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Introduction

We are pleased to bring you the Proceedings of the Third Workshop on Speech and Language Processing
for Assistive Technologies (SLPAT), held in Montreal, Canada on the 7th and 8th of June, 2012.
We received 13 paper submissions, of which 8 were chosen for oral presentation and another 2 for
demonstration presentation — all 10 papers are included in this volume.

This workshop was intended to bring researchers from all areas of speech and language technology with
a common interest in making everyday life more accessible for people with physical, cognitive, sensory,
emotional or developmental disabilities. This workshop builds on two previous such workshops (co-
located with NAACL HLT 2010 & EMNLP in 2011); it provides an opportunity for individuals from
research communities, and the individuals with whom they are working, to share research findings, and
to discuss present and future challenges and the potential for collaboration and progress.

While Augmentative and Alternative Communication (AAC) is a particularly apt application area for
speech and Natural Language Processing (NLP) technologies, we purposefully made the scope of the
workshop broad enough to include assistive technologies (AT) as a whole, even those falling outside
of AAC. While we encouraged work that validates methods with human experimental trials, we also
accepted work on basic-level innovations and philosophy, inspired by AT/AAC related problems. Thus
we have aimed at broad inclusivity, which is also manifest in the diversity of our Program Committee.

We would also like to thank the members of the Program Committee for completing their reviews
promptly, and for providing useful feedback for deciding on the program and preparing the final
versions of the papers. Thanks also to the NACL organizers for guidance and support. Finally, thanks
to the authors of the papers, for submitting such interesting and diverse work, and to the presenters of
demos and commercial exhibitions.

Jan Alexandersson, Peter Ljunglöf, Kathy McCoy, Brian Roark and Annalu Waller

Co-organizers of the workshop
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Torbjørn Nordgård, Lingit A/S, Norway
Rupal Patel, Northeastern University
Ehud Reiter, University of Aberdeen

v



Frank Rudzicz, University of Toronto
Bitte Rydeman, Lund University
Horacio Saggion, Universitat Pompeu Fabra
Howard Shane, Children’s Hospital Boston
Fraser Shein, Quillsoft Ltd., Toronto
Kumiko Tanaka-Ishii, University of Tokyo
Nava Tintarev, University of Aberdeen
Keith Vertanen, Montana Tech of The University of Montana
Tonio Wandmacher, SYSTRAN, Paris, France
Jan-Oliver Wülfing, Fraunhofer Centre Birlinghoven, Germany
David Wilkins, Language and Linguistics Consulting, Australia

vi



Table of Contents

A free and open-source tool that reads movie subtitles aloud
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Abstract

We present a simple tool that enables the com-
puter to read subtitles of movies and TV shows
aloud. The tool extracts information from sub-
title files, which can be freely downloaded
from the Internet, and reads the text aloud
through a speech synthesizer. There are three
versions of the tool, one for Windows and
Linux, another for Mac OS X, and the third is
a browser-based HTML5 prototype. The tools
are freely available and open-source.

The target audience is people who have trou-
ble reading subtitles while watching a movie,
including elderly, people with visual impair-
ments, people with reading difficulties and
people who wants to learn a second language.
The application is currently being evaluated
together with user from these groups.

1 Background

1.1 Why read subtitles aloud?

Spoken subtitles could be a solution if, due to sight
disorder or poor reading skills, a person is unable to
read subtitles and the language spoken in the movie
is unknown, or not known well enough.

Swedish Association of the Visually Impaired1

has around 12,000 members but there are most likely
many more people with poor eyesight. The num-
ber of people with reading disabilities is unknown,
but according to the Swedish dyslexia association
“Dyslexiföreningen”2 between 5 and 8 percent of
the population have significant difficulties to read
and write. A survey by OECD (Organisation for

1Synskadades riksförbund, http://www.srfriks.org/
2Dyslexiföreningen, http://dyslexiforeningen.se/

Economic Co-operation and Development) in 1996
showed that “8 per cent of the adult population [in
Sweden] encounters a severe literacy deficit in ev-
eryday life and at work” (OECD, 2000, p. xiii). For
other countries, the problems were even bigger: “In
14 out of 20 countries, at least 15 per cent of all
adults have literacy skills at only the most rudimen-
tary level” (OECD, 2000, p. xiii).

To hear the subtitles along with the original au-
dio track of the movie may not suit everyone, but
making these movies and TV shows accessible could
bring a huge value for people who would use it.

1.2 Related work

The idea of automatic reading of movie and TV sub-
titles is not new. It is implemented in regular pub-
lic service TV broadcasts in at least Sweden and
the Netherlands, and probably also in more coun-
tries. In 2002, the Dutch national broadcasting com-
pany NOS started regular broadcasts of automatic
subtitles reading (Verboom et al., 2002), and Swe-
den’s public service TV company SVT followed in
2005 (A-focus, 2010, p. 20). In both these cases,
the speech signal is transmitted through a second
channel, which means that the user needs two digi-
tal boxes. Naturally, this solution only works for the
programs that the company itself is broadcasting.

Other projects have been trying to use OCR (op-
tical character recognition) to interpret the subtitles
on the TV or computer screen. In 2002, a project
by the Swedish Association of the Visually Impaired
developed a prototype that used OCR to Interpret
subtitles, which then were spoken aloud using TTS
(Eliasson, 2005, pp. 63–64). The project estimated
that a mass-produced product would cost around
2500C, which they concluded would be too much

1



for ordinary users. In 2007, a similar Danish project
described a tool that reads the composite video sig-
nal, performs OCR on the subtitles and then speaks
them using TTS (Nielson and Bothe, 2007). They
also developed a specialised OCR algorithm for sub-
title detection (Jønsson and Bothe, 2007). However,
both systems have remained prototypes and have not
been released as publicly available tools.

A similar Czech project has investigated how to
minimise speech overlap and how to get better syn-
chronisation by using techniques such as time com-
pression and text simplification (Hanzlíček et al.,
2008; Matoušek et al., 2010). Their evaluation is
purely technical, where they count the number of
overlapped subtitles and the number of subtitles that
require different compression factors, but they have
not evaluated their prototype system on actual users.

Finally, there is an ongoing Swedish project by
the Swedish dyslexia association “Dyslexiförbundet
FMLS” where they aim to make cinemas more ac-
cessible by transmitting spoken subtitles via Wi-Fi
which the users can listen to via their own mobile
phone.

1.3 Issues with existing solutions
Currently there are two kinds of spoken subtitles
systems, and both of them have different problems:

• TV broadcasting systems that transmit the spo-
ken subtitles in a separate audio stream. It is
an important addition to the TV infrastructure,
but it is by nature closed to one media channel
and cannot be used for users who want to watch
movies or TV shows on their computer or from
the Internet.

• Systems that use OCR to interpret movie subti-
tles have a great potential, but they are currently
no publicly available systems. There are still
some technological problems left to be solved
until OCR based systems can be released to the
public.

None of the existing systems are freely available, let
alone open-source products. Furthermore, we have
not found any studies that evaluate these systems on
real users, to find out how useful they are in practice.

The systems we describe in this paper are all
freely available and open-source. They are focused

on personal computer use, not TV or cinemas, and
are meant to be usable and easily installable to those
with basic computer skills.

2 Implementation

The idea behind all our implementations is very sim-
ple. The program reads the subtitles into an internal
database. When the movie starts playing, the pro-
gram communicates with the movie to get the cur-
rent time position, and calls a speech synthesiser
when it is time to show the next subtitle. The pro-
gram does not include a speech synthesiser, but as-
sumes that it is already installed on the computer.
Alternatively, the program can call an online web
service-based TTS.

We have developed three systems which work
in different ways and on different operating sys-
tems. Some of them are still in prototype/demo state,
whereas others are almost finished products. All
systems are free and open-source and can be down-
loaded from the project website:

http://code.google.com/p/subtts

2.1 Windows/Linux media player
The Windows/Linux client has been developed by
the company STTS.3 It is implemented in Python
and the wxWidgets GUI toolkit.4 The video play-
back interface uses a Python backend that comes
with the VLC Media Player.5 This means that the
client can play all media formats that the VLC player
can handle, including DVD movies.

2.2 Mac OS X menulet
The Mac OS X client uses the AppleScript Event
model to communicate with the active media player.
The program is developed in Objective-C and re-
sides in the menu bar as a global “menulet”6.

When the user starts watching a movie, the
menulet repeatedly queries the media player for
the current time, and calls the speech synthesiser
whenever a new subtitle is about to be shown.
The menulet currently supports the following me-
dia players: VLC, QuickTime Player (versions 7 and
X), and Apple DVD Player.

3Södermalms Talteknologiservice, http://stts.se/
4wxWidgets, http://wxwidgets.org/
5VLC, http://videolan.org/
6http://en.wikipedia.org/wiki/Menulet
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2.3 Browser-based HTML5 media player
We have also developed a prototype browser-based
media player written in Javascript, that uses HTML5
video and audio elements to support spoken subti-
tles. This has the potential to be very useful, but is
currently limited since current browsers do not sup-
port HTML5 video and audio in full.

We estimate that, in a few years time, the main
browsers will support all HTML5 features,as well as
offline TTS. Then this kind of HTML5 media player
could have a big impact on movie and TV accessi-
bility.

