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Abstract

The addition of a deterministic permutation
parser can provide valuable hierarchical in-
formation to a phrase-based statistical ma-
chine translation (PBSMT) system. Permuta-
tion parsers have been used to implement hier-
archical re-ordering models (Galley and Man-
ning, 2008) and to enforce inversion trans-
duction grammar (ITG) constraints (Feng et
al., 2010). We present a number of theoret-
ical results regarding the use of permutation
parsers in PBSMT. In particular, we show that
an existing ITG constraint (Zens et al., 2004)
does not prevent all non-ITG permutations,
and we demonstrate that the hierarchical re-
ordering model can produce analyses during
decoding that are inconsistent with analyses
made during training. Experimentally, we ver-
ify the utility of hierarchical re-ordering, and
compare several theoretically-motivated vari-
ants in terms of both translation quality and
the syntactic complexity of their output.

1 Introduction

Despite the emergence of a number of syntax-based
techniques, phrase-based statistical machine transla-
tion remains a competitive and very efficient trans-
lation paradigm (Galley and Manning, 2010). How-
ever, it lacks the syntactically-informed movement
models and constraints that are provided implicitly
by working with synchronous grammars. There-
fore, re-ordering must be modeled and constrained
explicitly. Movement can be modeled with a dis-
tortion penalty or lexicalized re-ordering probabili-
ties (Koehn et al., 2003; Koehn et al., 2007), while
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decoding can be constrained by distortion limits or
by mimicking the restrictions of inversion transduc-
tion grammars (Wu, 1997; Zens et al., 2004).

Recently, we have begun to see deterministic per-
mutation parsers incorporated into phrase-based de-
coders. These efficient parsers analyze the sequence
of phrases used to produce the target, and assem-
ble them into a hierarchical translation history that
can be used to inform re-ordering decisions. Thus
far, they have been used to enable a hierarchical
re-ordering model, or HRM (Galley and Manning,
2008), as well as an ITG constraint (Feng et al.,
2010). We discuss each of these techniques in turn,
and then explore the implications of ITG violations
on hierarchical re-ordering.

We present one experimental and four theoreti-
cal contributions. Examining the HRM alone, we
present an improved algorithm for extracting HRM
statistics, reducing the complexity of Galley and
Manning’s solution from O(n?) to O(n?). Examin-
ing ITG constraints alone, we demonstrate that the
three-stack constraint of Feng et al. can be reduced
to one augmented stack, and we show that another
phrase-based ITG constraint (Zens et al., 2004) ac-
tually allows some ITG violations to pass. Finally,
we show that in the presence of ITG violations, the
original HRM can fail to produce orientations that
are consistent with the orientations collected during
training. We propose three HRM variants to address
this situation, including an approximate HRM that
requires no permutation parser, and compare them
experimentally. The variants perform similarly to
the original in terms of BLEU score, but differently
in terms of how they permute the source sentence.
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We begin by establishing some notation. We view
the phrase-based translation process as producing a
sequence of source/target blocks in their target or-
der. For the purposes of this paper, we disregard
the lexical content of these blocks, treating blocks
spanning the same source segment as equivalent.
The block [s;, ¢;] indicates that the source segment
Ws; 41, ..., W; Was translated as a unit to produce
the i’ target phrase. We index between words;
therefore, a block’s length in tokens is ¢ — s, and
for a sentence of length n, 0 < s < ¢t < n. Empty
blocks have s = ¢, and are used only in special cases.
Two blocks [s;—1,t;—1] and [s;, t;] are adjacent iff
ti_1 = s; ort; = s;_1. Note that we concern our-
selves only with adjacency in the source. Adjacency
in the target is assumed, as the blocks are in target
order. Figure 1 shows an example block sequence,
where adjacency corresponds to cases where block
corners touch. In the shift-reduce permutation parser
we describe below, the parsing state is encoded as a
stack of these same blocks.

