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Abstract

This paper describes Stanford University’s sub-
mission to the Shared Evaluation Task of WMT
2012. Our proposed metric (SPEDE) com-
putes probabilistic edit distance as predictions
of translation quality. We learn weighted edit
distance in a probabilistic finite state machine
(pFSM) model, where state transitions corre-
spond to edit operations. While standard edit
distance models cannot capture long-distance
word swapping or cross alignments, we rectify
these shortcomings using a novel pushdown
automaton extension of the pFSM model. Our
models are trained in a regression framework,
and can easily incorporate a rich set of linguis-
tic features. Evaluated on two different pre-
diction tasks across a diverse set of datasets,
our methods achieve state-of-the-art correla-
tion with human judgments.

1 Introduction

We describe the Stanford Probabilistic Edit Distance
Evaluation (SPEDE) metric, which makes predic-
tions of translation quality by computing weighted
edit distance. We model weighted edit distance in
a probabilistic finite state machine (pFSM), where
state transitions correspond to edit operations. The
weights of the edit operations are then automatically
learned in a regression framework. One of the ma-
jor contributions of this paper is a novel extension
of the pFSM model into a probabilistic Pushdown
Automaton (pPDA), which enhances traditional edit-
distance models with the ability to model phrase shift
and word swapping. Furthermore, we give a new log-
linear parameterization to the pFSM model, which
allows it to easily incorporate rich linguistic features.

We conducted extensive experiments on a di-
verse set of standard evaluation data sets (NIST
OpenMT06, 08; WMT06, 07, 08). Our models
achieve or surpass state-of-the-art results on all test
sets.

2 Related Work

Research in automatic machine translation (MT) eval-
uation metrics has been a key driving force behind
the recent advances of statistical machine transla-
tion (SMT) systems. The early seminal work on
automatic MT metrics (e.g., BLEU and NIST) is
largely based on n-gram matches (Papineni et al.,
2002; Doddington, 2002). Despite their simplicity,
these measures have shown good correlation with hu-
man judgments, and enabled large-scale evaluations
across many different MT systems, without incurring
the huge labor cost of human evaluation (Callison-
Burch et al. (2009; 2010; 2011), inter alia).

Later metrics that move beyond n-grams achieve
higher accuracy and improved robustness from re-
sources like WordNet synonyms (Miller et al., 1990),
paraphrasing (Zhou et al., 2006; Snover et al., 2009;
Denkowski and Lavie, 2010), and syntactic parse
structures (Liu et al., 2005; Owczarzak et al., 2008;
He et al., 2010). But a common problem in these
metrics is they typically resort to ad-hoc tuning meth-
ods instead of principled approaches to incorporate
linguistic features. Recent models use linear or
SVM regression and train them against human judg-
ments to automatic learn feature weights, and have
shown state-of-the-art correlation with human judg-
ments (Albrecht and Hwa, 2007a; Albrecht and Hwa,
2007b; Sun et al., 2008; Pado et al., 2009). The
drawback, however, is they rely on time-consuming
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Figure 1: This diagram illustrates an example translation pair in the Chinese-English portion of OpenMT08 data set
(Doc:AFP CMN 20070703.0005, system09, sent 1). The three rows below are the best state transition (edit) sequences
that transforms REF to SYS, according to the three proposed models. The corresponding alignments generated by the
models (pFSM, pPDA, pPDA+f ) are shown with different styled lines, with later models in the order generating strictly
more alignments than earlier ones. The gold human evaluation score is 6.5, and model predictions are: pPDA+f 5.5,
pPDA 4.3, pFSM 3.1, METEORR 3.2, TERR 2.8.

preprocessing modules to extract linguistic features
(e.g., a full end-to-end textual entailment system was
needed in Pado et al. (2009)), which severely lim-
its their practical use. Furthermore, these models
employ a large number of features (on the order of
hundreds), and consequently make the model predic-
tions opaque and hard to analyze.

3 pFSMs for MT Regression

We start off by framing the problem of machine trans-
lation evaluation in terms of weighted edit distance
calculated using probabilistic finite state machines
(pFSMs). A FSM defines a language by accepting a
string of input tokens in the language, and rejecting
those that are not. A probabilistic FSM defines the
probability that a string is in a language, extending on
the concept of a FSM. Commonly used models such
as HMMs, n-gram models, Markov Chains, proba-
bilistic finite state transducers and PCFGs all fall in
the broad family of pFSMs (Knight and Al-Onaizan,
1998; Eisner, 2002; Kumar and Byrne, 2003; Vidal
et al., 2005). Unlike all the other applications of
FSMs where tokens in the language are words, in
our language tokens are edit operations. A string of
tokens that our FSM accepts is an edit sequence that
transforms a reference translation (denoted as ref )
into a system translation (sys).