2.4 Subtitle files
The system does not extract the subtitles from the
movie file or the DVD. Instead the user has to pro-
vide it with a text file with the movie subtitles. Sub-
titles are available from several sites on the Internet,7

both in the original language and in translations into
different other languages.

The subtitle format that we support is SRT, which
is the de-facto standard for movie subtitiles and a
very simple text format. Each subtitle is in a separate
paragraph on the following form:

26
00:03:05,083 --> 00:03:09,417
You, I mean we,
we could easily die out here.

The above example means that the 26th subtitle con-
sists of two lines of text, and should be displayed
3 minutes 5.083 seconds into the movie and disap-
pear 4.334 seconds later.

Both the Windows and the Mac OS X clients can
show DVD movies, but they cannot use the subtitles
that are provided with the movie. DVD subtitles are
pre-rendered into separate video tracks. To access
them we would have to use OCR which was not in
the scope of this project.

One serious drawback with existing subtitles is
that they do not store meta-information about the
speaker. Useful meta-information would be gender,
age and dialect of the speaker, or even a unique iden-
tifier for each person in the movie. With this infor-
mation the system could use different TTS voices for
different characters.

7E.g., http://opensubtitles.org/ and http://undertexter.se/.

2.5 Speech synthesis
We are only using existing speech synthesisers,
which means that the user either has to have a TTS
voice installed on his/her computer, or constant ac-
cess to the Internet since the system can call exist-
ing online TTS engines. The only problem with on-
line TTS systems is that almost all of them are for
demonstration purposes only and therefore cannot
be used in day-to-day work. We have been using
an online Swedish open-source voice being devel-
oped by the company STTS8 using the OpenMary
TTS platform (Schröder and Trouvain, 2003).

Here is the current status of speech synthesis for
our different systems:

• The Windows client can use any SAPI voice in-
stalled on the system. It can also use an online
voice, as an alternative.

• The Mac OS X client can use any voice in-
stalled on the system. The latest version of
OS X (10.7) includes high-quality voices for 22
different languages, so there is no need for on-
line voices on this platform.

• The HTML5 browser client cannot use system-
installed voices, since that functionality is not
included in HTML5. There is a current W3C
draft proposal for how to use TTS from within
HTML (Bringert, 2010), but it is not decided
upon and no browsers support this yet. Un-
til TTS becomes a HTML standard we have to
rely on online voices, which unfortunately is a
scarce resource.

3 Discussion

3.1 Social and pedagogical advantages
People with visually impairments and/or reading
difficulties often use text-to-speech to cope with
school work, and to keep up with society. Spoken
subtitles further increase the accessibility of foreign
movies and TV shows for these people.

Hopefully, spoken subtitles can help improve the
reading skills for people with reading difficulties.
The theory is that listening to the spoken subtitles
at the same time as reading the text may benefit the
reading process, but this has yet to be tested.

8Södermalms Talteknologiservice, http://stts.se/
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3.2 Evaluation

We are currently, during spring 2012, evaluating the
applications together with different users in the tar-
get groups. Initially we will only be evaluating user
satisfaction and whether this approach could be an
accepted solution to the need of text interpretation
during movie playback.

If this initial evaluation is positive, we are very
interested in continuing by evaluating specific fac-
tors that might or might not improve user satisfac-
tion. Such factors could be: using different TTS
voices, using different speech rates, reducing speech
overlap, having the speech coming from another di-
rection, lowering the movie volume while speaking,
using advanced audio techniques for filtering away
movie speech, etc.

Another interesting evaluation would be to en-
code speaker meta-information into movie subtitles,
and test how different TTS voices for different char-
acters can improve the user’s satisfaction and com-
prehension.

3.3 Future work

To further ease the user friendliness and the avail-
ability, it would be desirable to have the func-
tionality built into an existing media player, such
as the open-source and cross-platform VLC Media
Player.9 If more users request this functionality, the
developers will have to catch on and include it into
new releases.

According to (Hanzlíček et al., 2008), 44 per-
cent of the Czech subtitles had overlaps when spo-
ken with TTS. Even though we have no figures for
Swedish, some overlap is to be expected also here,
which is an issue that should be addressed. One pos-
sible simple solution is to modify the speech rate.

An important factor for the experience of the
speech synthesizer together with a video playback
would be the settings of the audio channels. Hy-
pothetically, a listener would want to keep both the
original background cues, like music, and the orig-
inal voices. However, these sounds must not inter-
fere with the speech synthesizer that is the source
of information for the listener. Balancing these two
criteria to get the optimized result is of great interest.

9VLC Media Player, http://www.videolan.org/vlc/

If the program would be used for language learn-
ing, or to help slow readers to comprehend, the fea-
ture of highlighting the word that is spoken could be
a very useful additional feature.
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Abstract

This paper describes a demonstration of the
WinkTalk system, which is a speech synthe-
sis platform using expressive synthetic voices.
With the help of a webcamera and facial ex-
pression analysis, the system allows the user
to control the expressive features of the syn-
thetic speech for a particular utterance with
their facial expressions. Based on a person-
alised mapping between three expressive syn-
thetic voices and the users facial expressions,
the system selects a voice that matches their
face at the moment of sending a message.
The WinkTalk system is an early research pro-
totype that aims to demonstrate that facial
expressions can be used as a more intuitive
control over expressive speech synthesis than
manual selection of voice types, thereby con-
tributing to an improved communication expe-
rience for users of speech generating devices.

1 Introduction

During a human verbal communication process, ex-
pressive features of face and speech are congru-
ent, operating in a synchronised manner (Campbell,
2008), (Graf et al., 2002). Facial expressions and
expressive speech styles often help to convey the
emotional intent of the speaker that is only partially
contained in the words. The application described
in this paper aims to make use of this synchrony
and applies facial expressions as a real time voli-
tional control over the expressive features of syn-
thetic utterance productions of augmented speakers.
The WinkTalk system is currently a research proto-
type in progress, operating on a personal computer

equipped with a webcamera. The goal of the system
is to respond to the need of integrated multimodality
in speech generating devices of users of augmenta-
tive and alternative communication1 (AAC) applica-
tions (Higginbotham, 2010). Being able to correctly
link facial expression to synthetic speech output is
a step forward to a more intuitive way of control-
ling the expressiveness of synthetic speech. The ap-
proach can be considered novel, as the authors are
not aware of another system using facial expressions
to control expressive TTS.

2 WinkTalk system architecture

The WinkTalk system is a web based application de-
veloped using AJAX and PHP technologies. The
web application provides a flexible interface and al-
lows for easy integration of new components such
as synthetic voices or gesture recognisers running
on a web server. The internal architecture of the
system is shown in figure 1. The system operates
based on a configurable workflow defining the three
modes of the system: a personalisation mode, an au-
tomatic voice selection mode based on facial expres-
sion, which is the core functionality of the system,
and a control mode of manual voice selection, that
was included for evaluation purposes. In the man-
ual voice selection application the user is presented
with the three options and selects the voice style that

1Augmentative and alternative communication (AAC) refers
to an area of research, clinical, and educational practice. AAC
involves attempts to study and when necessary compensate for
temporary or permanent impairments, activity limitations, and
participation restrictions of individuals with severe disorders of
speech-language production and/or comprehension, including
spoken and written modes of communication.(ASHA, 2005)
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Figure 1: Architecture and working modes of the Wink-
Talk system

matches the emotional or expressive intent of the
message. It has previously been shown that after a
short familiarisation with the voices, it is possible
for the user to make a fairly good prediction of how
a particular utterance will sound when synthesised
with one of the voices (Székely et al., 2012). This
makes it possible to use the system in a conversation
situation, in which the user does not have the oppor-
tunity to listen to the three possible speech samples
but needs to make a choice ahead of the time of the
synthesis. The automatic voice choice mode and the
personalisation mode will be described in sections 3
and 4, respectively.

3 Facial expression based voice selection

3.1 Expressive synthetic voices

The synthesiser component of the application uses
three expressive HMM-based synthetic voices of
a middle aged American male. The voices have
been built using the HTS speech engine 2.1., from
an audiobook corpus made available for Blizzard
Challenge 2012 by Toshiba Research Europe Ltd,
Cambridge Research Laboratory. Each synthetic
voice was trained from different subcorpora of the

audiobook obtained using an unsupervised cluster-
ing technique based on glottal source parameters
(Székely et al., 2011). Perceptual experiments have
shown (Hennig et al., 2012) that the three voices can
be characterised on an expressiveness gradient: from
calm (A voice), through intense (B voice) to very in-
tense (C voice). This expressiveness gradient can
be described with characteristics such as with rising
pitch, greater prosodic variation, increased power
and voice quality changing from lax to tense.

3.2 Facial expression analysis
For facial expression recognition, the system uses
the Sophisticated Highspeed Object Recognition
Engine (SHORE) library by Fraunhofer. To detect
faces and expressions, SHORE analyses local struc-
ture features in images and outputs scores for four
distinct facial expressions: happy, sad, angry and
surprised, with an indication of the intensity of the
expression (Kueblbeck and Ernst, 2006). The inten-
sity ranges from 0-100, a higher value meaning a
more intense expression in that category.

