
Proc. of the Joint Workshop on Automatic Knowledge Base Construction & Web-scale Knowledge Extraction (AKBC-WEKEX), pages 7–12,
NAACL-HLT, Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

Collectively Representing Semi-Structured Data from the Web

Bhavana Dalvi
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
bbd@cs.cmu.edu

William W. Cohen
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
wcohen@cs.cmu.edu

Jamie Callan
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
callan@cs.cmu.edu

Abstract

In this paper, we propose a single low-
dimensional representation of a large collec-
tion of table and hyponym data, and show
that with a small number of primitive oper-
ations, this representation can be used effec-
tively for many purposes. Specifically we con-
sider queries like set expansion, class predic-
tion etc. We evaluate our methods on pub-
licly available semi-structured datasets from
the Web.

1 Introduction

Semi-structured data extracted from the web (in
some cases extended with hyponym data derived
from Hearst patterns like “X such as Y”) have been
used in several tasks, including set expansion (Wang
and Cohen, 2009b; Dalvi et al., 2010) automatic set-
instance acquisition (Wang and Cohen, 2009a), fact
extraction (Dalvi et al., 2012; Talukdar et al., 2008)),
and semi-supervised learning of concepts (Carlson
et al., 2010). In past work, these tasks have been ad-
dressed using different methods and data structures.
In this paper, we propose a single low-dimensional
representation of a large collection of table and hy-
ponym data, and show that with a small number of
primitive operations, this representation can be used
effectively for many purposes.

In particular, we propose a low-dimensional rep-
resentation for entities based on the embedding used
by the PIC algorithm (Lin and Cohen, 2010a). PIC
assigns each node in a graph an initial random value,
and then performs an iterative update which brings
together the values assigned to near-by nodes, thus
producing a one-dimensional embedding of a graph.
In past work, PIC has been used for unsupervised
clustering of graphs (Lin and Cohen, 2010a); it has

also been extended to bipartite graphs (Lin and Co-
hen, 2010b), and it has been shown that performance
can be improved by using multiple random starting
points, thus producing a low-dimensional (but not
one-dimensional) embedding of a graph (Balasubra-
manyan et al., 2010).

2 The PIC3 Representation

suchas entity table-column

Entity-column

bipartite graph

Entity-suchas

bipartite graph

Figure 1: Entities on the Web

We use PIC to produce an embedding of a tripar-
tite graph, in particular the data graph of Figure 1.
We use the publicly available (Dalvi et al., 2012)
entity-tableColumn co-occurrence dataset and Hy-
ponym Concept dataset. Each edge derived from
the entity-tableColumn dataset links an entity name
with an identifier for a table column in which the
entity name appeared. Each edge derived from the
Hyponym Concept Dataset links an entity X and a
concept Y with which it appeared in the context of

7

a Hearst pattern (weighted by frequency in a large
web corpus). We combine these edges to form a tri-
partite graph, as shown in Figure 1. Occurrences
of entities with hyponym (or “such as”) concepts
form a bipartite graph on the left, and occurrences
of entities in various table-columns form the bipar-
tite graph on the right. Our hypothesis is that enti-
ties co-occurring in multiple table columns or with
similar suchas concepts probably belong to the same
class label.

Since we have two bipartite graphs, entity-
tableColumn and entity-suchasConcept, we create
bipartite PIC embeddings for each of these in turn
(retaining only the part of the embedding relevant
to the entities). Specifically, we start with m ran-
dom vectors to generatem-dimensional PIC embed-
ding. Since we have two bipartite graphs, entity-
tableColumn and entity-suchasConcept, we create
PIC embeddings for each of them separately. The
embedding for entities is then the concatenation of
these separate embeddings (refer to Algorithm 1).
Below we will call this the PIC3 embedding.

Figure 2 shows the schematic diagrams for final
and intermediate matrices while creating the PIC3
embedding. We have experimented with a version
of this algorithm in which we create PIC embed-
dings of the data by concatenating the dimensions
first instead of computing separate embeddings and
later concatenating them. We observed that the ver-
sion showed in Algorithm 1 performs as good as or
better than its variant.

n * t

entity-tableColumn

Bipartite graph

n * s entity-suchas

Bipartite graph

PIC

PIC

n * m PIC embedding

m << t

n * m PIC embedding

m << s

Concatenate

n * 2m PIC3 embedding

Figure 2: Schematic diagram of matrices in the process
of creating PIC3 representation (n : number of entities, t :
number of table-columns, s : number of suchas concepts
and m : number of PIC dimensions per bipartite graph).

