Urdu-English evaluation set. All evaluation sets had
4 reference translations for each tuning or testing in-

216

stance. All system component weights were tuned
using minimum error-rate training (Och, 2003), with
three tuning runs for each condition. The data was
normalized, tokenized and the English sentences
were lowercased,?

As a baseline, we train a standard phrase-based
system with a bidirectional MSD lexicalized re-
ordering model using word-based extraction. Our
CCG-augmented reordering system has all of the
model components of the baseline, as well as a bidi-
rectional orientation reordering model over target-
side multiword syntactic labels. To directly test the
effect of using CCG parse charts — as opposed to
simply using a CCG supertagger — we also added a
CCG supertag bidirectional MSD reordering model
to the baseline set-up. All systems were tuned and
tested with distortion limit of 15 words, and test
runs were performed with and without 200-best min-
imum Bayes’ risk (MBR) hypothesis selection (Ku-
mar and Byrne, 2004).

To acquire CCG labels for our English parallel
data, we use the C&C CCG toolkit of Clark and
Curran (2007). We build CCG parse charts by re-
working the normal-form derivations from the C&C
parser in all spuriously ambiguous ways, as de-
scribed in Section 2.1. For supertags, we tag with
the C&C supertagger. Rather than training sepa-
rate phrase tables for our CCG systems, however,
we instead decorate the baseline phrase tables with
CCG multiword labels or supertags. To smooth over
parsing and tagging errors, we only use those la-
bels whose relative frequency (1f) is sufficiently high
w.r.t. the most frequent label for that phrase pair
LAB*[ts). More precisely, for each phrase pair, we
use the set of labels:’

{LAB[feq) [Tf(LABteg]) > B - Tf(LAB*p0q]) }

This is reminiscent of the §-best tagging approach
of (Clark and Curran, 2004), but performed in a
batch process when creating the syntactic phrase ta-
bles (both supertag and CCG chart-derived). We set

8N.B. We use Penn Treebank III-compatible tokenization for
English and a specially designed tokenization script for Urdu,
cf. (Baker et al., 2010), Appendix C

Recalling that ~231% of the time, a phrase pair might have
a list of labels, rather than a single label, the word ‘label’ here
refers to a single token that can be the concatenation of multiple
symbols.



DEVTEST (NIST-08) (MBR/NON-MBR) NIST-09 TEST (MBR/NON-MBR)
BLEU-4 | METEOR TER LENGTH | BLEU-4 | METEOR TER LENGTH
LR 25.3/24.7 | 28.3/28.2 | 64.2/64.4 | 98.2/97.6 | 29.1/28.8 | 30.0/28.8 | 60.0/60.1 | 98.2/97.8
No-LR | 22.5/22.1 | 27.5/27.3 | 66.3/66.3 | 97.6/97.1 | 26.2/25.8 | 29.2/29.1 | 61.9/62.0 | 97.1/96.6
ST+LR | 24.5/24.2 | 28.4/28.3 | 64.6/64.5 | 97.9/97.3 | 28.5/28.2 | 30.0/30.0 | 60.3/60.2 | 97.9/97.3
CCG+LR | 25.6/25.2 | 28.7/28.5 | 64.3/64.5 | 98.7/98.1 | 29.1/29.2 | 30.1/30.2 | 59.5/59.8 | 97.4/97.9

Table 2: Case-insensitive BLEU-4, METEOR, TER and hypothesis/reference length ratio (LENGTH) for a lexicalized reordering
baseline (LR), a system with only a distance-based distortion model (NO-LR), a system with an additional CCG supertag reordering
model (ST+LR) and our system with an additional CCG chart-derived reordering model (CCG+LR). Systems were run with (left
of slash) and without (right of slash) 200-best-list MBR hypothesis selection. All boldfaced results were found to be significantly
better than the baseline at > the 95% confidence level using method described in (Clark et al., 2011) with 3 separate MERT tuning

runs for each system. Non-boldfaced numbers are statistically indistinguishable from (or worse than) the baseline.

6 = 0.5 in all of our CCG experiments.