3.3 Mapping between facial expressions and
voices

The system uses the facial expression categories and
intensity scores outputted by SHORE to select from
the three synthetic voices. The initial mapping be-
tween facial expression categories and ranges of in-
tensity values and voices are shown in Table 1. For
example, an image analysed as containing the fa-
cial expression suprised with an intensity of 25, the
system will synthesise the corresponding utterance
with the C voice. The system always uses the fa-
cial expression category with the highest value for
a particular image. These initial values have been

Figure 2: Initial thresholds for mapping different inten-
sity values of the facial expressions to the synthetic voices
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Figure 3: Interface of the dialogue simulation with Wink-
Talk.

chosen based on considerations about arousal lev-
els of the underlying basic emotion of the facial ex-
pression categories, for example with surprise be-
ing a high arousal emotion, the intensity scores of
it result sooner in a higher intensity voice choice.
The values have also been supported by the results
a perceptual test carried out by 25 participants on a
dataset that was balanced to contain equal amount
of stimuli from all facial expression categories. Par-
ticipants were asked to select from three synthesised
utterances the one best matching the facial expres-
sion of a person on a picture. The perceptual test
has shown that 90% of all majority votings (above
66% agreement among participants) fell within the
initial threshold values. When a message is being
sent to the synthesiser, the system makes a snapshot
of the user’s face. Based on the image scores and
threshold table, the system decides which voice best
suits the current facial expression and returns the re-
sults accordingly. The system also provides an op-
tion to take streaming video input from the camera
rather than a single image, and calculate the feature
values over an interval of the video around the time
of sending a message. To take into consideration the
cases where individual preferences of voice choice
differ greatly, as well as to account for individual
differences in facial characteristics, a personalisa-
tion component has been integrated in the system,
which will be introduced in section 4.

4 Personalisation component

In order to optimise the performance of the Wink-
Talk system, a personalisation session needs to be
completed by each user. The objective of the per-
sonalisation is to adjust the voice selection thresh-

old according to users’ facial characteristics and in-
dividual preferences. In the personalisation phase,

Figure 4: Interface of the personalisation component of
WinkTalk.

the user is presented with a sentence and makes an
appropriate facial expression to accompany the ut-
terance. The facial expression is captured and anal-
ysed by the system and the user is presented with
the three options of synthetic speech samples, along
with an indication of which sample the system chose
to match their facial expression. If the user does
not agree with the selection provided by the sys-
tem, a preference can be indicated by choosing from
the other two options. The system then adjusts the
threshold by moving it by a standard factor towards
the outlying training example. The new threshold is
applied in next trial. The thresholds for each facial
expression-voice pair are normalised so that there is
no overlap between the different voices for the same
feature.

5 Conclusions and future work

The WinkTalk system has been evaluated within an
interactive evaluation session involving 10 subjects,
each of them acting out pre-scripted dialogues with
a conversation partner. The evaluation has shown
that while there is a general preference to manual se-
lection of expressive voices, 90% of the participants
described facial expression control as a valuable ad-
dition to the simulated augmented communication
process. A strong learning effect in the ease of using
the system has also been observed. Future work is
planned to research further input strategies of ges-
tures as well as to integrate a female expressive syn-
thetic voice. An essential next step is to extend the
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personalisation component to include the possibility
of fully personalised training of the facial expression
analysis to fit individual needs of users who are re-
stricted with respect to their gestural expressiveness.

6 Demonstration

6.1 Overview

The demonstration will give participants an oppor-
tunity to use the WinkTalk system by conducting
the personalisation phase and using the system with
pre-scripted dialogues. It is intended for those in-
terested in using multimodal tools and expressive
speech to improve the communication experience
of individuals with complex communication needs.
The demonstration will give participants a chance
to experience the facial expression control over the
voice choice of the system as well as get an im-
pression of how the range of expressive voices can
be used in an acted dialogue situation. A 3 minute
video of the system in use will also be available for
viewing.

6.2 Familiarisation/Personalisation phase

First, a short introduction will be given to the system
and its aims, then the participants will be introduced
to the synthetic voices by listening to a few sam-
ples receiving a brief description of their character-
istics. Subsequently, the participants will be asked to
conduct a personalisation session including 20 iter-
ations, that will help optimise the system to adapt to
the participants’ preferences, as described in section
4. It will also familiarise the users with the char-
acteristics of the voices and the mapping of facial
expressions and voices.

6.3 Dialogue simulation with synthetic voices

After the users are familiarised with the system, they
can choose from a set of 8 dialogues representing a
range of social interactions and emotional sentiment
and intensity. Participants will act out some of the
dialogues with a conversation partner, using facial
expressions to control the selection of the synthetic
voices instead of speaking with their own voice.
They will also have the option to compare the facial
expression control of the WinkTalk system with a
simple manual selection of synthetic voices for each
utterance. At the end of the dialogue session there

will be a chance to fill out a feedback form to help
the further development of the system.
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Abstract

This paper presents a method for an AAC sys-
tem to predict a whole response given features
of the previous utterance from the interlocu-
tor. It uses a large corpus of scripted dialogs,
computes a variety of lexical, syntactic and
whole phrase features for the previous utter-
ance, and predicts features that the response
should have, using an entropy-based measure.
We evaluate the system on a held-out portion
of the corpus. We find that for about 3.5% of
cases in the held-out corpus, we are able to
predict a response, and among those, over half
are either exact or at least reasonable substi-
tutes for the actual response. We also present
some results on keystroke savings. Finally
we compare our approach to a state-of-the-art
chatbot, and show (not surprisingly) that a sys-
tem like ours, tuned for a particular style of
conversation, outperforms one that is not.

Predicting possible responses automatically
by mining a corpus of dialogues is a
novel contribution to the literature on whole
utterance-based methods in AAC. Also useful,
we believe, is our estimate that about 3.5-4.0%
of utterances in dialogs are in principle pre-
dictable given previous context.

1 Introduction

One of the overarching goals of Augmentative and
Alternative Communication technology is to help
impaired users communicate more quickly and more
naturally. Over the past thirty years, solutions
that attempt to reduce the amount of effort needed
to input a sentence have include semantic com-

paction (Baker, 1990), and lexicon- or language-
model-based word prediction (Darragh et al., 1990;
Higginbotham, 1992; Li and Hirst, 2005; Trost et
al., 2005; Trnka et al., 2006; Trnka et al., 2007;
Wandmacher and Antoine, 2007), among others. In
recent years, there has been an increased interest
in whole utterance-based and discourse-based ap-
proaches (see Section 2). Such approaches have
been argued to be beneficial in that they can speed up
the conversation, thus making it appear more felici-
tous (McCoy et al., 2007). Most commercial tablets
sold as AAC devices contain an inventory of canned
phrases, comprising such items as common greet-
ings, polite phrases, salutations and so forth. Users
can also enter their own phrases, or indeed entire se-
quences of phrases (e.g., for a prepared talk).

The work presented here attempts to take whole
phrase prediction one step further by automatically
predicting appropriate responses to utterances by
mining conversational text. In an actual deploy-
ment, one would present a limited number of pre-
dicted phrases in a prominent location on the user’s
device, along with additional input options. The user
could then select from these phrases, or revert to
other input methods. In actual use, one would also
want such a system to incorporate speech recogni-
tion (ASR), but for the present we restrict ourselves
to typed text — which is perfectly appropriate for
some modes of interaction such as on-line social me-
dia domains. Using a corpus of 72 million words
from American soap operas, we isolate features use-
ful in predicting an appropriate set of responses for
the previous utterance of an interlocutor. The main
results of this work are a method that can automati-
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cally produce appropriate responses to utterances in
some cases, and an estimate of what percentage of
dialog may be amenable to such techniques.

2 Previous Work

Alm et al. (1992) discuss how AAC technology can
increase social interaction by having the utterance,
rather than the letter or word, be the basic unit
of communication. Findings from conversational
analysis suggest a number of utterances common to
conversation, including short conversational openers
and closers (hello, goodbye), backchannel responses
(yeah?), and quickfire phrases (That’s too bad.). In-
deed “small talk” is central to smooth-flowing con-
versation (King et al., 1995). Many modern AAC
systems therefore provide canned small-talk phrases
(Alm et al., 1993; Todman et al., 2008).

More complex conversational utterances are chal-
lenging to predict, and recent systems have used
a variety of approaches to generate longer phrases
from minimal user input. One approach relies on
telegraphic input, where full sentences are con-
structed from a set of uninflected words, as in the
Compansion system (McCoy et al., 1998). This
system employs a semantic parser to capture the
meaning of the input words and generates using
the Functional Unification Formalism (FUF) system
(Elhadad, 1991). One of the limitations of this ap-
proach is that information associated with each word
is primarily hand-coded on the basis of intuition; as
a result, the system cannot handle the problem of un-
restricted vocabulary. Similar issues arise in seman-
tic authoring systems (Netzer and Elhadad, 2006),
where at each step of the sentence creation process,
the system offers possible symbols for a small set of
concepts, and the user can select which is intended.