2 Hierarchical Re-ordering

Hierarchical re-ordering models (HRMs) for phrase-
based SMT are an extension of lexicalized re-
ordering models (LRMs), so we begin by briefly
reviewing the LRM (Tillmann, 2004; Koehn et al.,
2007). The goal of an LRM is to characterize how
a phrase-pair tends to be placed with respect to the
block that immediately precedes it. Both the LRM
and the HRM track orientations traveling through
the target from left-to-right as well as right-to-left.
For the sake of brevity and clarity, we discuss only
the left-to-right direction except when stated oth-
erwise. Re-ordering is typically categorized into
three orientations, which are determined by exam-
ining two sequential blocks [s;—1,t;—1] and [s;, t;]:

e Monotone Adjacent (M): t;_1 = s;
e Swap Adjacent (S): t; = 5,1
e Disjoint (D): otherwise

Figure 1 shows a simple example, where the first
two blocks are placed in monotone orientation, fol-
lowed by a disjoint “red”, a swapped “dog” and a
disjoint period. The probability of an orientation
O; € {M,S,D} is determined by a conditional
distribution: Pr(O;|source phrase;, target phrase;).
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[6,7]
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[5,6]
red

[4,5]
dog

[2,4]
her big

[0,2]
Emily loves

Emily aime son gros chien rouge

Figure 1: A French-to-English translation with 5 blocks.

To build this model, orientation counts can be ex-
tracted from aligned parallel text using a simple
heuristic (Koehn et al., 2007).

The HRM (Galley and Manning, 2008) maintains
similar re-ordering statistics, but determines orienta-
tion differently. It is designed to address the LRM’s
dependence on the previous block [s;_1,t;—1]. Con-
sider the period [6,7] in Figure 1. If a different seg-
mentation of the source had preceded it, such as one
that translates “chien rouge” as a single [4,6] block,
the period would have been in monotone orienta-
tion. Galley and Manning (2008) introduce a de-
terministic shift-reduce parser into decoding, so that
the decoder always has access to the largest possible
previous block, given the current translation history.
The parser has two operations: shift places a newly
translated block on the top of the stack. If the top
two blocks are adjacent, then a reduce is immedi-
ately performed, replacing them with a single block
spanning both. Table 1 shows the parser states cor-
responding to our running example. Whether “chien
rouge” is translated using [5,6],[4.,5] or [4,6] alone,
the shift-reduce parser provides a consolidated pre-
vious block of [0,6] at the top of the stack (shown
with dotted lines). Therefore, [6,7] is placed in
monotone orientation in both cases.

The parser can be easily integrated into a phrase-
based decoder’s translation state, so each partial hy-
pothesis carries its own shift-reduce stack. Time and
memory costs for copying and storing stacks can
be kept small by sharing tails across decoder states.
The stack subsumes the coverage vector in that it
contains strictly more information: every covered



Stack
[0,2]
[0,2],[2,4]
[0,4]
[0,4],[5,6]
[0,41,[5,61,[4,5]
]
]
]
]

[0,4],[4,6]
[0,6
[0,6],[6,7]
[0,7

Wm?d;dmm'x)mm_g

Table 1: Shift-reduce states corresponding to Figure 1.

word will be present in one of the stack’s blocks.
However, it can be useful to maintain both.

The top item of a parser’s stack can be approxi-
mated using only the coverage vector. The approx-
imate top is the largest block of covered words that
contains the last translated block. This approxima-
tion will always be as large or larger than the true top
of the stack, and it will often match the true top ex-
actly. For example, in Figure 1, after we have trans-
lated [2,4], we can see that the coverage vector con-
tains all of [0,4], making the approximate top [0,4],
which is also the true top. In fact, this approxima-
tion is correct at every time step shown in Figure 1.
Keep this approximation in mind, as we return to it
in Sections 3.2 and 4.3.

We do not use a shift-reduce parser that consumes
source words from right-to-left;! therefore, we ap-
ply the above approximation to handle the right-to-
left HRM. Before doing so, we re-interpret the de-
coder state to simulate a right-to-left decoder. The
last block becomes [s;, ;] and the next block be-
comes [s;_1,t;—1], and the coverage vector is in-
verted so that covered words become uncovered and
vice versa. Taken all together, the approximate test
for right-to-left adjacency checks that any gap be-
tween [s;_1,%;—1] and [s;,t;] is uncovered in the
original coverage vector.” Figure 2 illustrates how a
monotone right-to-left orientation can be (correctly)
determined for [2, 4] after placing [5, 6] in Figure 1.

