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Abstract 

A recent paper described a new machine 

translation evaluation metric, AMBER. This 

paper describes two changes to AMBER. The 

first one is incorporation of a new ordering 

penalty; the second one is the use of the 

downhill simplex algorithm to tune the 

weights for the components of AMBER. We 

tested the impact of the two changes, using 

data from the WMT metrics task. Each of the 

changes by itself improved the performance of 

AMBER, and the two together yielded even 

greater improvement, which in some cases 

was more than additive. The new version of 

AMBER clearly outperforms BLEU in terms 

of correlation with human judgment.  

1 Introduction 

AMBER is a machine translation evaluation metric 

first described in (Chen and Kuhn, 2011). It is de-

signed to have the advantages of BLEU (Papineni 

et al., 2002), such as nearly complete language 

independence and rapid computability, while at-

taining even higher correlation with human judg-

ment. According to the paper just cited: “It can be 

thought of as a weighted combination of dozens of 

computationally cheap features based on word sur-

face forms for evaluating MT quality”. Many re-

cently defined machine translation metrics seek to 

exploit deeper sources of knowledge than are 

available to BLEU, such as external lexical and 

syntactic resources. Unlike these and like BLEU, 

AMBER relies entirely on matching surface forms 

in tokens in the hypothesis and reference, thus sac-

rificing depth of knowledge for simplicity and 

speed.  

In this paper, we describe two improvements to 

AMBER. The first is a new ordering penalty called 

“v” developed in (Chen et al., 2012). The second 

remedies a weakness in the 2011 version of 

AMBER  by carrying out automatic, rather than 

manual, tuning of this metric’s free parameters; we 

now use the simplex algorithm to do the tuning. 

2 AMBER 

AMBER is the product of a score and a penalty, as 

in Equation (1); in this, it resembles BLEU. How-

ever, both the score part and the penalty part are 

more sophisticated than in BLEU. The score part 

(Equation 2) is enriched by incorporating the 

weighted average of n-gram precisions (AvgP), the 

F-measure derived from the arithmetic averages of 

precision and recall (Fmean), and the arithmetic 

average of F-measure of precision and recall for 

each n-gram (AvgF). The penalty part is a 

weighted product of several different penalties 

(Equation 3). Our original AMBER paper (Chen 

and Kuhn, 2011) describes the ten penalties used at 

that time; two of these penalties, the normalized 

Spearman’s correlation penalty and the normalized 

Kendall’s correlation penalty, model word reorder-

ing.  
 

penaltyscoreAMBER ×=                 (1)  

AvgF

FmeanAvgPscore

×−−+

×+×=

)1( 21

21

θθ

θθ

  
      (2) 

∏
=

=
P

i

w

i
ipenpenalty

1

                           (3) 

where 1θ  and 2θ  are weights of each score com-

ponent; wi is the weight of each penalty peni. 
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In addition to the more complex score and pen-

alty factors, AMBER differs from BLEU in two 

other ways: 

• Not only fixed n-grams, but three different 

kinds of flexible n-grams, are used in com-

puting scores and penalties.  

• The AMBER score can be computed with 

different types of text preprocessing, i.e. 

different combinations of several text pre-

processing techniques: lowercasing, to-

kenization, stemming, word splitting, etc. 8 

types were tried in (Chen and Kuhn, 2011). 

When using more than one type, the final 

score is computed as an average over runs, 

one run per type. In the experiments re-

ported below, we averaged over two types 

of preprocessing. 

3 Improvements to AMBER 

3.1   Ordering penalty v 

We use a simple matching algorithm (Isozaki et 

al., 2010) to do 1-1 word alignment between the 

hypothesis and the reference.  

After word alignment, represent the reference by 

a list of normalized positions of those of its words 

that were aligned with words in the hypothesis, and 

represent the hypothesis by a list of positions for 

the corresponding words in the reference. For both 

lists, unaligned words are ignored. E.g., let P1 = 

reference, P2 = hypothesis: 

P1: 
1

1p  
2

1p  
3

1p  
4

1p  … 
ip1  … 

np1  

 P2: 
1

2p  
2

2p  
3

2p  
4

2p  … 
ip2  … 

np2  
Suppose we have 

Ref: in the winter of 2010 , I visited Paris 

Hyp: I visited Paris in 2010 ’s winter 

Then we obtain 

P1: 1 2 3 4 5 6  (the 2
nd

 word “the”, 4
th
 

word “of” and 6
th
 word “,” in the reference 

are not aligned to any word in the 

hypothesis. Thus, their positions are not in 

P1, so the positions of the matching words 

“in winter 2010 I visited Paris” are nor-

malized to 1 2 3 4 5 6) 

P2: 4 5 6 1 3 2 (the word “’s” was 

unaligned).  