Our pFSM has a unique start and stop state, and
one state per edit operation (i.e., Insert, Delete, Sub-
stitution). The probability of an edit sequence e is
generated by the model is the product of the state tran-
sition probabilities in the pFSM, formally described
as:

w(e | s,r) =
1
Z

|e|

∏
i=1

exp θ · f(ei−1,ei,s,r) (1)

We featurize each of the state changes with a log-
linear parameterization; f is a set of binary feature
functions defined over pairs of neighboring states
(by the Markov assumption) and the input sentences,
and θ are the associated feature weights; r and s are
shorthand for ref and sys; Z is a partition function.
In this basic pFSM model, the feature functions are
simply identity functions that emit the current state,
and the state transition sequence of the previous state
and the current state.

The feature weights are then automatically learned
by training a global regression model where some
translational equivalence judgment score (e.g., hu-
man assessment score, or HTER (Snover et al.,
2006)) for each sys and ref translation pair is the
regression target (ŷ). Since the “gold” edit sequence
are not given at training or prediction time, we treat
the edit sequences as hidden variables and sum over
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them in our model. We introduce a new regression
variable y ∈ R which is the log-sum of the unnormal-
ized weights (Eqn. (1)) of all edit sequences, formally
expressed as:

y = log ∑
e′⊆e∗

|e′ |

∏
i=1

exp θ · f(ei−1,ei,s,r) (2)

The sum over an exponential number of edit se-
quences in e∗ is solved efficiently using a forward-
backward style dynamic program. Any edit sequence
that does not lead to a complete transformation of
the translation pair has a probability of zero in our
model. Our regression target then seeks to minimize
the least squares error with respect to ŷ, plus a L2-
norm regularizer term parameterized by λ :

θ
∗ = min

θ
{∑

si,ri

[ŷi − (
y

|si|+ |ri|
+α)]2 +λ‖θ‖2}

(3)
The |si|+ |ri| is a length normalization term for the
ith training instance, and α is a scaling constant for
adjusting to different scoring standards (e.g., 7-point
scale vs. 5-point scale), whose value is automatically
learned. At test time, y/(|s|+ |r|)+ α is computed
as the predicted score.

We replaced the standard substitution edit opera-
tion with three new operations: Sword for same word
substitution, Slemma for same lemma substitution, and
Spunc for same punctuation substitution. In other
words, all but the three matching-based substitutions
are disallowed. The start state can transition into any
of the edit states with a constant unit cost, and each
edit state can transition into any other edit state if
and only if the edit operation involved is valid at the
current edit position (e.g., the model cannot transi-
tion into Delete state if it is already at the end of ref ;
similarly it cannot transition into Slemma unless the
lemma of the two words under edit in sys and ref
match). When the end of both sentences are reached,
the model transitions into the stop state and ends the
edit sequence. The first row in Figure 1 starting with
pFSM shows a state transition sequence for an exam-
ple sys/ref translation pair. There exists a one-to-one
correspondence between substitution edits and word
alignments. Therefore this example state transition
sequence correctly generates an alignment for the
word 43 and people.

It is helpful to compare with the TER met-
ric (Snover et al., 2006), which is based on the idea
of word error rate measured in edit distance, to better
understand the intuition behind our model. There
are two major improvements in our model: 1) the
edit operations in our model are weighted, as defined
by the feature functions and weights; 2) the weights
are automatically learned, instead of being uniform
or manually set; and 3) we model state transitions,
which can be understood as a bigram extension of
the unigram edit distance model used in TER. For
example, if in our learned model the feature for two
consecutive Sword states has a positive weight, then
our model would favor consecutive same word sub-
stitutions, whereas in the TER model the order of
the substitution does not matter. The extended TER-
plus (Snover et al., 2009) metric addresses the first
problem but not the other two.