Statistics for the HRM can be extracted from
word-aligned training data. Galley and Manning
(2008) propose an algorithm that begins by run-

!This would require a second, right-to-left decoding pass.
2Galley and Manning (2008) present an under-specified ap-
proximation that is consistent with what we present here.
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Figure 2: Illustration of the coverage-vector stack ap-
proximation, as applied to right-to-left HRM orientation.
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Figure 3: Relevant corners in HRM extraction. — indi-
cates left-to-right orientation, and « right-to-left.

ning standard phrase extraction (Och and Ney, 2004)
without a phrase-length limit, noting the corners of
each phrase found. Next, the left-to-right and right-
to-left orientation for each phrase of interest (those
within the phrase-length limit) can be determined by
checking to see if any corners noted in the previous
step are adjacent, as shown in Figure 3.

2.1 Efficient Extraction of HRM statistics

The time complexity of phrase extraction is bounded
by the number of phrases to be extracted, which is
determined by the sparsity of the input word align-
ment. Without a limit on phrase length, a sentence
pair with n words in each language can have as many
as O(n*) phrase-pairs.> Because it relies on unre-
stricted phrase extraction, the corner collection step
for determining HRM orientation is also O(n?).

By leveraging the fact that the first step col-
lects corners, not phrase-pairs, we can show that
HRM extraction can actually be done in O(n?) time,
through a process we call corner propagation. In-
stead of running unrestricted phrase-extraction, cor-
ner propagation begins by extracting all minimal

3Consider a word-alignment with only one link in the center
of the grid.
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Figure 4: Corner Propagation: Each of the four passes
propagates two types of corners along a single dimension.

phrase-pairs; that is, those that do not include un-
aligned words at their boundaries. The complex-
ity of this step is O(n?), as the number of mini-
mal phrases is bounded by the minimum of the num-
ber of monolingual phrases in either language. We
note corners for each minimal pair, as in the orig-
inal HRM extractor. We then carry out four non-
nested propagation steps to handle unaligned words,
traversing the source (target) in forward and reverse
order, with each unaligned row (column) copying
corners from the previous row (column). Each pass
takes O(n?) time, for a total complexity of O(n?).
This process is analogous to the growing step in
phrase extraction, but computational complexity is
minimized because each corner is considered inde-
pendently. Pseudo-code is provided in Algorithm 1,
and the propagation step is diagrammed in Fig-
ure 4. In our implementation, corner propagation is
roughly two-times faster than running unrestricted
phrase-extraction to collect corners.

Note that the trickiest corners to catch are those
that are diagonally separated from their minimal
block (they result from unaligned growth in both
the source and target). These cases are handled cor-
rectly because each corner type is touched by two
propagators, one for the source and one for the tar-
get (see Figure 4). For example, the top-right-corner
array A is populated by both propagate-right and
propagate-up. Thus, one propagator can copy a cor-
ner along one dimension, while the next propagator
copies the copies along the other dimension, moving
the original corner diagonally.
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Algorithm 1 Corner Propagation
Initialize target-source indexed binary arrays
A7 m][n], Aulm][n], AT[m][n] and AL[m]|[n] to
record corners found in minimal phrase-pairs.
{Propagate Right}
for i from 2 to m s.t. target[i] is unaligned do
for j from 1 ton do
A7[i][j] = True if A7[i — 1][;] is True
ALi][§] = True if AL[i — 1][j] is True
{Propagate Up}
for j from 2 to n s.t. source[j] is unaligned do
for ¢ from 1 to m do
A"[i][j] = True if A"[d][j — 1] is True
A7i][j] = True if A7[i][j — 1] is True
{Propagate Left and Down are similar}
return A7, A, A" and AL