To minimize disruption to the Moses decoder
(which only supports single-word labels in phrase-
based mode), we project multiword labels across the
words they label as single-word factors with book-
keeping characters, similar to the “microtag” anno-
tations of asynchronous factored translation mod-
els (Cettolo et al., 2008). We modified to the de-
coder to reassemble the multiple single-word fac-
tors into a single label before querying the reorder-
ing model. As an example, we might have the phrase
pair | le vélo rouge ‘ @’ the|NP( red|NP+ bike|NP) ‘
Before querying the reordering model, the fac-
tor sequence NP( NP+ NP) is collapsed into the
single, multiword label ‘NP’ by the rule schema
X( ... X+ ... X)

We train a language model using all of the WMT
2011 NEWSCRAWL, NEWSCOMENTARY and EU-
ROPARL monolingual data,'® tokenized and lower-
cased as above, but de-duplicated to address the re-
dundancy of the Web-crawled portion of that data
set. We also train a separate language model on the
English portion of the Urdu-English parallel corpus
(minus the dictionary entries), and interpolate the
two models by optimizing perplexity on our tuning
set.

Table 2 lists our results, where we see significant
improvement over both of our baselines, lexicalized
reordering (LR) and supertag reordering plus lexi-
calized reordering (ST+LR). To test the effects of
the lexicalized reordering model itself, we also eval-
uate a system with no lexicalized reordering model

— X.

Yhttp://www.statmt .org/wmt11/
translation-task.html
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(only a distance-based distortion model). This last
system (a system which almost always prefers not
to reorder) is considerably worse than all other sys-
tems, demonstrating the need for non-monotonic
reordering configurations when accounting for the
Urdu-English data.

6 Analysis and Discussion

Our CCG system (CCG+LR) outperforms both
baseline systems (LR and ST+LR) in a majority of
metrics in both MBR and non-MBR conditions. We
see that, even though MBR decoding closes the per-
formance gap somewhat, our system continues to
match or outperform (if sometimes insignificantly)
in all areas. Note that the CCG+LR non-MBR
configuration outperforms both LR and ST+LR in
MBR and non-MBR decoding conditions in its ME-
TEOR score on the NIST-09 test set. We note also
that, in the NIST-09 test case, the CCG+LR sys-
tem’s poorer performance is perhaps due to a mis-
match in hypothesis length, which could be harming
its scores, particularly the BLEU brevity penalty.

6.1 Poor Performance of CCG Supertag Model

We have no firm explanation for the poor per-
formance of the CCG supertag model (ST-
LR), but it is important to note that the su-
pertag reordering model does not unify statis-
tics across phrases of different lengths, as the
CCG chart-derived model does. E.g., the
phrase pair ’den Weg fiir eine‘ & ’the way for an‘
will query the CCG chart-derived reordering
model with the same symbol as the phrase pair
den Weg fiir eine baldige ‘ & ’ the way for an early ‘




twenty-seven ‘ year old ‘ ‘ abdullah ‘ ‘ britain ‘ ‘ blasts in ‘ ‘ hatcheries ‘ planning | | accused of

is] o

CCG+LR: | twenty-seven ‘year old‘ abdullah accused of | | planning ‘hatcheries‘ ‘blasts in‘ ‘britain‘ ]

LR:

Reference 1:
Reference 2:
Reference 3:
Reference 4:

twenty-seven years on charges of planning bombings hatcheries , abdullah in britain .
27 years old abdullah is accused of planning explosions in britain .

twenty-seven years old abdullah is blamed for planning attacks in britain .

abdullah , 27 , has been blamed for planning the blasts in britain .

abdullah , 27 , has been blamed for planning the blasts in britain .

musharraf ‘resignation‘ ‘give‘ should | ]

CCG+LR: |now ’musharraf‘ ‘should‘ ‘give‘ ‘resignation ]

LR:

Reference 1:
Reference 2:
Reference 3:
Reference 4:

now musharraf resignation should be given .
now musharraf should resign .

now , musharraf should resign .

now , musharraf should resign .

musharraf should resign .

Figure 5: Sample devtest (NIST-08) translations of the median-performing tuned CCG syntactic reordering model
(CCG+LR) compared to the median-performing baseline lexicalized reordering model (LR).