Recent work has also tried to handle the complex-
ity of conversation by providing full sentences with
slots that can be filled in by the user. Dempster et
al. (2010) define an ontology where pieces of hand-
coded knowledge are stored and realized within sev-
eral syntactic templates. Users can generate utter-
ances by entering utterance types and topics, and
these are filled into the templates. The Frametalker
system (Higginbotham et al., 1999) uses contextual
frames — basic sentences for different contexts —
with a set vocabulary for each. The intuition be-

hind this system is that there are typical linguistic
structures for different situations and the kinds of
words that the user will need to fill in will be se-
mantically related to the context. Wisenburn and
Higginbotham (2008) extend this technology using
ASR on the speech of the interlocutor. The system
extracts noun phrases from the speech and presents
those noun phrases on the AAC device, with frame
sentences that the user can then select. Thus, if the
interlocutor says Paris, the AAC user will be able to
select from phrases like Tell me more about Paris or
I want to talk about Paris.

Other approaches provide a way for users to
quickly find canned utterances. WordKeys (Langer
and Hickey, 1998) allows users to access stored
phrases by entering key words. This system ap-
proaches generation as a text retrieval task, using a
lexicon derived from WordNet to expand user input
to find possible utterances. Dye et al. (1998) intro-
duce a system that utilizes scripts for specific situa-
tions. Although pre-stored scripts work reasonably
well for specific contexts, the authors find (not unex-
pectedly) that a larger number of scripts are needed
for the system to be generally effective.

3 The Soap Opera Corpus

In this work we attempt a different approach, devel-
oping a system that can learn appropriate responses
to utterances given a corpus of conversations.

Part of the difficulty in automatically generating
conversational utterances is that very large corpora
of naturally occurring dialogs are non-existent. The
closest such corpus is Switchboard (Godfrey and
Holliman, 1997), which contains 2,400 two-sided
conversations with about 1.4 million words. The in-
terlocutors in Switchboard are not acquainted with
each other and they are instructed to discuss a par-
ticular topic. While the dialogs are “natural” to a
point, because they involve people who have never
previously met, they are not particularly reflective of
the kinds of conversations between intimates that we
are interested in helping impaired users with.

We thus look instead to a corpus of scripted di-
alogs taken from American soap operas. The web-
site tvmegasite.net contains soap opera scripts
that have been transcribed by aficionados of the var-
ious series. The scripts include utterances marked
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with information on which character is speaking,
and a few dramatic cues. We downloaded 72 mil-
lion words of text, with 5.5 million utterances. Soap
opera series downloaded were: All my Children, As
the World Turns, The Bold and the Beautiful, Days
of our Lives, General Hospital, Guiding Light, One
Life to Live and The Young and the Restless. The text
was cleaned to remove HTML markup and other ex-
traneous material, and the result was a set of 550,000
dialogs, with alternating utterances by (usually) two
speakers. These dialogs were split 0.8/0.1/0.1 into
training, development testing and testing portions,
respectively. All results reported in this paper are on
the development test set.

While soap operas may not be very representative
of most people’s lives, the corpus nonetheless has
three advantages. First of all, the corpus is large.
Second, the language tends to be fairly colloquial.
Third, many of the dialogs take place between char-
acters who are supposed to know each other well,
often intimately; thus the topics might be more re-
flective of casual conversation between friends and
intimates than the dialogs one finds in Switchboard.

4 Data Analysis, Feature Extraction and
Utterance Prediction

Each dialog was processed using the Stanford Core
NLP tools. The Stanford tools perform part of
speech tagging (Toutanova et al., 2003), constituent
and dependency parsing (Klein and Manning, 2003),
named entity recognition (Finkel et al., 2005), and
coreference resolution (Lee et al., 2011). From
the output of the Stanford tools, the following fea-
tures were extracted for each utterance: word bi-
grams (pairs of adjacent words); dependency-head
relations, along with the type of dependency rela-
tion (basically, governors — e.g., verbs — and their
dependents — e.g., nouns); named entities (per-
sons, organizations, etc.); and the whole utterance.
Extracted named entities include noun phrases that
were explicitly tagged as named entities, as well as
any phrases that were marked as coreferential with
named entities. Thus if the pronoun she occurred in
an utterance, and was marked as coreferential with a
previous or following named entity Amelia, then the
feature Amelia as a named entity was added for this
utterance. We also include the whole utterance as a

feature, which turns out to be the most useful predic-
tor for an appropriate response to an input utterance.

The dialogs were divided into turns, with each
turn consisting of one or more utterances. For our
experiments, we are interested in predicting the first
utterance of a turn (which in many cases may be the
whole turn) given features of all the utterances of
the previous turns — the exception being that for
the whole sentence feature, only the last sentence of
the previous turn is used. The method of using fea-
tures of a turn to predict features of the next turn is
related to the work reported in Purandare and Lit-
man (2008), though their goal was to analyze dialog
coherence rather than to predict the next utterance.

We are particularly interested in feature values
that are highly skewed in their predictions, mean-
ing that if the turn has a given value, then the first
sentence of the next utterance is much more likely
to have some values than others. A useful measure
of this is the difference between the entropy of the
predicted feature values fi of a feature g:

H(g) = −
n∑

i=0

log(p(fi)) · p(fi) (1)

and the maximum possible entropy of g given n pre-
dicted features, namely:

Hmax(g) = −log(
1

n
) (2)

The larger the difference Hmax(g)−H(g), the more
skewed the distribution.

For the purposes of this experiment and to keep
the computation reasonably tractable, we computed
the entropic values described above for like features:
thus we used bigram features to predict bigram fea-
tures, dependency features to predict dependency
features, and so forth. We also filtered the output of
the process so that each feature of the prior context
had a minimum of 10 occurrences, and the entropy
of the feature was no greater than 0.9 of the max-
imum entropy as defined above. For each feature
value, the 2 most strongly associated values for the
predicted utterance were stored.

To take a simple example (Figure 1) the bigram ’m
fine has a strong association with the bigrams you ’re
and , I, these co-occurring 486 and 464 times in the
training corpus, respectively. For this feature, the
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’m fine 8.196261 9.406976 you ’re 486
’m fine 8.196261 9.406976 , i 464

you’re kidding . __SENT 4.348040 4.852030
no. . __SENT 32
you’re kidding . __SENT 4.348040 4.852030
i wish . __SENT 7

Figure 1: Examples of bigram and full-sentence features.

entropy is 8.20 and the maximum entropy is 9.41.
Or consider a full-sentence feature You’re kidding.
This is strongly associated with the predicted sen-
tence features no.. and I wish..

Utterances in the training data were stored and as-
sociated with predicted features. In order to pro-
duce a rank-ordered list of possible responses to a
test utterance, the features of the test utterance are
extracted. For each of these features, the predicted
features and their entropies are retrieved. Those
training data utterances that match on one or more
of these predicted features are retrieved in this step,
and a score is assigned which is simply the sum of
the predicted feature entropies. However, since we
want to favor full-sentence matches, entropies for
full-sentence matches are multiplied by a positive
number (currently set to 100).

5 Experimental Results

5.1 Whole sentence prediction

The first question we were interested in is how of-
ten, based on the approach described here, one could
predict a sentence that is close to what the speaker
actually intended to say. For this purpose, we sim-
ply took as the gold standard the utterance that was
written in the script for the speaker, and considered
the prediction of the system described above, when
it was able to make one. The prediction could be
an exact match to what was actually said, something
close enough to be a reasonable substitute, some-
thing appropriate given the context but not the one
intended, or something that is wholly inappropriate.

In the ensuing discussion we will focus on whole
sentence features, since these were the most useful
for predicting reasonable whole sentences. We re-
turn to the use of other features in Section 5.2.

Some examples can be found in Figure 2. In
each case, we give the final sentence of the previous
turn, the actual utterance, and the two predicted ut-

PREV really ?
ACTUAL yeah .
PRED 232.3099 yeah . __SENT 4
PRED 230.9528 mm-hmm . __SENT 3

PREV love you .
ACTUAL i love you , too , baby doll .
PRED 83.4519 i love you , too . __SENT 3
PRED 74.1185 love you . __SENT 3

PREV ok ?
ACTUAL i’m sorry , laurie , about j.r. ,

about everything .
PRED 86.2623 yeah . __SENT 2
PRED 86.2623 ok . __SENT 2

Figure 2: Whole sentence prediction examples.

terances, along with the predicted utterances’ scores
and the counts with which they co-occurred in the
training data with the previous utterance in question.
For the first example Really?, the actual response
was Yeah, and this was also the highest ranked re-
sponse of the system. In the second example, the ac-
tual response was I love you, too, baby doll, whereas
a response of the system was I love you too. While
not exact, this is arguably close enough, and could
be selected by an impaired user who did not wish to
type the whole message. In the third example, the
predictions Yeah. and Ok. do not substitute at all for
the actual response.

Of the 276,802 utterance-response pairs in the de-
velopment test data, the system was able to make
predictions for 9,794 cases, or 3.5%. Evaluating
9,794 responses is labor intensive, so two evalua-
tions based on random samples were performed.

In the first, the authors evaluated a random sam-
ple of 455 utterance pairs, assigning the following
scores to each response: 4 exact match; 3 equiva-
lent meaning; 2 good answer but not the right one;
1 inappropriate. The results are given in Table 1, for
the best score of the pair of responses generated. In
other words, if the first response has a score of 2 and
the second a score of 3, then the pair of responses
will receive a score of 3: in that pair, there was one
generated response that was close enough to use.
From Table 1, we see that between 38% to 40.7%
of the response pairs contained a response that was
exact, or close enough to have the same meaning.
59.3% to 62% had at best a reasonable answer, but
not the one intended. Finally, none contained only
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Score Judge 1 Judge 2
Exact match 110 24.2% 109 24.0%
Equivalent meaning 63 13.8% 76 16.7%
Good answer (but wrong) 282 62.0% 270 59.3%
Inappropriate 0 0.0% 0 0.0%

Table 1: Judgments of a sample of 455 utterance pairs by
the authors.

inappropriate answers: this is not surprising, given
that all of the predicted responses were based on
what was found in the training data, which one may
assume involved largely felicitous interactions.