3 ITG-Constrained Decoding

Phrase-based decoding places no implicit limits on
re-ordering; all n! permutations are theoretically
possible. This is undesirable, as it leads to in-
tractability (Knight, 1999). Therefore, re-ordering is
limited explicitly, typically using a distortion limit.
One particularly well-studied re-ordering constraint
is the ITG constraint, which limits source permu-
tations to those achievable by a binary bracketing
synchronous context-free grammar (Wu, 1997). ITG
constraints are known to stop permutations that gen-
eralize 3142 and 2413,* and can drastically limit the
re-ordering space for long strings (Zens and Ney,
2003). There are two methods to incorporate ITG
constraints into a phrase-based decoder, one using
the coverage vector (Zens et al., 2004), and the
other using a shift-reduce parser (Feng et al., 2010).
We begin with the latter, returning to the coverage-
vector constraint later in this section.

Feng et al. (2010) describe an ITG constraint that
is implemented using the same permutation parser
used in the HRM. To understand their method, it is
important to note that the set of ITG-compliant per-
mutations is exactly the same as those that can be
reduced to a single-item stack using the shift-reduce
permutation parser (Zhang and Gildea, 2007). In
fact, this manner of parsing was introduced to SMT

42413 is shorthand notation that denotes the block sequence
[1,2],[3,4],[0,1],[2,3] as diagrammed in Figure 5a.
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Figure 5: Two non-ITG permutations. Violations of po-
tential adjacency are indicated with dotted spans. Bounds
for the one-stack constraint are shown as subscripts.

in order to binarize synchronous grammar produc-
tions (Zhang et al., 2006). Therefore, enforcing
an ITG constraint in the presence of a shift-reduce
parser amounts to ensuring that every shifted item
can eventually be reduced. To discuss this con-
straint, we introduce a notion of potential adjacency,
where two blocks are potentially adjacent if any
words separating them have not yet been covered.
Formally, blocks [s, ] and [s', '] are potentially ad-
jacent iff one of the following conditions holds:

- they are adjacent (' = sort = s)
-t/ < sand [t, s] is uncovered
- t < & and [t, s] is uncovered

Recall that a reduction occurs when the top two
items of the stack are adjacent. To ensure that re-
ductions remain possible, we only shift items onto
the stack that are potentially adjacent to the cur-
rent top. Figure 5 diagrams two non-ITG permu-
tations and highlights where potential adjacency is
violated. Note that no reductions occur in either
of these examples; therefore, each block [s;, ;] is
also the top of the stack at time ¢. Potential ad-
jacency can be confirmed with some overhead us-
ing the stack and coverage vector together, but Feng
et al. (2010) present an elegant three-stack solution
that provides potentially adjacent regions in constant
time, without a coverage vector. We improve upon
their method later this section. From this point on,
we abbreviate potential adjacency as PA.

We briefly sketch a proof that maintaining po-
tential adjacency maintains reducibility, by showing
that non-PA shifts produce irreducible stacks, and
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that PA shifts are reducible. It is easy to see that ev-
ery non-PA shift leads to an irreducible stack. Let
[, ] be an item to be shifted onto the stack, and
[s,t] be the current top. Assume that ¢’ < s and the
two items are not PA (the case where ¢ < &' is simi-
lar). Because they are not PA, there is some index k
in [¢/, s] that has been previously covered. Since it is
covered, k exists somewhere in the stack, buried be-
neath [s, t]. Because k cannot be re-used, no series
of additional shift and reduce operations can extend
[¢', '] so that it becomes adjacent to [s, ¢]. Therefore,
[s,t] will never participate in a reduction, and pars-
ing will close with at least two items on the stack.
Similarly, one can easily show that every PA shift is
reducible, because the uncovered space [t', s] can be
filled by extending the new top toward the previous
top using strictly adjacent shifts.

3.1 A One-stack ITG Constraint

As mentioned earlier, Feng et al. (2010) provide a
method to track potential adjacency that does not re-
quire a coverage vector. Instead, they maintain three
stacks, the original stack and two others to track po-
tentially adjacent regions to the left and right respec-
tively. These regions become available to the de-
coder only when the top of the original stack is ad-
jacent to one of the adjacency stacks.

