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Abstract

In this paper we introduce a number of new
features for quality estimation in machine
translation that were developed for the WMT
2012 quality estimation shared task. We find
that very simple features such as indicators of
certain characters are able to outperform com-
plex features that aim to model the connection
between two languages.

1 Introduction and Task

This paper describes the features and setup used in
our submission to the WMT 2012 quality estimation
(QE) shared task. Given a machine translation (MT)
system and a corpus of its translations which have
been rated by humans, the task is to build a predic-
tor that can accurately estimate the quality of fur-
ther translations. The human ratings range from 1
(incomprehensible) to 5 (perfect translation) and are
given as the mean rating of three different judges.

Formally we are presented with a source sentence
fJ
1 and a translation eI1 and we need to assign a score
S(fJ

1 , e
I
1) ∈ [1, 5] or, in the ranking task, order the

source-translation pairs by expected quality.

2 Resources

The organizers have made available a baseline QE
system that consists of a number of well established
features (Blatz et al., 2004) and serves as a starting
point for development. Furthermore the MT system
that generated the translations is available along with
its training data. Compared to the large training cor-
pus of the MT engine, the QE system is based on a
much smaller training set as detailed in Table 1.

# sentences
europarl-nc 1,714,385
train 1,832
test 422

Table 1: Corpus statistics

3 Features

In the literature (Blatz et al., 2004) a large number
of features have been considered for confidence es-
timation. These can be grouped into four general
categories:

1. Source features make a statement about the
source sentence, assessing the difficulty of
translating a particular sentence with the sys-
tem at hand. Some sentences may be very easy
to translate, e.g. short and common phrases,
while long and complex sentences are still be-
yond the system’s capabilities.

2. Translation features model the connection be-
tween source and target. While this is very
closely related to the general problem of ma-
chine translation, the advantage in confidence
estimation is that we can exercise unconstruc-
tive criticism, i.e. point out errors without of-
fering a better translation. In addition, there is
no need for an efficient search algorithm, thus
allowing for more complex models.

3. Target features judge the translation of the sys-
tem without regarding in which way it was
produced. They often resemble the language
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model used in the noisy channel formulation
(Brown et al., 1993) but can also pinpoint more
specific issues. In practice, the same features as
for the source side can be used; the interpreta-
tion however is different.

4. Engine features are often referred to as glass
box features (Specia et al., 2009). They de-
scribe the process which produced the transla-
tion in question and usually rely on the inner
workings of the MT system. Examples include
model scores and word posterior probabilities
(WPP) (Ueffing et al., 2003).

In this work we focus on the first three categories
and ignore the particular system that produced the
translations. Such features are commonly referred
to as black box features. While some glass box fea-
tures, e.g. word posterior probabilities, have led to
promising results in the past, we chose to explore
new features potentially applicable to translations
from any source, e.g. translations found on the web.

3.1 Binary Indicators

MTranslatability (Bernth and Gdaniec, 2001) gives a
notion of the structural complexity of a sentence that
relates to the quality of the produced translation. In
the literature, several characteristics that may hin-
der proper translation have been identified, among
them poor grammar and misplaced punctuation. As
a very simple approximation we implement binary
indicators that detect clauses by looking for quota-
tion marks, hyphens, commas, etc. Another binary
feature marks numbers and uppercase words.

3.2 Named Entities

Another aspect that might pose a potential problem
to MT is the occurrence of words that were only ob-
served a few times or in very particular contexts, as
it is often the case for Named Entities. We used the
Stanford NER Tagger (Finkel et al., 2005) to detect
words that belong to one of four groups: Person, Lo-
cation, Organization and Misc. Each group is repre-
sented by a binary feature.

Counts are given in Table 2. The test set has sig-
nificantly less support for the Misc category, possi-
bly hinting that this data was taken from a different
source or document. To avoid the danger of biasing

train (src) test (src)

abs rel abs rel

Person 623 34% 141 33%
Location 479 26% 99 23%
Organization 505 28% 110 26%
Misc 428 23% 53 13%

Table 2: Distribution of Named Entities. The counts are
based on a binary features, i.e. multiple occurrences are
treated as a single one.

the classifier we decided not to use the Misc indica-
tor in our experiments.

3.3 Backoff Behavior
In related work (Raybaud et al., 2011) the backoff
behavior of a 3-gram LM was found to be the most
powerful feature for word level QE. We compute for
each word the longest seen n-gram (up to n = 4)
and take the average length as a feature. N-grams at
the beginning of a sentence are extended with <s>
tokens to avoid penalizing short sentences. This is
done on both the source and target side.