Algorithm 1 Create PIC3 embedding
1: function Create PIC3 Embedding(E, XT , XS , m):
XPIC3

2: Input: E: Set of all entities,
XT : Co-occurrence of E in table-columns,
XS : Co-occurrence of E with suchasConcepts,
m: Number of PIC dimensions per bipartite graph

3: Output: XPIC3: 2*m dim. PIC3 embedding of E.
4: XPIC3 = φ
5: t = a small positive integer
6: for d = 1 : m do
7: V0 = randomly initialized vector of size |E| ∗ 1
8: Vt = PIC Embedding(XT , V0, t)
9: Add Vt as dth column in XPIC3

10: end for
11: for d = 1 : m do
12: V0 = randomly initialized vector of size |E| ∗ 1
13: Vt = PIC Embedding(XS , V0, t)
14: Add Vt as dth column in XPIC3

15: end for
16: end function

Our hypothesis is that these embeddings will clus-
ter similar entities together. E.g. Figure 3 shows
a one dimensional PIC embedding of entities be-
longing to the two classes “city” and “celebrity”.
The value of embedding is plotted against its entity-
index, and color indicates the class of an entity. We
can clearly see that most entities belonging to the
same class are clustered together. In the next sec-
tion, we will discuss how the PIC3 embedding can
be used for various semi-supervised and unsuper-
vised tasks.

50 100 150 200 250

0

10

20

30

40

50

60

70

80

90

100

Data points

P
IC

 e
m

b
e
d
d
in

g

City
Celebrity

Figure 3: One dimensional PIC embedding for ‘City’ and
‘Celebrity’ classes

8

3 Using the PIC3 Representation

In this section we will see how this PIC3 representa-
tion for entities can be used for three different tasks.

3.1 Semi-supervised Learning

In semi-supervised transductive learning, a few en-
tities of each class are labeled, and learning method
extrapolates these labels to a larger number of un-
labeled data points. To use the PIC3 representa-
tion for this task, we simply learn a linear classifier
in the embedded space. In the experiments below,
we experiment with using labeled entities Yn from
the NELL Knowledge Base (Carlson et al., 2010).
We note that once the PIC3 representation has been
built, this approach is much more efficient than ap-
plying graph-based iterative semi-supervised learn-
ing methods (Talukdar and Crammer, 2009; Carlson
et al., 2010).

3.2 Set Expansion

Set expansion refers to the problem of expanding a
set of seed entities into a larger set of entities of the
same type. To perform set expansion with PIC3 rep-
resentation, we find the K nearest neighbors of the
centroid of the set of seed entities using a KD-tree
(refer to Algorithm 2). Again, this approach is more
efficient at query time than prior approaches such
as SEAL (Wang and Cohen, 2009b), which ranks
nodes within a graph it builds on-the-fly at set ex-
pansion time using queries to the web.

Algorithm 2 Set Expansion with K-NN on PIC3
1: Input: Q: seed entities for set expansion ,
XPIC : low dimensional PIC3 embedding of E

2: Output: Q′ : Expanded entity set
3: k = a large positive number
4: Qc = centroid of entities in Q
5: Q′ = Find-K-NearestNbr(Qc, XPIC , k)

3.3 Automatic Set Instance Acquisition (ASIA)

This task takes as input the name of a semantic class
(e.g.,“countries”) and automatically outputs its in-
stances (e.g., “USA” , “India” , “China” etc.). To
perform this task, we look up instances of the given
class in the hyponym dataset, and then perform set
expansion on these - a process analogous to that used

Dataset Toy Apple Delicious
Sports

|X| : # entities 14,996 438
|C| : # table-columns 156 925
|(x, c)| : # (x, c) edges 176,598 9192
|Ys|: # suchasConcepts 2348 1649
|(x, Ys)|: # (x, Ys) edges 7683 4799
|Yn|: # NELL Classes 11 3
|(x, Yn)|: # (x, Yn) pairs 419 39
|Yc|: # manual column labels 31 30
(c, Yc): # (c, Yc) pairs 156 925

Table 1: Table datasets Statistics

in prior work (Wang and Cohen, 2009a). Here, how-
ever, we again use Algorithm 2 for set expansion, so
the entity-suchasConcept data are used only to find
seeds for a particular class Y . Again this method
requires minimal resources at query time.

4 Experiments

Although PIC algorithm is very scalable, in this pa-
per we evaluate performance using smaller datasets
which are extensively labeled. In particular, we
use the Delicious Sports, Toy Apple and Hyponym
Concept datasets made publicly available by (Dalvi
et al., 2012) to evaluate our techniques. Table 1
shows some statistics about these datasets. Numbers
for |Ys| and |(x, Ys)| are derived using the Hyponym
Concept Dataset.