We show that the same goal can be achieved with
even less book-keeping by augmenting the items on
the original stack to track the regions of potential
adjacency around them. The intuition behind this
technique is that on a shift, the new top inherits all
of the constraints on the old top, and the old top be-
comes a constraint itself. Each stack item now has
four fields, the original block [s, t], plus a left and
right adjacency bound, denoted together as ,[s, t];,
where ¢ and r are indices for the maximal span con-
taining [s, t] that is uncovered except for [s, ¢]. If the
top of the stack is ,[s, t],., then shifted items must fall
inside one of the two PA regions, [/, s or [t,r]. The
region shifted into determines new item’s bounds.

The stack is initialized with a special [0, 0],, item,
and we then shift unannotated blocks onto the stack.
As we shift ¢, t'] onto the stack, rules derive bounds
¢" and 1’ for the new top based on the old top ,[s, t],.:

o Shift-left (' <s): ¢/ =4, =5
e Shift-right (t < &'): ¢/ =t, 7' =7
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Figure 6: Two examples of boundaries for the one-stack solution for potential adjacency. Stacks are built from bottom
to top, blocks indicate [s,t] blocks, while tails are left and right adjacency boundaries.

Meanwhile, when reducing a stack with ,[s,¢],,
at the top and ,[s, t], below it, the new top simply
copies ¢ and r. The merged item is larger than [s, ¢],
but it is PA to the same regions. Figure 6 diagrams
a shift-right and a reduce, while Figure 5 annotates
bounds for blocks during its ITG violations.

3.2 The Coverage-Vector ITG Constraint is
Incomplete

The stack-based solution for ITG constraints is el-
egant, but there is also a proposed constraint that
uses only the coverage vector (Zens et al., 2004).
This constraint can be stated with one simple rule:
if the previously translated block is [s;_1,¢;—1] and
the next block to be translated is [s;, ¢;], one must
be able to travel along the coverage vector from
[si—1,ti—1] to [s;,t;] without transitioning from an
uncovered word to a covered word. Feng et al.
(2010) compare the two ITG constraints, and show
that they perform similarly, but not identically. They
attribute the discrepancy to differences in when the
constraints are applied, which is strange, as the two
constraints need not be timed differently.

Let us examine the coverage-vector constraint
more carefully, assuming that ¢; < s;_; (the case
where t;_1 < s; is similar). The constraint consists
of two phases: first, starting from s;_1, we travel to
the left toward ¢;, consuming covered words until we
reach the first uncovered word. We then enter into
the second phase, and the path must remain uncov-
ered until we reach ¢;. The first step over covered
positions corresponds to finding the left boundary
of the largest covered block containing [s;_1, t;—1],
which is an approximation to the top of the stack
(Section 2). The second step over uncovered posi-
tions corresponds to determining whether [s;, ¢;] is
PA to the approximate top. That is, the coverage-
vector ITG constraint checks for potential adjacency
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using the same top-of-stack approximation as the
right-to-left HRM.

This implicit approximation implies that there
may well be cases where the coverage-vector con-
straint makes the wrong decision. Indeed this is
the case, which we prove by example. Consider
the irreducible sequence 25314, illustrated in Fig-
ure 5b. This non-ITG permutation is allowed by
the coverage-vector approximation, but not by the
stack-based constraint. Both constraints allow the
placement of the first three blocks [1,2], [4,5] and
[2,3]. After adding [0, 1], the stack-based solution
detects a PA-violation. Meanwhile, the vector-based
solution checks the path from 2 to 1 for a transition
from uncovered to covered. This short path touches
only covered words. Similarly, as we add [3, 4], the
path from 1 to 3 is also completely covered. The
entire permutation is accepted without complaint.
The proof provided by Zens et al. (2004) misses
this case, as it accounts for phrasal generalizations
of the 2413 ITG-forbidden substructure, but it does
not account for generalizations where the substruc-
ture is interrupted by a discontiguous item, such as
in 25{3}14, where 2413 is revealed not by merging
items but by deleting 3.