3.4 Discriminative Word Lexicon
Following the approach of Mauser et al. (2009) we
train log-linear binary classifiers that directly model
p(e|fJ

1 ) for each word e ∈ eI1:

p(e|fJ
1 ) =

exp
(∑

f∈fJ
1
λe,f

)
1 + exp

(∑
f∈fJ

1
λe,f

) (1)

where λe,f are the trained model weights. Please
note that this introduces a global dependence on the
source sentence so that every source word may influ-
ence the choice of all words in eI1 as opposed to the
local dependencies found in the underlying phrase-
based MT system.

Assuming independence among the words in the
translated sentence we could compute the probabil-
ity of the sentence pair as:

p(eI1|fJ
1 ) =

∏
e∈eI

1

p(e|fJ
1 ) ·

∏
e/∈eI

1

(
1− p(e|fJ

1 )
)
. (2)

In practice the second part of Equation (2) is too
noisy to be useful given the large number of words
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source resumption of the session
target reanudación del perı́odo de sesiones

Table 3: Example entry of filtered training corpus.

that do not appear in the sentence at hand. We there-
fore focus on the observed words and use the geo-
metric mean of their individual probabilities:

xDWL(fJ
1 , e

I
1) =

∏
e∈eI

1

p(e|fJ
1 )

1/I

. (3)

We also compute the probability of the lowest
scoring word as an additional feature:

xDWLmin(f
J
1 , e

I
1) = min

e∈eI
1

p(e|fJ
1 ). (4)

3.5 Neural Networks
We seek to directly predict the words in eI1 using
a neural network. In order to do so, both source
and target sentence are encoded as high dimensional
vectors in which positive entries mark the occur-
rence of words. This representation is commonly
referred to as the vector space model and has been
successfully used for information retrieval.

The dimension of the vector representation is de-
termined by the respective sizes of the source and
target vocabulary. Without further pre-processing
we would need to learn a mapping from a 90k (|Vf |)
to a 170k (|Ve|) dimensional space. Even though our
implementation is specifically tailored to exploit the
sparsity of the data, such high dimensionality makes
training prohibitively expensive.

Two approaches to reduce dimensionality are ex-
plored in this work. First, we simply remove all
words that never occur in the QE data of 2,254 sen-
tences from the corpus leaving 8,365 input and 9,000
output nodes. This reduces the estimated training
time from 11 days to less than 6 hours per iteration1.
Standard stochastic gradient decent on a three-layer
feed-forward network is used.

As shown in Table 3 the filtering can lead to arti-
facts in which case an erroneous mapping is learned.
Moreover the filtering approach does not scale well
as the QE corpus and thereby the vocabulary grows.

1using a 2.66 GHz Intel Xeon and 2 threads

Our second approach to reduce dimensionality
uses the hashing trick (Weinberger et al., 2009): a
hash function is applied to each word and the sen-
tence is represented by the hashed values which
are again transformed using vector space model as
above. The dimensionality reduction is due to the
fact that there are less possible hash values than
words in the vocabulary. To reduce the loss of infor-
mation due to collisions, several different hash func-
tions are used. The resulting vector representation
closely resembles a Bloom Filter (Bloom, 1970).

This approach scales well but introduces two new
parameters: the number of hash functions to use
and the dimensionality of the resulting space. In
our experiments we have used SHA-1 hashes with
three different salts of which we used the first 12
bits, thereby mapping the sentences into a 4096-
dimensional space.

The results presented in Section 4 based on net-
works with 500 hidden nodes which were trained for
at least 10 iterations. The networks are not trained
until convergence due to time constraints; additional
training iterations will likely result in better per-
formance. Experiments using 250 or 1000 hidden
nodes showed very similar results.

After the models are trained we compare the pre-
dicted and the observed target vectors and derive
two features: (i) the euclidean distance, denoted as
NNdist and HNNdist for the filtered and hashed ver-
sions respectively and (ii) the geometric mean of
those dimensions where we expect a positive value,
denoted as NNprop+ and HNNprob+ in Table 5.

3.6 Edit Distance

Using Levenshtein Distance we computed the dis-
tance to the closest entry in the training corpus. The
idea is that a sentence that was already seen almost
identically would be easier to translate. Likewise,
a translation that is very close to an element of the
corpus is likely to be a good translation. This was
performed for both source and target side and on
character as well as on word level giving a total of
four (EDIT) scores. The scores are normalized by
the length of the respective lines.
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source corpus “ ” "

europarl-nc 37 227 25,637
train 0 0 641
test 78 76 100

Table 4: Counts of different quotation mark characters.

4 Experiments

In this work we focus on the prediction of human
assessment of translation quality, i.e. the regression
task of the WMT12 QE shared task. Our submission
for the ranking task is derived from the order implied
by the predicted scores without further re-ranking.

In general our efforts were directed towards fea-
ture engineering and not to the machine learning as-
pects. Therefore, we apply a standard pipeline and
use neural networks for regression. All parameter
tuning is performed using 5-fold cross validation on
the baseline set of 17 features as provided by the or-
ganizers.