The ordering metric v is computed from two 

distance measures. The first is absolute 

permutation distance:
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v1 ranges from 0 to 1; a larger value means more 

similarity between the two permutations. This 

metric is similar to Spearman’s ρ (Spearman, 

1904). However, we have found that ρ punishes 

long-distance reordering too heavily. For instance, 
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is more tolerant than ρ of the movement of 

“recently” in this example:  

Ref: Recently , I visited Paris 

Hyp: I visited Paris recently  

P1: 1 2 3 4 

P2: 2 3 4 1 

Its 2.0-1
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Inspired by HMM word alignment (Vogel et al., 

1996), our second distance measure is based on 

jump width. This punishes only once a sequence of 

words that moves a long distance with the internal 

word order conserved, rather than on every word. 

In the following, only two groups of words have 

moved, so the jump width punishment is light: 

Ref: In the winter of 2010, I visited Paris 

Hyp: I visited Paris in the winter of 2010  

The second distance measure is 
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As with v1, v2 is also from 0 to 1, and larger values 

indicate more similar permutations. The ordering 

measure vs is the harmonic mean of v1 and v2 (Chen 

et al., 2012):  

)11(2 21 /v/v/vs +=

 

.                     (8) 

 In (Chen et al., 2012) we found this to be slightly 

more effective than the geometric mean. vs in (8) is 

computed at segment level. We compute document 

level ordering vD with a weighted arithmetic mean:  
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where l is the number of segments of the 

document, and len(R) is the length of the reference 

after text preprocessing. vs is the segment-level 

ordering penalty. 

Recall that the penalty part of AMBER is the 

weighted product of several component penalties. 

In the original version of AMBER, there were 10 

component penalties. In the new version, v is in-

corporated as an additional, 11th weighted penalty 

in (3). Thus, the new version of AMBER incorpo-

rates three reordering penalties: Spearman’s 

correlation, Kendall’s correlation, and v. Note that 

v is also incorporated in a tuning metric we recent-

ly devised (Chen et al., 2012).   

3.2   Automatic tuning 

In (Chen and Kuhn, 2011), we manually set the 17 

free parameters of AMBER (see section 3.2 of that 

paper). In the experiments reported below, we 

tuned the 18 free parameters – the original 17 plus 

the ordering metric v described in the previous sec-

tion - automatically, using the downhill simplex 

method of (Nelder and Mead, 1965) as described 

in (Press et al., 2002). This is a multidimensional 

optimization technique inspired by geometrical 

considerations that has shown good performance in 

a variety of applications.  

4 Experiments 

The experiments are carried out on WMT metric 

task data: specifically, the WMT 2008, WMT 

2009, WMT 2010, WMT 2011 all-to-English, and 

English-to-all submissions. The languages “all” 

(“xx” in Table 1) include French, Spanish, German 

and Czech. Table 1 summarizes the statistics for 

these data sets. 

 
Set Year Lang. #system #sent-pair 

Test1 2008 xx-En 43 7,804 

Test2 2009 xx-En 45 15,087 

Test3 2009 en-Ex 40 14,563 

Test4 2010 xx-En 53 15,964 

Test5 2010 en-xx 32 18,508 

Test6 2011 xx-En 78 16,120 

Test7 2011 en-xx 94 23,209 

 

Table 1: Statistics of the WMT dev and test sets. 

 

We used 2008 and 2011 data as dev sets, 2009 

and 2010 data as test sets. Spearman’s rank 

correlation coefficient ρ was employed to measure 

correlation of the metric with system-level human 

judgments of translation. The human judgment 

score was based on the “Rank” only, i.e., how 

often the translations of the system were rated as 

better than those from other systems (Callison-

Burch et al., 2008). Thus, BLEU and the new ver-

sion of AMBER were evaluated on how well their 

rankings correlated with the human ones. For the 

segment level, we followed (Callison-Burch et al., 

2010) in using Kendall’s rank correlation 

coefficient τ. 

In what follows, “AMBER1” will denote a vari-

ant of AMBER as described in (Chen and Kuhn, 

2011). Specifically, it is the variant AMBER(1,4) – 

that is, the variant in which results are averaged 

over two runs with the following preprocessing: 

1. A run with tokenization and lower-casing 

2. A run in which tokenization and lower-

casing are followed by the word splitting. 

Each word with more than 4 letters is seg-

mented into two sub-words, with one being 

the first 4 letters and the other the last 2 let-

ters. If the word has 5 letters, the 4
th
 letter 

appears twice: e.g., “gangs” becomes 

“gang” + “gs”. If the word has more than 6 

letters, the middle part is thrown away.  

The second run above requires some explana-

tion. Recall that in AMBER, we wish to avoid use 

of external resources such as stemmers and mor-

phological analyzers, and we aim at maximal lan-

guage independence. Here, we are doing a kind of 

“poor man’s morphological analysis”. The first 

four letters of a word are an approximation of its 

stem, and the last two letters typically carry at least 

some information about number, gender, case, etc. 

Some information is lost, but on the other hand, 

when we use the metric for a new language (or at 

least, a new Indo-European language) we know 

that it will extract at least some of the information 

hidden inside morphologically complex words. 