4 Inconsistencies in HRM parsing

We have shown that the HRM and the ITG con-
straints for phrase-based decoding use the same de-
terministic shift-reduce parser. The entirety of the
ITG discussion was devoted to preventing the parser
from reaching an irreducible state. However, up
until now, work on the HRM has not addressed
the question of irreducibility (Galley and Manning,
2008; Nguyen et al., 2009).

Irreducible derivations do occur during HRM de-
coding, and when they do, they can create inconsis-
tencies with respect to HRM extraction from word-
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Figure 7: An example irreducible derivation, drawn from
our Chinese-to-English decoder’s k-best output.

IR By lE 20T XA HUS g ?

Last translated block | 2-red *-red approx
How can [4,6] | [4,6] [4.6] [4,6]
you [0,1] | [0,1] [0,1]  [0,1]
achieve [6,7] | [6,7]1 [6,7] [4,7]
the (1,2] | [1,2] [1,2] [0,2]
economic and  [3,4] | [3,4] [3.4] [3,7]
tourism (2,3] | [1,4]1 [0,7] [0,7]
benefits? [7,9] | [7,91 1[0)9] [0,9]

Table 2: Top of stack at each time step in Figure 7, under
2-reduction (as in the original HRM), *-reduction, and
the coverage-vector approximation.

aligned training data. In Figure 7, we show an ir-
reducible block sequence, extracted from a Chinese-
English decoder. The parser can perform a few small
reductions, creating a [1,4] block indicated with a
dashed box, but translation closes with 5 items on
the stack. One can see that [7,9] is assigned a dis-
joint orientation by the HRM. However, if the same
translation and alignment were seen during train-
ing, the unrestricted phrase extractor would find a
phrase at [0,7], indicated with a dotted box, and [7,9]
would be assigned monotone orientation. This in-
consistency penalizes this derivation, as “benefits 7”
is forced into an unlikely disjoint orientation. One
potential implication is that the decoder will tend
to avoid irreducible states, as those states will tend
to force unlikely orientations, resulting in a hidden,
soft ITG-constraint. Indeed, our decoder does not
select this hypothesis, but instead a (worse) transla-
tion that is fully reducible. The impact of these in-
consistencies on translation quality can only be de-
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termined empirically. However, to do so, we require
alternatives that address these inconsistencies. We
describe three such variants below.

4.1 ITG-constrained decoding

Perhaps the most obvious way to address irreducible
states is to activate ITG constraints whenever decod-
ing with an HRM. Irreducible derivations will disap-
pear from the decoder, along with the corresponding
inconsistencies in orientation. Since both techniques
require the same parser, there is very little overhead.
However, we will have also limited our decoder’s re-
ordering capabilities.

4.2 Unrestricted shift-reduce parsing

The deterministic shift-reduce parser used through-
out this paper is actually a special case of a general
class of permutation parsers, much in the same way
that a binary ITG is a special case of synchronous
context-free grammar. Zhang and Gildea (2007) de-
scribe a family of k-reducing permutation parsers,
which can reduce the top k items of the stack in-
stead of the top 2. For £ > 2 we can generalize the
adjacency requirement for reduction to a permuta-
tion requirement. Let {[s;, ¢;]|i=1...k} be the top k
items of a stack; they are a permutation iff:
max(t;) — min(s;) = Zz: [ti — sil

That is, every number between the max and min is
present somewhere in the set. Since two adjacent
items always fulfill this property, we know the orig-
inal parser is 2-reducing. k-reducing parsers reduce
by moving progressively deeper in the stack, looking
for the smallest 2 < ¢ < k that satisfies the permu-
tation property (see Algorithm 2). As in the original
parser, a k-reduction is performed every time the top
of the stack changes; that is, after each shift and each
successful reduction.

