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Abstract

This is a description of the submissions made
by the pattern recognition and human lan-
guage technology group (PRHLT) of the Uni-
versitat Politecnica de Valéncia to the qual-
ity estimation task of the seventh workshop
on statistical machine translation (WMT12).
We focus on two different issues: how to ef-
fectively combine subsequence-level features
into sentence-level features, and how to select
the most adequate subset of features. Results
showed that an adequate selection of a subset
of highly discriminative features can improve
efficiency and performance of the quality esti-
mation system.

1 Introduction

Quality estimation (QE) (Ueffing et al., 2003; Blatz
et al., 2004; Sanchis et al., 2007; Specia and Farzin-
dar, 2010) is a topic of increasing interest in machine
translation (MT). It aims at providing a quality indi-
cator for unseen translations at various granularity
levels. Different from MT evaluation, QE do not
rely on reference translations and is generally ad-
dressed using machine learning techniques to pre-
dict quality scores.

Our main focus in this article is in the combi-
nation of subsequence features into sentence fea-
tures, and in the selection of a subset of relevant fea-
tures to improve performance and efficiency. Sec-
tion 2 describes the features and the learning algo-
rithm used in the experiments. Section 3 describe
two different approaches implemented to select the
best-performing subset of features. Section 4 dis-
plays the results of the experimentation intended to
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determine the optimal setup to train our final sub-
mission. Finally, section 5 summarizes the submis-
sion and discusses the results.

2 Features and Learning Algorithm

2.1 Available Sources of Information

The WMTI12 QE task is carried out on English—
Spanish news texts produced by a phrase-based MT
system. As training data we are given 1832 trans-
lations manually annotated for quality in terms of
post-editing effort (scores in the range [1,5]), to-
gether with their source sentences, decoding in-
formation, reference translations, and post-edited
translations. Additional training data can be used,
as deemed appropriate. Any of these information
sources can be used to extract the features, however,
test data consists only on source sentence, transla-
tion, and search information. Thus, features were
extracted from the sources of information available
in test data only. Additionally, we compute some
extra features from the WMTI12 translation task
(WMTI12TT) training data.

2.2 Features

We extracted a total of 475 features classified into
sentence-level and subsequence-level features. We
considered subsequences of sizes one to four.

Sentence-level features

Source and target sentence lengths, and ratio.

e Proportion of dead nodes in the search graph.

Number of source phrases.

Number and average size of the translation op-
tions under consideration during search.
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e Source and target sentence probability and per-
plexities computed by language models of or-
der one to five.

e Target sentence probability, probability divided
by sentence length, and perplexities computed
by language models of order one to five. Lan-
guage models were trained on the 1000-best
translations.

e 1000-best average sentence length, 1000-best
vocabulary divided by average length, and
1000-best vocabulary divided by source sen-
tence length.

e Percentage of subsequences (sizes one to four)
previously unseen in the source training data.

Subsequence-level features

e Frequency of source subsequences in the
WMTI2TT data.

e IBM Model-1 confidence score for each word
in the translation (Ueffing et al., 2003).

e Subsequence confidence scores computed on
1000-best translations as described in (Ueffing
et al.,, 2003; Sanchis et al., 2007). We use
four subsequence correctness criteria (Levens-
thein position, target position, average position,
and any position) and three weighting schemes
(translation probability, translation rank, and
relative frequencies).

e Subsequence confidence scores computed by a
smoothed naive bayes classifier (Sanchis et al.,
2007). We computed a confidence score for
each correctness criteria (Levensthein, target,
average and any). The smoothed classifier was
tuned to improve classification error rate on a
separate development set (union of news-test
sets for years 2008 to 2011).

2.3 Combination of Subsequence-level
Features

Since WMT12 focuses on sentence-level QE,
subsequence-level features must be combined to ob-
tain sentence-level indicators. We used two different
methods to combine subsequence features:

e Average value of subsequence-level scores, as
done in (Blatz et al., 2004).
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e Percentage of subsequence scores belonging to
each frequency quartile’, as done in (Specia
and Farzindar, 2010).

Thus, each subsequence-level feature was repre-
sented as five sentence-level features: one average
score plus four quartile percentages.

Both methods aim at summarizing the scores of
the subsequences in a translations. The average is
a rough indicator that measures the “middle” value
of the scores while the percentages of subsequences
belonging to each quartile are more fine-grained in-
dicators that try to capture how spread out the sub-
sequence scores are.