We also used Amazon’s Mechanical Turk (AMT)
to collect judgements from unbiased judges. Based
on our previous evaluation, we expanded the equiv-
alent meaning category into two more fine-grained
categories, essentially the same and similar mean-
ing, in order to capture phrases with slightly differ-
ent connotations. This results in the 4-point scale
in Table 2. Exact matches were found automatically
before giving response pairs to Turkers, and account
for a large portion of the data — 2,330 of the 9,794
response pairs, or 23.8%. For the remaining 76.2%,
138 participants were asked to judge how close the
predicted response was to the actual response.

Each AMT participant was presented with six
prompts (three entropy-based conversational turns
and three chatbot-based conversational turns, dis-
cussed below). Each prompt listed the utterance,
actual response, and predicted response. Two ad-
ditional prompts with known answers were included
to automatically flag participants who were not fo-
cusing on the task. Evaluation results are given in

4 Essentially
the same:

They’re pretty close, and mean
basically the same thing.

3 Similar
meaning:

They’re similar, but the pre-
dicted response has a slightly
different connotation from the
actual response.

2 Good answer,
but not the
right one:

They’re different, but the pre-
dicted response is still a reason-
able response to the comment.

1 Inappropriate: Different, and the predicted re-
sponse is a totally unreasonable
response to the comment.

Table 2: Four-point scale for AMT evaluation. Exact
matches were found automatically.

Essentially the same 89 16.4%
Similar meaning 81 14.9%
Good answer (but wrong) 165 30.4%
Inappropriate 79 14.5%

Table 3: Evaluation results from AMT on a random
sample of 414 predicted utterances (excluding exact
matches).

Table 3. Percentages are multiplied by the propor-
tion of results they represent (.762). Of the evalu-
ated cases, we find that 31.3% of the predicted re-
sponses were judged to be essentially the same or
similar to the actual response. 30.4% were judged
to be a reasonable answer, and the remaining 14.5%
were judged to be inappropriate.

Evaluation by AMT judges was thus much more
favorable towards the prediction-based system than
the authors’ evaluation. Where the authors found
13.8%-16.7% to be essentially the same or similar,
unbiased judges found just under a third of the data
to meet these criteria. Coupled with the automati-
cally detected exact matches, 55.1% of the predicted
responses were found to be a reasonable approxima-
tion of (or exactly) the intended response. A smaller
portion of the data was thought to be a good answer
(but wrong), or wholly inappropriate.

5.2 Prediction with features plus a prefix of the
intended utterance

It is of course not necessary for the system to predict
the whole response without any input from the user.
As with word prediction, the user might type a pre-
fix of the intended utterance, and the system could
then produce a small set of corresponding responses,
among which would often be the one desired.

In order to evaluate such a scenario, we consid-
ered the shortest prefix of the actual intended re-
sponse that would be consistent with a maximum
of five sentences predicted from the features of the
previous turn. Thus, we gathered the entire set of
sentences from the training data that matched one or
more of the predicted features, then began (virtually)
typing the actual response. There are two possible
outcomes. If the actual response is not in the set,
then at some point the typed prefix will be consistent
with none of the sentences in the set. In this worst
case, the user would simply have to type the whole
sentence (possibly using whatever word-completion
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technology is already available on the device). But
if the intended response is in the set, then at some
point the set consistent with the prefix will be win-
nowed down to at most five members. The length of
the prefix at that point, subtracted from the length of
the intended sentence, is the keystroke savings.

Of the 276,802 utterances in the development test
responses, 11,665 (4.2%) had a keystroke savings
of greater than zero: thus, in 4.2% of cases, the in-
tended utterance was to be found among the set of
sentences consistent with the predicted features. The
total keystroke savings was 102,323 characters out
of a total of 8,725,508, or about 1%. While this is
clearly small, note that it is over and above whatever
keystroke savings one would gain by other methods,
such as language modeling.

5.3 ALICE

A final experiment involved using a chatbot to gen-
erate responses. Previous approaches have used
stored sentence templates that are generated based
on keyword input from the user; a similar approach
is used in a chatbot, where the input utterances are
themselves triggers for the generated content. For
this experiment, we used the publicly available AL-
ICE (Wallace, 2012), which won the Loebner Prize
(a Turing test) in 2000, 2001, and 2004. ALICE
makes use of a large library of pattern-action pairs
written in AIML (Artificial Intelligence Markup
Language): if an input sentence matches a partic-
ular pattern, a response is generated by a rule that is
associated with that pattern. ALICE follows conver-
sational context by using a notion of TOPIC (what
the conversation is currently about, based on key-
words) and of THAT (the bot’s previous utterance).
Both are used along with the input utterance when
selecting what next to say. In essence, ALICE is a
much more sophisticated version of the 1960s Eliza
program (Weizenbaum, 1966).

In order to use the chatbot for this task, we use an
AIML interpreter (Stratton, 2010) on the most recent
set of ALICE knowledge.1 ALICE was given the
utterances for each conversation in our development
testing set, which allows the system to store some
of the dialogue context under its THAT and TOPIC

1http://code.google.com/p/aiml-en-us-foundation-alice/, re-
trieved February 2012.

Essentially the same 45 10.7%
Similar meaning 96 22.9%
Good answer (but wrong) 135 32.1%
Inappropriate 138 32.9%

Table 4: Evaluation results from AMT on a random sam-
ple of 414 chatbot utterances (excluding exact matches).

variables.
Example responses are given in Figure 3. As with

the previous experiments, some responses are close
to the actual intended message (first example in Fig-
ure 3). In some other cases (second example), the
response is reasonable, though not the one intended.
But in many cases, the response is too “cute”, as in
the examples on the righthand side.

Evaluation with AMT is given in Table 4, us-
ing the same scoring criteria as in Table 3. Exact
matches are again automatically removed, and ac-
count for 142 responses (1.5%). For the remaining
data, participants were asked to judge how close the
chatbot response was to the actual response. Per-
centages are multiplied by the proportion of results
they represent (.9855).

The chatbot is judged to produce less acceptable
utterances than the entropy-based approach, with
10.7% essentially the same as the actual response,
and 22.9% with similar meaning. Coupled with the
automatically detected exact matches, 35% of the
chatbot responses were found to be a reasonable ap-
proximation of (or exactly) the intended response.
Over half of the data (65%) was thought to be a good
answer (but wrong), or wholly inappropriate.

6 Discussion and Future Work

Of the two different methods for automatically gen-
erating responses, the entropy-based approach in
particular produces responses ranging from similar
to exact in a majority of the cases for which it can
make a prediction. These are promising findings
for expanding a system that populates possible re-
sponses from an input utterance.

An obvious limitation of the work presented here
is that it is based on scripted data. More to the point,
to build an effective dialog-based system for an im-
paired user, the best possible data to use would be
data involving the user him/herself along with his
or her interlocutors. Indeed, we are in the process
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PREV okay .
ACTUAL okay .
ALICE Great.

PREV please don’t leave .
ACTUAL i’m right here .
ALICE I’m not going anywhere.

PREV you need to drink water .
ACTUAL no , stay .
ALICE I need to wait and see if the

opportunity presents itself.

PREV okay ?
ACTUAL you were so mad at me

lately , dixie .
ALICE Dude!

Figure 3: Some responses generated by ALICE.

of collecting a corpus of such interactions from a
small number of AAC users in the Portland, Ore-
gon area. But the resulting corpora will obviously
be tiny in comparison with the data used in the ex-
periments here, in no small measure because of the
extreme slowness with which most AAC users are
able to communicate. What can be done about this?
One thing would be to use the results of this work
directly even if it does not model the particular user:
even if it comes from soap opera dialogs, Are you
mad at me? No, I’m not mad at you, still makes
for a perfectly reasonable utterance/response pair.
This, to some extent, counters potential objections
that soap opera dialogs are not reflective of natural
interactions. These kinds of pairs could be supple-
mented by whatever data we are able to learn from a
particular user.

Even better, though, would be to collect large
amounts of data from users before they become im-
paired. Many disorders, such as ALS, are often de-
tected early, before they start to impair communi-
cation. In such cases, one could consider language-
banking the user’s interactions, and building a model
of the ways in which the user interacts with other
speakers, in order to get a good model of that par-
ticular user. While there are obviously privacy con-
cerns, a person who knows that they will lose the
ability to speak over time will likely be very moti-
vated to try to preserve samples of their speech and
language, assuming there exists technology that can
use those samples to provide more sophisticated as-
sistance when it becomes needed.