4.1 Semi-supervised Learning (SSL)
To evaluate the PIC embeddings in terms of pre-
dicting NELL concept-names, we compare the per-
formance of an SVM classifier on PIC embed-
dings (named SVM+PIC3) vs. the original high-
dimensional dataset (named SVM-baseline). In
SVM-baseline method the hyponyms and table-
columns associated with an entity are simply used
as features. The number of iterations t for PIC
and number of dimensions per view m were set to
t = m = 5 in these experiments. (Experiments with
m > 5 showed no significant improvements in ac-
curacy on Toy Apple dataset.)

Figure 4 shows the plot of accuracy vs. training
size for both datasets. We can see that SVM+PIC3
method is better than SVM-Baseline with less train-
ing data, hence is better in SSL scenarios. Also
note that PIC3 embedding reduces the number of
dimensions from 2574 (Delicious Sports) and 2504

9

(Toy Apple) to merely 10 dimensions. We checked
the rank of the matrix which we use as PIC3 repre-
sentation to make sure that all the PIC embeddings
are distinct. In our experiments we found that an
m dimensional embedding always has rank = m.
This is achieved by generating a new random vector
V0 using distinct randomization seeds each time we
call the PIC embedding procedure (see Line 7 and
12 in Algorithm 1).

0 20 40 60 80 100
70

75

80

85

90

95

100

% Train (% Test = 100 − % Train)

1
0

−
fo

ld
 C

V
 a

c
c

u
ra

c
y

 o
n

 T
e

s
t

Delicious Sports (entity−col−suchas) dataset

SVM−Baseline (2574)

SVM+PIC3 (10)

(a) Delicious Sports dataset

0 20 40 60 80 100
65

70

75

80

85

90

% Train (% Test = 100 − % Train)

1
0

−
fo

ld
 C

V
 a

c
c

u
ra

c
y

 o
n

 T
e

s
t

Toy_Apple (entity−col−suchas) dataset

SVM−Baseline (2504)

SVM+PIC3 (10)

(b) Toy Apple dataset

Figure 4: SSL Task : Comparison of SVM+PIC3 vs.
SVM-Baseline

4.2 Set Expansion

We manually labeled every table column from De-
licious Sports and Toy Apple datasets. These la-
bels are referred to as Yc in Table 1. This also
gives us labels for the entities residing in these table-
columns. We use the set of entities in each of these
table columns as “a set expansion query” and eval-
uate “the expanded set of entities” based on manual
labels. The baseline runs K-Nearest Neighbor on the
original high-dimensional dataset (referred to as K-
NN-Baseline).

As another baseline, we adapt the MAD algo-
rithm (Talukdar and Crammer, 2009), a state-of-the
art semi-supervised learning method. Similar to a
prior work by (Talukdar et al., 2010), we adapt MAD
for unsupervised learning by associating each table-
column node with its own id as a label, and prop-
agating these labels to other table-columns. MAD
also includes a “dummy label”, so after propaga-
tion every table-column Tq will be labeled with a
weighted set of table-column ids Ts1 , ...Tsn (includ-
ing its own id), and also have a weight for the
“dummy label”. We denote MAD’s weight for as-
sociating table-column id Ts with table column Tq

as P (Ts|Tq), and consider the ids Ts1 , ...Tsk
with

a weight higher than the dummy label’s weight.
We consider e1, e2, ... en, the union of enti-
ties present in columns Ts1 ...Tsk

, and rank them
in descending order score, where score(ei, Tq) =∑

j:ei∈Tsj
P (Tsj |Tq). Figure 5 shows Precision-

0 0.5 1
0

0.5

1

Recall

P
re
c
is
io
n

Football−Team−Abbr

0 0.5 1
0

0.5

1

Recall

P
re
c
is
io
n

NBL−Team−Location

0 0.5 1
0

0.5

1

Recall

P
re
c
is
io
n

NFL−Team−Abbr

0 0.5 1
0

0.5

1

Recall

P
re
c
is
io
n

Sports

0 0.5 1
0

0.5

1

Recall

P
re
c
is
io
n

States

K−NN+PIC3

K−NN−Baseline

MAD

Figure 5: Set Expansion Task : Precision recall curves

Recall curves for all 3 methods, on sample set ex-
pansion queries. These plots are annotated with
manual column-labels (Yc). For most of the queries,
K-NN+PIC3 performs as well as K-NN-Baseline
and is comparable to MAD algorithm. Table 2
shows the running time for all three methods. K-
NN+PIC3 method incurs a small amount of pre-
processing time (0.02 seconds) to create embeddings
and compared to other two methods it is very fast at
the query time. The numbers show total query time
for 881 Set Expansion queries and 25 ASIA queries
(described below).