2.4 Learning Algorithm

We trained our quality estimation model using an
implementation of support vector machines (Vap-
nik, 1995) for regression. Specifically, we used
svMmlight (joachims, 2002) for regression with a ra-
dial basis function kernel with the parameters C', w
and ~ optimized. The optimization was performed
by cross-validation using ten random subsamples of
the training set (1648 samples for training and 184
samples for validation).

3 Feature Selection

One of the principal challenges that we had to con-
front is the small size of the training data (only
1832 samples) in comparison with the large number
of features, 475. This inadequate amount of train-
ing data did not allow for an acceptable training of
the regression model which yielded instable systems
with poor performance. We also verified that many
features were highly correlated and were even re-
dundant sometimes. Since the amount of training
data is fixed, we tried to improve the robustness of
our regression systems by selecting a subset of rele-
vant features.

We implemented two different feature selection
techniques: one based on partial component anal-
ysis (PCA), and a greedy selection according to the
individual performance of each feature.

3.1 PCA Selection (PS)

Principal component analysis (Pearson, 1901)
(PCA) is a mathematical procedure that uses an or-

'Quartile values were computed on the WMTI2TT data.
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Figure 1: Delta average score (a) (higher is better) and mean average error (b) (lower is better) as a function of the
number of features. Cross-validation results for PCA selection (PS), and greedy selection (GS) methods.

thogonal transformation to convert a set of observa-
tions of possibly correlated variables into a set of
values of linearly uncorrelated variables called prin-
cipal components. This transformation is defined in
such a way that the first principal component has
the largest possible variance (that is, accounts for as
much of the variability in the data as possible), and
each succeeding component in turn has the highest
variance possible under the constraint that it be un-
correlated with the preceding components. Strictly
speaking, PCA does not perform a feature selection
because the principal components are linear combi-
nations of the individual features.

PCA generates sets of features (the principal com-
ponents) with almost no correlation. However, it ig-
nores the quality scores to be predicted. Since we
want to obtain the best-performing subset of fea-
tures, there is a mismatch between the selection cri-
terion of PCA and the criterion we are interested in.
In other words, although the features generated by
PCA contain almost no redundancy, they do not nec-
essarily have to constitute the best-performing sub-
set of features.

3.2 Greedy Performance-driven Selection (GS)

We also implemented a greedy feature selection
method which iteratively creates subsets of increas-
ing size with the best-scoring individual features.
The score of each feature is given by the perfor-
mance of a system trained solely on that feature. At
a given iteration, we select the K best scoring fea-
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tures and train a regression system with them.

Since we select the features incrementally accord-
ing to their individual performance, we expect to ob-
tain the subset of features that yield the best perfor-
mance. However, we do not take into account the
correlations that may exist between the different fea-
tures, thus, the final subset is almost sure to contain
a large number of redundant features.

4 Experiments

4.1 Assessment Measures

The organizers propose two variations of the task
that will be evaluated separately:

Ranking: Participants are required to submit a
ranking of translations. This ranking will used
to split the data into n quantiles. The evalua-
tion will be performed in terms of delta average
score, the average difference over n between
the scores of the top quantiles and the overall
score of the corpus. The Spearman correlation
will be used as tie-breaking metric.

Scoring: Participants are required to assign a score
in the range [1,5] for each translation. The
evaluation will be performed in terms of mean
average error (MAE). Root mean squared error
(RMSE) will be used as tie-breaking metric.

4.2 Pre-Submission Results

We now describe a number of experiments whose
goal is to determine the optimal training setup.



Specifically, we wanted to determine which selec-
tion method to use (PCA or greedy) and which fea-
tures yield a better system. As a preliminary step,
we extracted all the features described in section 2.
The complete training data consisted on 1832 sam-
ples each one with 475 features.

We trained systems using feature sets of increas-
ing size as given by PCA selection (PS) or greedy
selection (GS). The parameters of each system were
tuned to optimize each of the evaluation measures
under consideration. Performance was measured as
the average of a ten-fold cross-validation experiment
on the training data.

Figure 1 shows the results obtained for the ex-
periments that optimized delta average, and MAE
(result optimizing Spearman and RMSE were quite
similar). We also display the performance of a sys-
tem trained on the baseline features. We observed
that both selection methods yielded a better perfor-
mance than the baseline system. PS allowed for a
quick improvement in performance as more features
are selected, reaching its best results when select-
ing approximately 80 features. After that, perfor-
mance rapidly deteriorate. Regarding GS, its im-
provements in performance were slower in com-
parison with PS. However, GS finally reached the
best scores of the experimentation when selecting
~ 225 features. Specifically, the best performance
was reached using the top 222 features for delta av-
erage, and using the top 254 features for MAE.