If we set k = oo, the parser will find the small-
est possible reduction without restriction; we refer
to this as a *-reducing parser. This parser will never
reach an irreducible state. In the worst case, it re-
duces the entire permutation as a single n-reduction
after the last shift. This means it will exactly mimic
unrestricted phrase-extraction when predicting ori-
entations, eliminating inconsistencies without re-
stricting our re-ordering space. The disadvantage is



Algorithm 2 k-reduce a stack
input stack {[s;,t;]|i = 1...1}; i = 11is the top
input max reduction size k, k > 2
set s’ = sq;t' = tq;size =t1 — 51
for i from 2 to min(k, ) do
set s = min(s, s;); ¢ = max(t', t;)
set size = size + (t; — s;)
if t' — s’ == size then
pop {[s;,t;]|j = 1...4} from the stack
push [/, '] onto the stack;
return t rue // successful reduction
return false // failed to reduce

that reduction is no longer a constant-time operation,
but is instead O(n) in the worst case (consider Algo-
rithm 2 with k£ = oo and [ = n items on the stack).’
As aresult, we will carefully track the impact of this
parser on decoding speed.

4.3 Coverage vector approximation

One final option is to adopt the top-of-stack approxi-
mation for left-to-right orientations, in addition to its
current use for right-to-left orientations, eliminating
the need for any permutation parser. The next block
[si, t;] is adjacent to the approximate top of the stack
only if any space between [s;,¢;] and the previous
block [s;—1,t;—1] is covered. But before committing
fully to this approximation, we should better under-
stand it. Thus far, we have implied that this approx-
imation can fail to predict correct orientations, but
we have not specified when these failures occur. We
now show that incorrect orientations can only occur
while producing a non-ITG permutation.

Let [s;—1,t;—1] be the last translated block, and
[si, t;] be the next block. Recall that the approxima-
tion determines the top of the stack using the largest
block of covered words that contains [s;_1,%;_1].
The approximate top always contains the true top,
because they both contain [s;_1,%;—1] and the ap-
proximate top is the largest block that does so.
Therefore, the approximation errs on the side of ad-
jacency, meaning it can only make mistakes when

3Zhang and Gildea (2007) provide an efficient algorithm for
*-reduction that uses additional book-keeping so that the num-
ber of permutation checks as one traverses the entire sequence
is linear in aggregate; however, we implement the simpler, less
efficient version here to simplify decoder integration.
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Figure 8: Indices for when the coverage approximation
predicts a false M.

assigning an M or S orientation; if it assigns a D, it
is always correct. Let us consider the false M case
(the false S case is similar). If we assign a false M,
then ¢;_1 < s; and s; is adjacent to the approximate
top; therefore, all positions between ¢;_1 and s; are
covered. However, since the M is false, the true top
of the stack must end at some ¢’ : t,_1 < t' < s;.
Since we know that every position between ¢’ and s;
is covered, [s;, t;] cannot be PA to the true top of the
stack, and we must be in the midst of making a non-
ITG permutation. See Figure 8 for an illustration of
the various indices involved. As it turns out, both the
approximation and the 2-reducing parser assign in-
correct orientations only in the presence of ITG vio-
lations. However, the approximation may be prefer-
able, as it requires only a coverage vector.

4.4 Qualitative comparison

Each solution manages its stack differently, and we
illustrate the differences in terms of the top of the
stack at time ¢ in Table 2. The *-reducing parser is
the gold standard, so we highlight deviations from
its decisions in bold. As one can see, the original 2-
reducing parser does fine before and during an ITG
violation, but can create false disjoint orientations
after the violation is complete, as the top of its stack
becomes too small due to missing reductions. Con-
versely, the coverage-vector approximation makes
errors inside the violation: the approximate top be-
comes too large, potentially creating false monotone
or swap orientations. Once the violation is complete,
it recovers nicely.

S Experiments

We compare the LRM, the HRM and the three HRM
variants suggested in Section 4 on a Chinese-to-
English translation task. We measure the impact on
translation quality in terms of BLEU score (Papineni
et al., 2002), as well as the impact on permutation



BLEU NIST 08 Complexity Counts Speed
Method nist0O4 nist06 nistO8 | > 2 | 4 5 6 7 >8 | sec/sent
LRM 38.00 33.79 27.12 | 241 | 146 40 32 12 11 3.187
HRM 2-red | 38.53 3420 27.57 | 176 | 113 31 20 8 4 3.353
HRM apprx | 38.58 34.09 27.60 | 280 | 198 41 26 13 2 3.231
HRM *-red | 38.39 3422 2741 | 328|189 71 34 20 14 3.585
HRM itg 3870 3426 2733 | O 0 0O 0 0 0 3.274

Table 3: Chinese-to-English translation results, comparing the LRM and 4 HRM variants: the original 2-reducing
parser, the coverage vector approximation, the *-reducing parser, and an ITG-constrained decoder.

complexity, as measured by the largest k required to
k-reduce the translations.