The results shown in Tables 2-4 compare the 

correlation of variants of AMBER with human 

judgment; Table 5 compares the best version of 

AMBER (AMBER2) with BLEU. For instance, to 

calculate segment-level correlations using 
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Kendall’s τ, we carried out 33,071 paired compari-

sons for out-of-English and 31,051 paired compar-

isons for into-English. The resulting τ was 

calculated per system, then averaged for each con-

dition (out-of-English and into-English) to obtain 

one out-of-English value and one into-English val-

ue. 

First, we compared the performance of 

AMBER1 with a version of AMBER1 that in-

cludes the new reordering penalty v, at the system 

and segment levels. The results are shown in Table 

2. The greatest impact of v is on “out of English” at 

the segment level, but none of the results are par-

ticularly impressive.  

 
 AMBER1 +v Change 

Into-En 

System 

0.860 0.862 0.002 

(+0.2%) 

Into-En 

Segment 

0.178 0.180 0.002 

 (+1.1%) 

Out-of-En 

System 

0.637 0.637 0 

 (0%) 

Out-of-En 

Segment 

0.167 0.170 0.003 

(+1.8%) 

 
Table 2: Correlation with human judgment for 

AMBER1 vs. (AMBER1 including v). 

 

Second, we compared the performance of manu-

ally tuned AMBER1 with AMBER1 whose param-

eters were tuned by the simplex method. The 

tuning was run four times on the dev set, once for 

each possible combination of into/out-of English 

and system/segment level. Table 3 shows the re-

sults on the test set. This change had a greater im-

pact, especially on the segment level. 

 
 AMBER1 +Simplex Change 

Into-En 

 System 

0.860 0.862 0.002 

(+0.2%) 

Into-En 

Segment 

0.178 0.184 0.006  

(+3.4%) 

Out-of-En 

 System 

0.637 0.637 0 

 (0%) 

Out-of-En  

Segment 

0.167 0.182 0.015 

(+9.0%) 

 

Table 3: Correlation with human judgment for 

AMBER1 vs. simplex-tuned AMBER1. 

 

Then, we compared the performance of 

AMBER1 with AMBER1 that contains v and that 

has been tuned by the simplex method. We will 

denote the new version of AMBER containing 

both changes “AMBER2”. It will be seen from 

Table 4 that AMBER2 is a major improvement 

over AMBER1 at the segment level. In the case of 

“into English” at the segment level, the impact of 

the two changes seems to have been synergistic: 

adding together the percentage improvements due 

to v and simplex from Tables 2 and 3, one would 

have expected an improvement of 4.5% for both 

changes together, but the actual improvement was 

6.2%. Furthermore, there was no improvement at 

the system level for “out of English” when either 

change was tried separately, but there was a small 

improvement when the two changes were com-

bined.  

 
 AMBER1 AMBER2 Change 

Into-En 

System 

0.860 0.870 0.010 

(+1.2%) 

Into-En 

Segment 

0.178 0.189 0.011 

(+6.2%) 

Out-of-En 

System 

0.637 0.642 0.005 

(+0.8%) 

Out-of-En 

Segment 

0.167 0.184 0.017 

(+10.2%) 

 

Table 4: Correlation with human judgment for 

AMBER1 vs. AMBER2. 

 

Of course, the most important question is: does 

the new version of AMBER (AMBER2) perform 

better than BLEU? Table 5 answers this question 

(the version of BLEU used here was smoothed 

BLEU (mteval-v13a)). There is a clear advantage 

for AMBER2 over BLEU at both the system and 

segment levels, for both “into English” and “out of 

English”.  

 
 BLEU AMBER2 Change 

Into-En 

System 

0.773 0.870 0.097 

(+12.5%) 

Into-En 

Segment 

0.154 0.189 0.035 

(+22.7%) 

Out-of-En 

System 

0.574 0.642 0.068 

(+11.8%) 

Out-of-En 

Segment 

0.149 0.184 0.035 

(+23.5%) 

 

Table 5: Correlation with human judgment for 

 BLEU vs. AMBER2. 
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5 Conclusion 

We have made two changes to AMBER, a metric 

described in (Chen and Kuhn, 2011). In our exper-

iments, the new version of AMBER was shown to 

be an improvement on the original version in terms 

of correlation with human judgment. Furthermore, 

it outperformed BLEU by about 12% at the system 

level and about 23% at the segment level.  

A good evaluation metric is not necessarily a 

good tuning metric, and vice versa. In parallel with 

our work on AMBER for evaluation, we have also 

been exploring a machine translation tuning metric 

called PORT (Chen et al., 2012). AMBER and 

PORT differ in many details, but they share the 

same underlying philosophy: to exploit surface 

similarities between hypothesis and references 

even more thoroughly than BLEU does, rather than 

to invoke external resources with richer linguistic 

knowledge. So far, the results for PORT have been 

just as encouraging as the ones for AMBER re-

ported here.  
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