According to these results, our submissions were
trained on the best subsets of features as given by
the GS method. 222 features were selected accord-
ing to their delta average score for the ranking task
variation, and 254 according to their MAE value for
the scoring task variation. Final submissions were
trained on the complete training set.

Most of the selected features are sentence-level
features calculated from subsequence-based scores.
For instance, among the 222 features of the rank-
ing variation of the task, 174 were computed from
subsequence scores. Among these 174 features,
129 were calculated from confidence scores com-
puted on 1000-best translations, 29 from confidence
scores computed by a smoothed naive bayes classi-
fier, 11 from the frequencies of the subsequences in
the WMT12TT data, and 5 from IBM Model-1 word
confidence scores.
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Participant ID | Delta average f MAE |}
SDL Language Weaver 0.63 0.61
Uppsala U. 0.58 0.64
LORIA Institute - 0.68
Trinity College Dublin 0.56 0.68
Baseline 0.55 0.69
PRHLT 0.55 0.70
U. Edinburgh 0.54 0.68
Shanghai Jiao Tong U. 0.53 0.69
U. Wolverhampton/Sheffield 0.51 0.69
DFKI 0.46 0.82
Dublin City U. 0.44 0.75
U. Politecnica Catalunya 0.22 0.84

Table 1: Best official evaluation results on each task of
the different participating teams. Results for our submis-
sions are displayed in bold. Baseline results in italics.
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Figure 2: Average value (% std. deviation) of the first
15 features used in our final submissions. Feature values
follow a similar distribution in the training and test data.

4.3 Official Evaluation Results

After establishing the optimal training setup, we
now show the official evaluation results for our sub-
missions. Table 1 shows the performance of the var-
ious participants in the ranking (delta average) and
scoring (MAE) tasks. Surprisingly our submissions
yielded a slightly worse result than the baseline fea-
tures. However, given the large improvements over
the baseline system obtained in the pre-submission
experiments, we expected to obtain similar improve-
ments over Baseline in test.

We considered two possible explanations for this
counterintuitive result. First, a possibly divergence
between the underlying distributions of the training
and test data. To investigate this possibility, we stud-



ied the distributions of feature values in the training
and test data. Figure 2 displays mean-+std. deviation
for the first 15 features used in our final submissions
(similar results are obtained for all the 222 features).
We can observe that feature values in training and
test data follow a similar distribution, although test
values tend to be slightly lower than training values.

A second plausible explanation is the small
amount of training data (only 1832 samples). Lim-
ited data favors simpler systems that can train its few
free parameters more accurately. This is the case of
the Baseline system that was trained using only 11
features, in comparison with the 222 features used
in our submissions. Since the training and test data
seem to have been generated following the same un-
derlying distribution, we hypothesize that the lim-
ited training data is the main explanation for the poor
test performance of our submissions.

5 Summary and Discussion

We have presented the submissions of the PRHLT
group to the WMT12 QE task. The estimation sys-
tems were based on support vector machines for re-
gression. Several features were used to train the
systems in order to predict human-annotated post-
editing effort scores. Our main focus in this article
have been the combination of subsequence features
into sentence features, and the selection of a subset
of relevant features to improve the submitted sys-
tems performance.

Results of the experiments showed that PCA
selection was able to obtain better performance
when selecting a small number of features while
GS yielded the best-performing systems but us-
ing much more features. Among the selected fea-
tures, the larger percentage of them were calculated
from subsequence features. These facts indicate
that the combination of subsequence features yields
sentence-level features with a strong individual per-
formance. However, the high number of features se-
lected by GS indicate that these top-scoring features
are highly correlated.

Official evaluation results differ from what we
expected; baseline system performs better than
our submissions while pre-submission experiments
yielded just opposite results. After discarding a pos-
sibly discrepancy between training and test data dis-
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tributions, and given that smaller models such as the
baseline system can be trained more accurately with
limited data, we concluded that the limited training
data is the main explanation for the disparity be-
tween our training and test results.

A future line of research could be the study of
methods that allow to select sets of uncorrelated fea-
tures, that unlike PCA, also take into account the in-
dividual performance of each feature. Specifically,
we plan to study a features selection technique based
on partial least squares regression.
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