10

Method Total Query Time (s)
Set Expansion ASIA

K-NN+PIC3 12.7 0.5
K-NN-Baseline 80.1 1.4
MAD 38.2 150.0

Table 2: Comparison of Run Time on Delicious Sports

4.3 Automatic Set Instance Acquisition

For the automatic set instance acquisition (ASIA)
task, we use concept-names from Hyponym Concept
Dataset (Ys) as queries. Similar to the Set Expan-
sion task, we compare K-NN+PIC3 to the K-NN-
Baseline and MAD methods.

To use MAD for this task, the concept name Ys

is injected as label for the ten entities that co-occur
most with Ys, and the label propagation algorithm
is run. Each entity ei that scores higher than the
dummy label is then ranked based on the probability
of the label Ys for that entity.

Figure 6 shows the comparison of all three meth-
ods. K-NN+PIC3 generally outperforms K-NN-
Baseline, and outperforms MAD on two of the four
queries. MAD’s improvements over K-NN+PIC3
for the two queries comes at the expense of longer
query times (refer to Table 2).

0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

Recall

P
re
c
is
io
n

Cities

0 0.2 0.4 0.6 0.8
0

0.5

1

Recall

P
re
c
is
io
n

Countries

0.2 0.4 0.6 0.8 1
0

0.5

1

Recall

P
re
c
is
io
n

Sports

0.2 0.4 0.6 0.8 1
0

0.5

1

Recall

P
re
c
is
io
n

States

K−NN+PIC3

K−NN−Baseline

MAD

Figure 6: ASIA task : Precision recall curves

5 Conclusion

We presented a novel low-dimensional representa-
tion for entities on the Web using Power Iteration
Clustering. Our experiments show encouraging re-
sults on using this representation for three different
tasks : (a) Semi-Supervised Learning, (b) Set Ex-
pansion and (c) Automatic Set Instance Acquisition.
The experiments show that “this simple representa-
tion (PIC3) can go a long way, and can solve dif-
ferent problems in a simpler and faster, if not better
way”. In future, we would like to use this represen-
tation for named-entity disambiguation and unsuper-
vised class-instance pair acquisition, and to explore
performance on larger datasets.

Acknowledgments
This work is supported in part by the Intelligence
Advanced Research Projects Activity (IARPA) via
Air Force Research Laboratory (AFRL) contract
number FA8650-10-C-7058. The U.S. Government
is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copy-
right annotation thereon. This work is also partially
supported by the Google Research Grant.

The views and conclusions contained herein are
those of the authors and should not be interpreted as
necessarily representing the official policies or en-
dorsements, either expressed or implied, of Google,
IARPA, AFRL, or the U.S. Government.

11

References
Balasubramanyan, R., Lin, F., and Cohen, W. W. (2010).

Node clustering in graphs: An empirical study. Work-
shop on Networks Across Disciplines in Theory and
Applications, NIPS.

Carlson, A., Betteridge, J., Wang, R. C., Hruschka, Jr.,
E. R., and Mitchell, T. M. (2010). Coupled semi-
supervised learning for information extraction. In
WSDM. http://rtw.ml.cmu.edu/rtw/.

Dalvi, B., Callan, J., and Cohen, W. (2010). Entity list
completion using set expansion techniques. In Pro-
ceedings of the Nineteenth Text REtrieval Conference.

Dalvi, B., Cohen, W., and Callan, J. (2012). Websets:
Extracting sets of entities from the web using unsu-
pervised information extraction. In WSDM. datasets
: http://rtw.ml.cmu.edu/wk/WebSets/
wsdm_2012_online/index.html.

Lin, F. and Cohen, W. W. (2010a). Power iteration clus-
tering. In Proceedings of International Conference on
Machine Learning, ICML’10.

Lin, F. and Cohen, W. W. (2010b). A very fast method
for clustering big text datasets. ECAI.

Talukdar, P. and Crammer, K. (2009). New regular-
ized algorithms for transductive learning. In European
Conference on Machine Learning (ECML-PKDD).

Talukdar, P. P., Ives, Z. G., and Pereira, F. (2010).
Automatically incorporating new sources in keyword
search-based data integration. In Proceedings of
the 2010 international conference on Management of
data, SIGMOD ’10.

Talukdar, P. P., Reisinger, J., Paşca, M., Ravichandran,
D., Bhagat, R., and Pereira, F. (2008). Weakly-
supervised acquisition of labeled class instances using
graph random walks. In EMNLP.

Wang, R. C. and Cohen, W. W. (2009a). Automatic set
instance extraction using the web. In ACL.

Wang, R. C. and Cohen, W. W. (2009b). Character-level
analysis of semi-structured documents for set expan-
sion. In EMNLP.

12