3.1 pPDA Extension
A shortcoming of edit distance models is that they
cannot handle long-distance word swapping — a
pervasive phenomenon found in most natural lan-
guages. 1 Edit operations in standard edit distance
models need to obey strict incremental order in their
edit position, in order to admit efficient dynamic pro-
gramming solutions. The same limitation is shared
by our pFSM model, where the Markov assumption
is made based on the incremental order of edit po-
sitions. Although there is no known solution to the
general problem of computing edit distance where
long-distance swapping is permitted (Dombb et al.,
2010), approximate algorithms do exist. We present
a simple but novel extension of the pFSM model
to a probabilistic pushdown automaton (pPDA), to
capture non-nested word swapping within limited
distance, which covers a majority of word swapping
in observed in real data (Wu, 2010).

A pPDA, in its simplest form, is a pFSM where
each control state is equipped with a stack (Esparza
and Kucera, 2005). The addition of stacks for each
transition state endows the machine with memory,
extending its expressiveness beyond that of context-
free formalisms. By construction, at any stage in a
normal edit sequence, the pPDA model can “jump”

1The edit distance algorithm described in Cormen et
al. (2001) can only handle adjacent word swapping (transpo-
sition), but not long-distance swapping.
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forward within a fixed distance (controlled by a max
distance parameter) to a new edit position on either
side of the sentence pair, and start a new edit subse-
quence from there. Assuming the jump was made on
the sys side, 2 the machine remembers its current edit
position in sys as Jstart , and the destination position
on sys after the jump as Jlanding.

We constrain our model so that the only edit op-
erations that are allowed immediately following a
“jump” are from the set of substitution operations
(e.g., Sword). And after at least one substitution
has been made, the device can now “jump” back
to Jstart , remembering the current edit position as
Jend . Another constraint here is that after the back-
ward “jump”, all edit operations are permitted except
for Delete, which cannot take place until at least one
substitution has been made. When the edit sequence
advances to position Jlanding, the only operation al-
lowed at that point is another “jump” forward opera-
tion to position Jend , at which point we also clear all
memory about jump positions and reset.

An intuitive explanation is that when pPDA makes
the first forward jump, a gap is left in sys that has
not been edited yet. It remembers where it left off,
and comes back to it after some substitutions have
been made to complete the edit sequence. The sec-
ond row in Figure 1 (starting with pPDA) illustrates
an edit sequence in a pPDA model that involves three
“jump” operations, which are annotated and indexed
by number 1-3 in the example. “Jump 1” creates an
un-edited gap between word 43 and western, after
two substitutions, the model makes “jump 2” to go
back and edit the gap. The only edit permitted imme-
diately after “jump 2” is deleting the comma in ref,
since inserting the word 43 in sys before any substi-
tution is disallowed. Once the gap is completed, the
model resumes at position Jend by making “jump 3”,
and completes the jump sequence.

The “jumps” allowed the model to align words
such as western India, in addition to the alignments
of 43 people found by the pFSM. In practice, we
found that our extension gives a big boost to model
performance (cf. Section 5.1), with only a modest
increase in computation time. 3

2Recall that we transform ref into sys, and thus on the sys
side, we can only insert but not delete. The argument applies
equally to the case where the jump was made on the other side.

3The length of the longest edit sequence with jumps only

3.2 Parameter Estimation
Since the least squares operator preserves convexity,
and the inner log-sum-exponential function is con-
vex, the resulting objective function is also convex.
For parameter learning, we used the limited memory
quasi-newton method (Liu and Nocedal, 1989) to find
the optimal feature weights and scaling constant for
the objective. We initialized θ =~0, α = 0, and λ = 5.
We also threw away features occurring fewer than
five times in training corpus. Gradient calculation
was similar to other pFSM models, such as HMMs,
we omitted the details here, for brevity.

4 Rich Linguistic Features

We add new substitution operations beyond those in-
troduced in Section 3, to capture synonyms and para-
phrase in the translations. Synonym relations are de-
fined according to WordNet (Miller et al., 1990), and
paraphrase matches are given by a lookup table used
in TERplus (Snover et al., 2009). To better take ad-
vantage of paraphrase information at the multi-word
phrase level, we extended our substitution operations
to match longer phrases by adding one-to-many and
many-to-many bigram block substitutions.

5 Experiments

The goal of our experiments is to test both the ac-
curacy and robustness of the proposed new models.
We then show that modeling word swapping and rich
linguistics features further improve our results.