— viz., NP/N. The CCG supertag model, how-
ever, will have two distinct label sequences for these
phrases — viz., NP/N_N_(NP\NP)/NP_NP/N and
NP/N_N_(NP\NP)/NP_NP/N_N/N, resp. — both
of which could be reduced to the single label, NP /N,
using CCG’s syntactic combinators. The supertag
system does not have the means of relating the
reordering patterns of strings of symbols such as
this.!'" Such data fragmentation may be leading to
decreased performance, which would indicate the
use of recursive CCG syntax.

6.2 Qualitative Improvements

In addition to improved metric scores, we noted real
qualitative improvements in some examples, as Fig-
ure 5 shows. These examples demonstrate the abil-
ity of the reordering model to navigate the massive,
structure-governed reorderings needed to approxi-
mate the correct answer with the phrase inventory
it is given.

"Tts reordering table has more than twice as many entries as
that of the chart-derived model.
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6.3 Comparison to the State of the Art

To our knowledge, the state of the art in Urdu-
English translation using the OpenMT data is
listed in the NIST OpenMT 2009 evaluation re-
sults (http://www.itl.nist.gov/iad/
mig/tests/mt/2009/ResultsRelease/
currentUrdu.html). This evaluation accepted
only single system outputs, and used cased refer-
ences. Therefore we had to choose a single system
output and recase its text.

For system selection, we picked the tuned sys-
tem that performed best on the development test
set. For recasing, we trained a lowercased-to-cased
monolingual phrase-based “translation model” with
no reordering and a cased language model, similar to
what is described in (Baker et al., 2010). The train-
ing text is simply the non-dictionary portion of the
Urdu-English parallel corpus, with its lowercased
version as the source and the original cased text as
the target, both halves tokenized as above. We tuned
on a similar version of the English half of our tuning



references. The lowercased output of our system is
fed to this model and the first token of each casing
“translation” is capitalized (if not already).

The official metric of the NIST 2009 evaluation
is BLEU (as implemented in the NIST-distributed
mteval-vl3a.pl script).!? The best-performing
system in the constrained data evaluation scored
0.312 w.r.t. the cased references, with the second
and third place systems scoring 0.2395 and 0.2322,
respectively.!> Our best performing MERT-tuned
system (as determined on the devtest data) scores
0.2734 on the test set, putting it between the top two
systems. For comparison, our devtest-best baseline
LR system scores 0.2683 on the test set.

While is generally not useful to test experimental
manipulations based on a single tuning run (Clark et
al., 2011) and with different monolingual language
modelling data, we note these figures simply to situ-
ate our results within the state of the art.

7 Conclusion

We have argued for the use of CCG in phrase-
based translation, due to its flexibility in providing
a wealth of different bracketings that better accom-
modate lexical translation strings. We have also pre-
sented a novel method for using CCG constituent la-
bels in a syntactic reordering model where the syn-
tactic labels span multiple words, do not cross trans-
lation constituent boundaries and are tailored specif-
ically to each translation constituent. The result is a
significant improvement in Urdu-English (SOV —
SVO) translation scores over two baselines: a tra-
ditional phrase-based baseline with a lexicalized re-
ordering model and a phrase-based baseline with an
additional supertag reordering model. Moreover, we
have provided qualitative examples that confirm the
improvements in automatic metrics.

In future work we would like explore whether
further improvements can be gained by using more
sophisticated reordering models, such as reordering
graphs (Su et al., 2010) and hierarchical reordering
models (Galley and Manning, 2008) both for our
word-based and syntactic reordering models. Fur-
ther, as in prior work (Zollmann et al., 2006; Shen

2ftp://jaguar.ncsl.nist.gov/mt/
resources/mteval-v13a-20091001.tar.gz.

BWe exclude combination entries that are combinations of
multiple systems with different algorithmic approaches.
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et al., 2010; Almaghout et al., 2010), our categorial
labels could also be used to derive CCG-augmented
SCFG rules, both lexicalized and unlexicalized, cf.
(Zhao and Al-onaizan, 2008) — the latter being the
SCFG analogue of our current model.
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