5.1 Data

The system was trained on data from the NIST 2009
Chinese MT evaluation, consisting of more than
10M sentence pairs. The training corpora were split
into two phrase tables, one for Hong Kong and UN
data, and one for all other data. The dev set was
taken from the NIST 05 evaluation set, augmented
with some material reserved from other NIST cor-
pora; it consists of 1.5K sentence pairs. The NIST
04, 06, and 08 evaluation sets were used for testing.

5.2 System

We use a phrase-based translation system similar to
Moses (Koehn et al., 2007). In addition to our 8
translation model features (4 for each phrase table),
we have a distortion penalty incorporating the min-
imum possible completion cost described by Moore
and Quirk (2007), a length penalty, a 5-gram lan-
guage model trained on the NIST09 Gigaword cor-
pus, and a 4-gram language model trained on the tar-
get half of the parallel corpus. The LRM and HRM
are represented with six features, with separate
weights for M, S and D in both directions (Koehn et
al., 2007). We employ a gap constraint as our only
distortion limit (Chang and Collins, 2011). This re-
stricts the maximum distance between the start of a
phrase and the earliest uncovered word, and is set to
7 words. Parameters are tuned using a batch-lattice
version of hope-fear MIRA (Chiang et al., 2008;
Cherry and Foster, 2012). We re-tune parameters
for each variant.
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5.3 Results

Our results are summarized in Table 3. Speed and
complexity are measured on the NISTOS test set,
which has 1357 sentences. We measure permutation
complexity by parsing the one-best derivations from
each system with an external *-reducing parser, and
noting the largest k-reduction for each derivation.
Therefore, the >2 column counts the number of non-
ITG derivations produced by each system.

Regarding quality, we have verified the effective-
ness of the HRM: each HRM variant outperforms
the LRM, with the 2-reducing HRM doing so by 0.4
BLEU points on average. Unlike Feng et al. (2010),
we see no consistent benefit from adding hard ITG
constraints, perhaps because we are building on an
HRM-enabled system. In fact, all HRM variants
perform more or less the same, with no clear win-
ner emerging. Interestingly, the approximate HRM
is included in this pack, which implies that groups
wishing to augment their phrase-based decoder with
an HRM need not incorporate a shift-reduce parser.

Regarding complexity, the 2-reducing HRM pro-
duces about half as many non-ITG derivations as the
*-reducing system, confirming our hypothesis that
a 2-reducing HRM acts as a sort of soft ITG con-
straint. Both the approximate and *-reducing de-
coders produce more violating derivations than the
LRM. This is likely due to their encouragement of
more movement overall. The largest reduction we
observed was k = 11.

Our speed tests show that all of the systems trans-
late at roughly the same speed, with the LRM being
fastest and the *-reducing HRM being slowest. The
*-reducing system is less than 7% slower than the 2-
reducing system, alleviating our concerns regarding
the cost of *-reduction.



6 Discussion

We have presented a number of theoretical contribu-
tions on the topic of phrase-based decoding with an
on-board permutation parser. In particular, we have
shown that the coverage-vector ITG constraint is ac-
tually incomplete, and that the original HRM can
produce inconsistent orientations in the presence of
ITG violations. We have presented three HRM vari-
ants that address these inconsistencies, and we have
compared them in terms of both translation quality
and permutation complexity. Though our results in-
dicate that a permutation parser is actually unneces-
sary to reap the benefits of hierarchical re-ordering,
we are excited about the prospects of further ex-
ploring the information provided by these on-board
parsers. In particular, we are interested in using fea-
tures borrowed from transition-based parsing while
decoding.
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