To better situate our work among past research
and to draw meaningful comparison, we use exactly
the same standard evaluation data sets and metrics
as Pado et al. (2009), which is currently the state-
of-the-art result for regression-based MT evaluation.
We consider four widely used MT metrics (BLEU,
NIST, METEOR (Banerjee and Lavie, 2005) (v0.7),
and TER) as our baselines. Since our models are
trained to regress human evaluation scores, to make
a direct comparison in the same regression setting,
we also train a small linear regression model for each
baseline metric in the same way as descried in Pado
et al. (2009). These regression models are strictly
more powerful than the baseline metrics and show
higher robustness and better correlation with human

increased by 0.5 ∗max(|s|, |r|) in the worst case, and by and
large swapping is rare in comparison to basic edits.
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Data Set Our Metrics Baseline Metrics
train test pFSM pPDA pPDA+f BLEUR NISTR TERR METR MTR RTER MT+RTER
A+C U 54.6 55.3 57.2 49.9 49.5 50.1 49.1 50.1 54.5 55.6
A+U C 59.9 63.8 65.7 53.9 53.1 50.3 61.1 57.3 58.0 62.7
C+U A 61.2 60.4 59.8 52.5 50.4 54.5 60.1 55.2 59.9 61.1
MT08 MT06 65.2 63.4 64.5 57.6 55.1 63.8 62.1 62.6 62.2 65.2

Table 1: Overall results on OpenMT08 and OpenMT06 evaluation data sets. The R (as in BLEUR) refers to the
regression model trained for each baseline metric, same as Pado et al. (2009). The first three rows are round-robin
train/test results over three languages on OpenMT08 (A=Arabic, C=Chinese, U=Urdu). The last row are results trained
on entire OpenMT08 (A+C+U) and tested on OpenMT06. Numbers in this table are Spearman’s rank correlation ρ

between human assessment scores and model predictions. The pPDA column describes our pPDA model with jump
distance limit 5. METR is shorthand for METEORR. +f means the model includes synonyms and paraphrase features
(cf. Section 4). Best results and scores that are not statistically significantly worse are highlighted in bold in each row.

judgments. 4 We also compare our models with the
state-of-the-art linear regression models reported in
Pado et al. (2009) that combine features from mul-
tiple MT evaluation metrics (MT), as well as rich
linguistic features from a textual entailment system
(RTE).

In all of our experiments, each reference and sys-
tem translation sentence pair is tokenized using the
PTB (Marcus et al., 1993) tokenization script, and
lemmatized by the Porter Stemmer (Porter, 1980).
Statistical significance tests are performed using the
paired bootstrap resampling method (Koehn, 2004).

We divide our experiments into two sections, based
on two different prediction tasks — predicting abso-
lute scores and predicting pairwise preference.

5.1 Exp. 1: Predicting Absolute Scores

The first task is to evaluate a system translation
on a seven point Likert scale against a single ref-
erence. Higher scores indicate translations that are
closer to the meaning intended by the reference. Hu-
man ratings in the form of absolute scores are avail-
able for standard evaluation data sets such as NIST
OpenMT06,08.5 Since our model makes predictions
at the granularity of a whole sentence, we focus on
sentence-level evaluation. A metric’s goodness is
judged by how well it correlates with human judg-
ments, and Spearman’s rank correlation (ρ) is re-
ported for all experiments in this section.

We used the NIST OpenMT06 corpus for develop-
ment purposes, and reserved the NIST OpenMT08
corpus for post-development evaluation. The

4See Pado et al. (2009) for more discussion.
5Available from http://www.nist.gov.

OpenMT06 data set contains 1,992 English trans-
lations of Arabic newswire text from 8 MT systems.
For development, we used a 2-fold cross-validation
scheme with splits at the first 1,000 and last 992 sen-
tences. The OpenMT08 data set contains English
translations of newswire text from three languages
(Arabic has 2,769 pairs from 13 MT systems; Chi-
nese has 1,815 pairs from 15; and Urdu has 1,519
pairs, from 7). We followed the same experimental
setup as Pado et al. (2009), using a “round robin”
training/testing scheme, i.e., we train a model on data
from two languages, making predictions for the third.
We also show results of models trained on the entire
OpenMT08 data set and tested on OpenMT06.