It may also be possible to use features from the
text to generate utterances, similar to the telegraphic
approaches to generation discussed in Section 2, but
automatically learning words that can be used to
generate appropriate responses to an utterance. As
a first look at the feasibility of this approach, we use

the Midge generator (Mitchell et al., 2012), rebuild-
ing its models from the soap dialogues. Midge re-
quires as input a set of nouns and then builds likely
syntactic structure around them, and so we use the
dialogues to predict possible nouns in response to
an input utterance. For each <utterance, response>
pair in the dialogues, we gather all utterance nouns
nu and all response nouns nr. We then compute nor-
malized pointwise mutual information (nPMI) for
each nu, nr pair type in the corpus. Given a novel in-
put utterance, we tag it to extract the nouns and cre-
ate the set of highest nPMI nouns from the model.
This is then input to Midge, which uses the set to
generate present-tense declarative sentences. Some
examples are given in Figure 4. We hope to expand
on this approach in future work.

A further improvement is to take advantage of
synonymy. There are many ways to convey the same
basic message: i am sick, i am not feeling well, i’m
under the weather, are all ways for a speaker to con-
vey that he or she is not in the best of health. In
the current system, these are all treated separately.
Clearly what is needed is a way of recognizing that
these are all paraphrases of each other. Fortunately,
there has been a lot of progress in recent years on
paraphrasing — see Ganitkevitch et al. (2011) for a
recent example — and such work could in princi-
ple be adapted to the problem here. Indeed it seems
likely that incorporating paraphrasing into the sys-
tem will be a major source of improved coverage.

A limitation of the work described here is that
it only models turn-to-turn interactions. Clearly
discourse models need to have more memory than
this, so features that relate to earlier turns would be
needed. The downside is that this would quickly
lead to data sparsity.

There are a variety of machine learning tech-
niques that could also be tried, beyond the rather

15



Input: this is n’t the same . this is not like anything i have been
through before . i mean , how am i supposed to make it work with
somebody who ...
Pred. nouns: strength, somebody

Output: strength comes with somebody

Input: i ’ve been a little bit too busy to socialize . i did have an
interesting conversation with your sister , however .
Pred. nouns: bit, conversation, sister

Output: a bit about this conversation with sister

Figure 4: Generating with nPMI: Creating syntactic structure around likely nouns.

simple methods employed in this work. For exam-
ple, particular classes of response types, comprising
a variety of related utterances, may be predictable
using the extracted features.

Finally, we have assumed for this discussion that
the AAC system is only within the control of the im-
paired user. There is no reason to make that assump-
tion in general: many AAC situations in real life in-
volve a helper who will often co-construct with the
impaired user. Such helpers usually know the im-
paired user very well and can often make reasonable
guesses as to the whole utterance intended by the
impaired user. Recent work reported in Roark et al.
(2011) suggests one way in which the results of a
language modeling system and those of a human co-
constructor may be integrated into a single system,
and such an approach could easily be applied here.

7 Conclusions

We have proposed and evaluated an approach to
whole utterance prediction for AAC. While the ap-
proach is fairly simple, it is able to generate correct
or at least reasonable responses in some cases. Such
a system could be used in conjunction with other
techniques, such as language-model-based predic-
tion, or co-construction. One of the potentially use-
ful side-effects of this work is an estimate of what
percentage of interactions in a dialog are likely to be
easily handled by such techniques. In other words,
how many interactions in dialog are sufficiently pre-
dictable that a system could have a reasonable guess
as to what a speaker is going to say given the pre-
vious context? A rough estimate based on what we
have found here is something on the order of 3.5%-
4.0%. Obviously this does not mean that the sys-
tem will always make the right prediction: a reason-

able response to congratulations on your promotion
would often be thank you, but a speaker may wish
to say something else. But what it does mean is that
in about 3.5%-4.0% of cases, one has a reasonable
chance of being able to guess. This percentage is
certainly small, and one might be inclined to con-
clude that the approach does not work. On the other
hand, it is important to bear in mind that not all per-
centages are created equal. Rapid responses to ba-
sic phrases (e.g. Are you mad at me? → No, I’m
not mad at you), could help with the perceived flow
of conversation, even if they do not occur that fre-
quently.

As we noted at the outset, whole utterance pre-
diction is an area that has received increased inter-
est in recent years, because of its potential to speed
communication, and its contribution to increasing
the naturalness of conversational interactions. When
coupled with gains in utterance generation achieved
by other methods, automatically generating utter-
ances can further the range of comments and re-
sponses available to AAC users. The work reported
here is a small contribution towards this goal.
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Abstract 

It is well documented that people with severe 
speech and physical impairments (SSPI) often 
experience literacy difficulties, which hinder 
them from effectively using orthographic-
based AAC systems for communication. To 
address this problem, phoneme-based AAC 
systems have been proposed, which enable 
users to access a set of spoken phonemes and 
combine phonemes into speech output. In this 
paper we investigate how prediction tech-
niques can be applied to improve user perfor-
mance of such systems. We have developed a 
phoneme-based prediction system, which sup-
ports single phoneme prediction and pho-
neme-based word prediction using statistical 
language models generated using a 
crowdsourced AAC-like corpus. We incorpo-
rated our prediction system into a hypothetical 
12-key reduced phoneme keyboard. A compu-
tational experiment showed that our prediction 
system led to 56.3% average keystroke sav-
ings. 

1 Introduction 

Over the last forty years there has been an increas-
ing number of high-tech AAC systems developed 
to provide communication support for individuals 
with severe speech and physical impairments 
(SSPI). Most of existing AAC systems can be clas-
sified into two categories, namely graphic-based 
and orthographic-based systems. Graphic-based 
systems utilize symbols to encode a limited set of 
frequently used words and utterances, thereby sup-
porting fast access to pre-stored items. However, 
there is a high cognitive overhead associated with 

learning the encoding methods of these systems, 
which can be problematic for many AAC users, 
especially those with intellectual disabilities. In 
addition, users of these systems are limited to pre-
programmed items rather than being able to create 
novel words and messages spontaneously. In con-
trast, orthographic-based AAC systems allow users 
to spell out their own messages. Prediction tech-
niques, such as character or word prediction, are 
often applied to improve the usability and accessi-
bility of these systems. However, these systems 
require users to master literacy skills, a well-
documented problem for many children and adults 
with SSPI (Koppenhaver and Yoder, 1992). 

The question arises as to how AAC systems can 
be designed to enable pre-literate users with SSPI 
to generate novel words and messages in sponta-
neous conversations. A potential solution for this 
question is to adopt a phoneme-to-speech genera-
tion approach. This approach allows users to ac-
cess a limited set of spoken phonemes and blend 
phonemes into speech output, thereby enabling 
them to create spontaneous messages without 
knowledge of orthographic spelling. This approach 
has been applied in several phoneme-based AAC 
systems to support communication (Glennen and 
DeCoste, 1997) and literacy learning (Black et al., 
2008). It has also been utilized as an alternative 
typing method for people with spelling difficulties 
(Schroeder, 2005).  

Despite such potential, phoneme-based AAC 
systems have been an under-researched topic. In 
particular, little work has been done on the applica-
tion of Natural Language Processing (NLP) tech-
niques to these systems. Thus, in this paper we 
investigate how prediction methods can be incor-
porated into phoneme-based AAC systems to facil-
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itate phoneme entry. We develop a basic phoneme-
based prediction system, which provides predic-
tions at both phoneme and word levels based on 
statistical language modeling techniques. We use a 
6-gram phoneme mixture model and a 3-gram 
word mixture model trained on a large set of AAC-
like data assembled from multiple sources, such as 
Twitter, Blog, and Usenet data. We take into con-
sideration issues such as pronunciation variants 
and user accents in the design of our system. We 
performed a theoretical evaluation of our system 
on three different test sets using a simulated inter-
face and report results of hit rate and potential key-
stroke savings. Finally, we propose a number of 
further studies to extend the current work. 

2 Background  

2.1 Phoneme-based AAC Systems 

The idea of using phonemes in AAC systems was 
first commercially introduced by Phonic Ear in 
1978 in the HandiVoice 110 (Creech, 2004; 
Glennen and DeCoste, 1997; Williams, 1995). The 
device provided users with direct access to a mixed 
vocabulary consisting of pre-programmed words, 
short phrases, letters, morphemes, and 45 pho-
nemes. Users could generate synthetic speech from 
phoneme sequences using the Votrax speech syn-
thesizer. Similar to the HandiVoice is the Finger 
Foniks, a handheld communicator developed by 
Words+ (Glennen and DeCoste, 1997). The device 
enables users to access prerecorded messages and a 
set of 36 phonemes from which they could gener-
ate unlimited speech output. Neither of these de-
vices offered any prediction features.  

The PhonicStick™, a talking joystick (Black et 
al., 2008), is a phoneme-based AAC device devel-
oped by researchers at the University of Dundee.  
Unlike the HandiVoice and the Finger Foniks, the 
primary use of the PhonicStick™ is to facilitate 
language play and phonics teaching for children 
with SSPI. The device allows users to access the 
42 phonemes used in the Jolly Phonics literacy 
program (Lloyd, 1998) by moving the joystick 
along pre-defined paths. A prototype of the Phon-
icStick™, using a subset of 6 Jolly Phonics’ pho-
nemes, has been evaluated with seven children 
without and with SSPI. Results of the evaluations 
demonstrated that the participants could create 
short words using the phonemes. However, some 

participants with poor hand function experienced 
significant difficulties in using the joystick to se-
lect target phonemes (Black et al., 2008). This 
suggests that the PhonicStick™ could benefit from 
prediction mechanisms to reduce the number of 
difficult joystick movements required for each 
phoneme entry. 