4.1 Preprocessing and Analysis
To avoid including our own judgment, no more than
the first ten lines of the test data were visually in-
spected in order to ensure that the training and test
data was preprocessed in the same manner. Further-
more, the distribution of individual characters was
investigated. As shown in Table 4, the test data dif-
fers from the training corpus in treatment of quo-
tation marks. Hence, we replaced all typographi-
cal quotation marks ( “, ” ) with the standard double
quote symbol (").

Prior to computation of the features described in
Subsections 3.3, 3.4 and 3.5 all numbers are re-
placed with a special $number token.

Baseline features are used without further scal-
ing; experiments where all features were scaled to
the [0, 1] range showed a drop in accuracy.

While we implemented the training ourselves for
the features presented in Subsection 3.5, the open
source neural network library FANN2 is used for
all experiments in this section. As the performance
of individual classifiers shows a high variance, pre-
sumably due to local minima, all experiments are
conducted using ensembles on 500 networks trained

2http://leenissen.dk/fann/wp/

Feature (Section) MAE RMSE |PCC|

BACKOFF (3.3) 0.0 0.0
INDICATORS (3.1) +0.5 +0.7
NER (3.2) +0.5 +0.4
DWLmin (3.4) −0.1 −0.1 0.19
DWL (3.4) 0.0 −0.1 0.36
EDIT (3.6) - tgt words 0.0 0.0 0.32
EDIT (3.6) - tgt chars −0.1 0.0 0.27
EDIT (3.6) - src words 0.0 0.0 0.36
EDIT (3.6) - src chars +0.2 +0.1 0.37
NNdist (3.5) 0.0 0.0 0.35
NNprob+ (3.5) +0.1 +0.2 0.35
HNNdist (3.5) 0.0 0.0 0.37
HNNprob+ (3.5) +0.1 +0.1 0.35

Table 5: Analysis of individual features using 5-fold
cross-validation. Positive values indicate improvement
over a baseline of MAE 57.7% and RMSE 72.7%; e.g.
including the DWL feature actually worsens RMSE from
72.7% to 72.8%.
The last column gives the Pearson correlation coefficient
between the feature and the score if the feature is a single
column. This information was not used in feature selec-
tion as it is not based on cross validation.

with random initialization. Their consensus is com-
puted as the average of the individual predictions.

4.2 Feature Evaluation
To evaluate the contribution of individual features,
each feature is tested in conjunction with all base-
line features, using the parameters that were opti-
mized on the baseline set. This slightly favors the
baseline features but we still expect that expressive
additional features lead to a noticeable performance
gain. The results are detailed in Table 5. In addi-
tion to the main evaluation metrics, mean average
error (MAE) and root mean squared error (RMSE),
we report the Pearson correlation coefficient (PCC)
as a measure of predictive strength of a single fea-
ture. Because features are not used alone this does
not directly translate into overall performance. Still,
it can be observed that our proposed features show
good correlation to the target variable. For compari-
son, among the baseline features only 2 of 17 reach
a PCC of over 0.3.

While the results generally remain inconclusive,
some very simple features that indicate difficulties
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for the translation engine show good performance.
In particular binary markers of named entities and
and the indicator features introduced in Subsection
3.1 perform well. Further experiments with the latter
show their contribution to the systems performance
can be attributed to a single feature: the indicator of
the genitive case, i.e. occurrences of ’s or s’.

Testing more combinations of simple and com-
plex features may lead to improvements at the risk
of over-fitting on the cross validation setup. As a
simple remedy several feature sets were created at
random, always combining all baseline features and
several new features presented in this paper. Averag-
ing of the individual results of all sets that performed
better than the baseline resulted in our submission.

4.3 Results and Discussion

Of all the features detailed only a few lead to a con-
siderable improvement. This is also reflected by our
results on the test data which are nearly indistin-
guishable from the performance of the baseline sys-
tem. While this is disappointing, our more complex
features introduce a number of free parameters and
further experimentation will be needed to conclu-
sively assess their usefulness. In particular, features
based on neural networks can be further optimized
and tested in other settings.

Even though the machine learning aspects of this
task are not the focus of this work we are confident
that the proposed setup is sound and can be reused
in further evaluations.

5 Conclusion

We described a number of new features that can be
used to predict human judgment of translation qual-
ity. Results suggest pointing out sentences that are
hard to translate, e.g. because they are too complex,
is a promising approach.

We presented a detailed evaluation of the utility
of individual features and a solid baseline setup for
further experimentation. The system, based on an
ensemble of neural networks, is insensitive to pa-
rameter settings and yields competitive results.

Our new features can potentially be applied for a
multitude of applications and may deliver insights
into the fundamental problems that cause translation
errors, thus aiding the progress in MT research.
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