Overall Comparison

Results of our proposed models compared against
the baseline models described in Pado et al. (2009)
are shown in Table 1. The pFSM and pPDA mod-
els do not use any additional information other than
words and lemmas, and thus make a fair comparison
with the baseline metrics. 6 We can see from the ta-
ble that pFSM significantly outperforms all baselines
on Urdu and Arabic, but trails behind METEORR
on Chinese by a small margin (1.2 point in Spear-
man’s ρ). On Chinese data set, the pPDA exten-
sion gives results significantly better than the best
baseline metrics for Chinese (2.7 better than METE-
ORR). It is also significantly better than pFSM (by

6METEORR actually has an unfair advantage in this compari-
son, since it uses synonym information from WordNet; TERR
on the other hand has a disadvantage because it does not use
lemmas. Lemma is added later in the TERplus extension (Snover
et al., 2009).
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3.9 points), suggesting that modeling word swapping
is particularly rewarding for Chinese language. On
the other hand, pPDA model does not perform bet-
ter than the pFSM model on Arabic in MT08 and
OpenMT06 (which is also Arabic-to-English). This
observation is consistent with findings in earlier work
that Chinese-English translations exhibit much more
medium and long distance reordering than languages
like Arabic (Birch et al., 2009).

Both the pFSM and pPDA models also signifi-
cantly outperform the MTR linear regression model
that combines the outputs of all four baselines, on all
three source languages. This demonstrates that our
regression model is more robust and accurate than a
state-of-the-art system combination linear-regression
model. The RTER and MT+RTER linear regression
models benefit from the rich linguistic features in the
textual entailment system’s output. It has access to
all the features in pPDA+f such as paraphrase and de-
pendency parse relations, and many more (e.g., Norm
Bank, part-of-speech, negation, antonyms). However,
our pPDA+f model rivals the performance of RTER
and MT+RTER on Arabic (with no statistically sig-
nificant difference from RTER), and greatly improve
over these two models on Urdu and Chinese. Most
noticeably, pPDA+f is 7.7 points better than RTER
on Chinese.

5.2 Exp. 2: Predicting Pairwise Preferences

To further test our model’s robustness, we evaluate
it on WMT data sets with a different prediction task
in which metrics make pairwise preference judg-
ments between translation systems. The WMT06-
08 data sets are much larger in comparison to the
OpenMT06 and 08 data. They contain MT outputs of
over 40 systems from five different source languages
(French, German, Spanish, Czech, and Hungarian).
The WMT06, 07 and 08 sets contains 10,159, 5,472
and 6,856 sentence pairs, respectively. We used por-
tions of WMT 06 and 07 data sets 7 that are annotated
with absolute scores on a five point scale for training,
and the WMT08 data set annotated with pairwise
preference for testing.

To generate pairwise preference predictions, we
first predict an absolute score for each system trans-
lation, then compare the scores between each system

7Available from http://www.statmt.org.

pair, and give preference to the higher score. We
adopt the sentence-level evaluation metric used in
Pado et al. (2009), which measures the consistency
(accuracy) of metric predictions with human prefer-
ences. The random baseline for this task on WMT08
data set is 39.8%.

Models WMT06 WMT07 WMT06+07
pPDA+f 51.6 52.4 52.0
BLEUR 49.7 49.5 49.6
METEORR 51.4 51.4 51.5
NISTR 50.0 50.3 50.2
TERR 50.9 51.0 51.2
MTR 50.8 51.5 51.5
RTER 51.8 50.7 51.9
MT+RTER 52.3 51.8 52.5

Table 2: Pairwise preference prediction results on WMT08
test set. Each column shows a different training data set.
Numbers in this table are model’s consistency with human
pairwise preference judgments. Best result on each test
set is highlighted in bold.

Results are shown in Table 2. Similar to the results
on OpenMT experiments, our model consistently out-
performed BLEUR, METEORR, NISTR and TERR.
Our model also gives better performance than the
MTR ensemble model on all three tests; and ties with
RTER in two out of the three tests but performs sig-
nificantly better on the other test. The MT+RTER
ensemble model is better on two tests, but worse
on the other. But overall the two systems are quite
comparable, with less than 0.6% accuracy difference.
The results also show that our method is stable across
different training sets, with test accuracy differences
less than 0.4%.

6 Conclusion

We described the SPEDE metric for sentence level
MT evaluation. It is based on probabilistic finite state
machines to compute weighted edit distance. Our
model admits a rich set of linguistic features, and
can be trained to learn feature weights automatically
by optimizing a regression objective. A novel push-
down automaton extension was also presented for
capturing long-distance word swapping. Our metrics
achieve state-of-the-art results on a wide range of
standard evaluations, and are much more lightweight
than previous regression models.
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