The phoneme-to-speech approach is not only ap-
plied in dedicated AAC systems but also in alterna-
tive typing interfaces for individuals with spelling 
difficulties. An example of such applications is the 
REACH Sound-It-Out Phonetic Keyboard™ 
(Schroeder, 2005). This on-screen keyboard com-
prises 40 phonemes and 4 phoneme combinations. 
It offers two types of prediction features, including 
phoneme prediction and word prediction. The pho-
neme prediction feature uses a pronunciation dic-
tionary to determine which phonemes cannot 
follow the currently selected phonemes. These 
phonemes are then removed from the keyboard, 
thereby facilitating users in visually scanning and 
identifying the next phoneme in the intended word. 
The word prediction feature also uses a dictionary 
to search for the most frequently used words that 
phonetically match the currently selected phoneme 
sequence. To our knowledge, this is the only cur-
rently available system that provides phoneme-
based predictions. However, these predictions use 
a simple dictionary-based prediction algorithm, 
which does not take into account contextual infor-
mation (e.g. prior text). There has been little or no 
published research into how more advanced NLP 
techniques can be employed to improve the per-
formance of phoneme-based predictions.  

2.2 Prediction in AAC Systems 

Prediction techniques have been extensively uti-
lized in many AAC systems to achieve keystroke 
savings and potential communication rate en-
hancement (Garay-Victoria and Abascal, 2005). 
There are various prediction strategies that have 
been developed in these systems, of which the 
most commonly used are character prediction and 
word prediction. Character prediction anticipates 
next probable characters given the preceding char-
acters. It is typically applied in reduced keyboards 
and scanning-based AAC systems to augment the 
scanning process (Lesher et al., 1998). Word pre-
diction anticipates the word being entered on the 
basis of the previously selected characters and 
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words, thereby saving the user the effort of enter-
ing every character of a word.  

Most existing prediction systems employ statisti-
cal language modelling techniques to perform pre-
diction tasks. Prediction accuracy generally 
increases with higher-order n-gram language mod-
els. However, most systems are limited to 6-gram 
models for character prediction and 3-gram models 
for word prediction, as the gain from higher-order 
models is often small at the cost of considerably 
increased computational and storage resources. To 
further improve the prediction performance, a 
number of advanced language modelling tech-
niques have been investigated, which take into ac-
count additional information such as word recency 
(Swiffin et al., 1987), syntactic information 
(Hunnicutt and Caarlberger, 2001; Swiffin et al., 
1987), semantic information (Li and Hirst, 2005), 
and topic modelling (Trnka et al., 2006). These 
techniques have the potential of improved key-
stroke savings at the cost of increased computa-
tional complexity. 

A fundamental issue of the statistical-based pre-
diction approach is that its performance is heavily 
dependent on the size of the training corpus and 
the degree to which the corpus represents the do-
main of use. Therefore, in the development of sta-
tistical-based prediction for conversational AAC 
systems, it may be ideal to construct language 
models from a large corpus of transcribed conver-
sations of real AAC users. However, such a corpus 
has been unavailable to date. To address this prob-
lem, previous research has utilized corpora of tele-
phone transcripts, such as the Switchboard corpus, 
and performed cleanup processing to make them a 
more appropriate approximate of AAC communi-
cation (Lesher and Rinkus, 2002; Trnka et al., 
2006). Vertanen and Kristensson (2011) have re-
cently proposed a novel solution to this problem by 
creating a large corpus of fictional AAC messages. 
Using Amazon Mechanical Market, the researchers 
crowdsourced a small dataset of AAC-like mes-
sages, which was then used to select a much larger 
set of AAC-like data from Twitter, Blog, and Use-
net datasets. The language models trained on this 
AAC-like corpus were proved to outperform other 
models trained on telephone transcripts (Vertanen 
and Kristensson, 2011). 

3 Phoneme-based Prediction System  

Although statistical-based predictions have been a 
well-studied topic, little or no research has been 
published on how well these predictions can be 
adapted to phoneme-based AAC systems. In this 
section, we describe our phoneme-based prediction 
system, which employs statistical language model-
ing techniques to perform phoneme prediction and 
phoneme-based word prediction.  Phoneme predic-
tion predicts probable next phonemes based on the 
previously entered phonemes. Word prediction 
predicts the word currently being entered based on 
the current phoneme prefix and prior words. 

3.1 Phoneme Set 

 Unlike traditional orthographic-based AAC sys-
tems that operate on a standard character set, dif-
ferent phoneme-based systems tend to use slightly 
different phoneme sets. For our prediction system, 
we use the phoneme set from the Jolly Phonics, a 
systematic synthetic phonics program widely used 
in the UK for literacy teaching (Lloyd, 1998). The 
phoneme set, to be called the PHONICS set, con-
sists of 42 phonemes, with 17 vowels and 25 con-
sonants. By using a literacy-linked phoneme set, 
our prediction system can readily be integrated into 
both literacy learning tools (such as the Phon-
icStick™ joystick (Black et al., 2008)) and com-
munication aids. Other systems that use different 
phoneme sets can also be easily adapted to utilize 
our prediction system by providing a phoneme 
mapping scheme between their phoneme sets and 
the PHONICS set. 

3.2 Pronunciation Dictionary 

3.2.1 The PHONICS Dictionary 

The development of phoneme-based predictions 
requires a pronunciation dictionary, which should 
be accent-specific as pronunciations may vary 
across different accents. There has been no dic-
tionary to date that contains word pronunciations 
using the PHONICS set. To address this problem, 
we built our PHONICS pronunciation dictionary 
based on the Unisyn1 lexicon, as it provides facili-
ties for generating dictionaries in different accents. 
The Unisyn uses the concept of key-symbols (i.e. 
meta-phonemes) to encode the characteristics of 
                                                             
1 http://www.cstr.ed.ac.uk/projects/unisyn/ 
2 http://aac.unl.edu/vocabulary.html, accessed 4 September 
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multiple accents into a single base lexicon. Accent-
specific rules can then be applied to the base lexi-
con to produce pronunciations in a given accent.  

To create the PHONICS dictionary, we first de-
rived a lexicon in the Edinburgh accent from the 
base lexicon using a set of Perl scripts supplied 
with Unisyn. We also performed additional clean-
up processing to remove unwanted information, 
such as stress and boundary markers. We then cre-
ated a mapping function from the set of 61 pho-
nemes and allophones used in the Edinburgh 
lexicon to the PHONICS set. As the PHONICS set 
only contains 42 phonemes, several allophones in 
the Edinburgh set were mapped to the same pho-
nemes in the PHONICS set. This mapping function 
was then used to convert the Edinburgh lexicon to 
the PHONICS pronunciation dictionary. The re-
sulting dictionary consists of 121,004 pronuncia-
tion entries for 117,625 unique words. 

3.2.2 The Schwa Phoneme 

An issue of the phoneme mapping is that the Edin-
burgh set contains the schwa phoneme (denoted by 
the symbol ‘@’), which cannot be mapped to any 
phonemes in the PHONICS set. The schwa, a re-
duced form of full vowels in unstressed syllables, 
occurs in 41,539 entries in the PHONICS diction-
ary. An example of a word containing the schwa 
phoneme is ‘today’ (/t @ d ai/). While the schwa is 
the most commonly used vowel sound in spoken 
English (Gimson and Cruttenden, 2001), it is not 
included in the Jolly Phonics teaching as it is a dif-
ficult concept to understand for literacy learners at 
early stages.  

The simplest solution for this issue would be to 
explicitly add the schwa phoneme into the 
PHONICS set in our prediction system. However, 
learning to use the schwa correctly can be chal-
lenging for users with SSPI and literacy difficul-
ties. Thus, we decided to support two modes in our 
system, namely the SCHWA_ON and the 
SCHWA_OFF modes. In the SCHWA_ON mode, 
the schwa phoneme is explicitly added to the 
PHONICS set, increasing the set to 43 phonemes. 
In the SCHWA_OFF mode, the schwa is not added 
into the PHONICS set and therefore is not offered 
to the users for selection. To deal with the absence 
of the schwa, we employed a basic auto-correction 
method. To search for a word given a phoneme 
sequence, we apply a limited set of schwa insertion 

and replacement rules (e.g. replacing vowels with 
schwas) to generate a set of alternative sequences. 
These sequences and the original sequence are then 
used to look up a list of matching words in the 
PHONICS dictionary. Once the user has selected a 
word from this list, the correct pronunciation of the 
selected word (which might include the schwas) 
would be used to replace the original phoneme se-
quence in the currently selected phoneme string. 
This corrected phoneme string would then be input 
to the phoneme language model (described in Sec-
tion 3.3.1) to predict probable next phonemes.  

3.3 Phoneme Prediction 

We trained a 6-gram phoneme language model 
starting with training data from: 

• Twitter messages collected via the free 
streaming API between December 2010 and 
July 2011. 36M sentences, 251M words. 

• Blog posts from the ICWSM corpus (Burton 
et al., 2009). 25M sentences, 387M words. 

• Usenet messages (Shaoul and Westbury, 
2009). 123M sentences, 1847M words. 

We used the crowdsourced data from Vertanen and 
Kristensson (2011) to select AAC-like sentences 
using cross-entropy difference selection (Moore 
and Lewis, 2010). The selection process retained 
6.9M, 1.6M, and 2.3M words of data from the 
Twitter, Blog and Usenet data sets respectively. 
We converted the words in the selected sentences 
to pronunciation strings using the PHONICS dic-
tionary. Whenever we encountered a word with 
multiple pronunciations, we chose a pronunciation 
at random. If a sentence had a word not in the 
PHONICS dictionary, we dropped the entire train-
ing sentence. 

We trained a 6-gram phoneme language model 
for each of the Twitter, Blog, and Usenet data sets. 
Estimation of unigrams used Witten-Bell discount-
ing while all higher order n-grams used modified 
Kneser-Ney discounting with interpolation. We 
then created a mixture model via linear interpola-
tion with mixture weights optimized on the 
crowdsourced development set from Vertanen and 
Kristensson (2011). The optimized mixture 
weights were: Twitter 0.54, Blog 0.25, and Usenet 
0.21. Our final mixture model has 2.0M parameters 
and a compressed disk size of 14 MB. 
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Figure 1. Hit rates of the phoneme prediction for prediction list lengths 1-15 in the SWCHA_ON and SCHWA_OFF 
modes. Results on the SPECIALISTS, COMM, and SWITCHTEST test sets. 
 

3.3.1 Hit Rate 

We evaluated the accuracy of our phoneme predic-
tion using hit rate. Hit rate (HR) is defined as the 
percentage of times that the intended phonemes 
appear in the prediction list: 

HR = 

€ 

Number of times the
phoneme is predicted
Number of phonemes

×100% 

We computed the hit rates for prediction lists of 
lengths 1-15 in both SCHWA_ON and 
SCHWA_OFF modes. The results of this evalua-
tion would help inform the decision of the number 
of predicted items to be presented to the users, 
which is a key usability factor of prediction sys-
tems.  

We evaluated the hit rates on the following test 
sets: 

• SPECIALISTS: A collection of context 
specific conversational phrases recom-
mended by AAC professionals2. 966 sen-
tences, 3814 words. Out-of-vocabulary 
(OOV) rate: 0.05%. 

• COMM: A collection of sentences written 
by college students in response to 10 hypo-
thetical communication situations 
(Venkatagiri, 1999). 251 sentences, 1789 
words. OOV rate: 0.3%. 

• SWITCHTEST: Three telephone tran-
scripts taken from the Switchboard corpus, 
used in Trnka et al. (2009). 59 sentences, 
508 words. OOV rate: 0.4%. 

These three test sets are used throughout this pa-
per. For each sentence in the test sets, we generat-
                                                             
2 http://aac.unl.edu/vocabulary.html, accessed 4 September 
2011 

ed its pronunciation string using the PHONICS 
dictionary. During this generation, any time we 
encountered a word with multiple pronunciations, 
we chose a pronunciation at random. We manually 
added pronunciations for OOV words. The gener-
ated pronunciations were used to calculate the hit 
rates in the SCHWA_ON mode. We then created a 
‘non-schwa’ version of each pronunciation string, 
in which we removed all schwa occurrences by 
either deleting them or replacing them with appro-
priate vowels in the PHONICS set. The ‘non-
schwa’ pronunciations were used to calculate the 
hit rates in the SCHWA_OFF mode. 

As shown in Figure 1, the hit rate improved as 
the prediction list length (L) increased in both the 
SCHWA_OFF and SCHWA_ON modes for all the 
three test sets. For most L values, the system per-
formed the best on the SPECIALISTS test set and 
the worst on the SWITCHTEST set. At L=1, the 
average hit rates for the three test sets were 47.1% 
in the SCHWA_OFF mode and 50.1% in the 
SWITCH_ON mode. At L=5 (which is the length 
usually offered in prediction systems), the average 
hit rate increased to 76.2% in the SCHWA_OFF 
mode and 78.4% in the SCHWA_ON mode. At 
L=15, the system reached high average hit rates of 
93.6% in the SCHWA_OFF mode and 94.3% in 
the SCHWA_ON mode. 

The SCHWA_ON mode achieved higher hit 
rates than the SCHWA_OFF mode for all L values. 
However, the hit rate differences between these 
two modes tended to diminish as L increased. At 
L=1, the average difference for the three test sets 
was 3.0%. At L=5, the average difference reduced 
to 2.2%. At L=15, the average difference was very 
small, at 0.7%. 
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Figure 2. Hit rates of the word prediction for prediction list lengths 1-15 in the SWCHA_ON and SCHWA_OFF 
modes for 1-phoneme and 2-phoneme prefixes. Results on the SPECIALISTS, COMM, and SWITCHTEST test 
sets. 

3.4 Phoneme-based Word Prediction 

We used a publicly available 3-gram word mixture 
model3, which was created from three 3-gram 
models trained on AAC-like data from Twitter, 
Blog, and Usenet (Vertanen and Kristensson, 
2011). Although a 4-gram model trained on the 
same datasets is also available, it was not used in 
our system as it has been shown to only slightly 
outperform the 3-gram model at the cost of a much 
bigger model size (Vertanen and Kristensson, 
2011). Our aim is to keep our prediction system’s 
size reasonably small, thereby allowing it to be 
easily integrated into devices with limited re-
sources, such as mobile devices. 

To perform word prediction given a phoneme 
prefix, we first search for a set of matching words 
in the PHONICS dictionary. In the SCHWA_OFF 
mode, the phoneme prefix is input to the auto-
correction function to generate alternative prefixes, 
which are then used to look up matching words in 
the dictionary. If there is no matching word, an 
unknown word (denoted as <unk>) is returned. 
The matching words are then input to the word 
model to calculate their probabilities based on up 
to two prior words. 

3.4.1 Hit Rate 

We computed the hit rate (HR) of word prediction 
for prediction list lengths 1-15 in two conditions: 
(1) after the first phoneme is entered, (2) after the 
first two phonemes are entered: 

                                                             
3 
http://www.aactext.org/imagine/lm_mix_top3_3gram_abs0.0.
arpa.gz 

HR =
  

€ 

Number of times the word is predicted
Number of words

×100% 

Figure 2 shows the hit rates of word prediction in 
the SCHWA_OFF and SCHWA_ON modes on the 
three test sets. As expected, the hit rates improved 
as the prediction list length (L) increased. Table 1 
summarizes the average hit rates for several list 
lengths for 1-phoneme and 2-phoneme prefixes. At 
L=5, the average hit rates were 92.5% in the 
SCHWA_OFF mode and 93.2% in the 
SCHWA_ON mode after the first two phonemes 
are entered. This means that in most cases, the in-
tended word is predicted after two keystrokes. The 
SCHWA_ON mode achieved higher hit rates than 
the SCHWA_OFF mode in all cases. However, the 
hit rate differences between these two modes were 
very small (<1%), which implies that our auto-
correction mechanism was effective. 
 

L 
SCHWA_OFF SCHWA_ON 

1-
phoneme 

2-
phoneme 

1-
phoneme 

2-
phoneme 

1 55.6% 80.4% 55.9% 80.8% 
5 79.0% 92.5% 79.7% 93.2% 

10 86.0% 94.5% 86.2% 95.0% 
15 88.0% 95.1% 88.3% 95.8% 

 
Table 1. Average hit rates of word prediction. 

4 Theoretical Evaluation 

AAC users with physical impairments often expe-
rience difficulties in accessing a large number of 
keys on conventional full-sized keyboards.  To 
address this problem, previous research has pro-
posed the use of reduced keyboards (i.e. keyboards 
on which each key is assigned a group of charac-
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ters, such as the 12-key mobile phone keyboard) 
(Arnott and Javed, 1992; Kushler, 1998). Character 
prediction and word prediction can be applied to 
these keyboards to disambiguate characters on 
each key. We adopted this idea by creating a hypo-
thetical 12-key phoneme keyboard and evaluated 
the benefits of incorporating phoneme prediction 
and word prediction into the keyboard. 

4.1 Phoneme-based Predictive Interface 

Our 12-key phoneme keyboard contains 8 pho-
neme keys, which represent 3 vowel groups and 5 
consonant groups. These groups, introduced in the 
PhonicStick™ talking joystick (Black et al., 2008; 
Lindström and Peronius, 2010), are formed accord-
ing to the manner of articulation of the phonemes 
(see Figure 3a). Each key represents three to seven 
phonemes; the schwa phoneme is excluded. The 
phonemes on each key are initially arranged ac-
cording to the unigram probabilities estimated by 
our phoneme language model.  
 

 
Figure 3. Phoneme-based reduced keyboard. 

 
The keyboard provides two phoneme entry 

modes, namely the MULTITAP and the 
PREDICTIVE modes. In the MULTITAP mode, 
the user enters a phoneme by pressing a corre-
sponding key repeatedly until the intended pho-
neme appears (e.g. pressing the ‘Unvoiced 
Plosives’ key 3 times to enter /p/). In the 
PREDICTIVE mode, the keyboard utilizes our 
prediction system in its SCHWA_OFF mode to 
predict probable next phonemes and words. Each 
time the user presses a key the phoneme prediction 
is applied to guess which of the possible phonemes 
on the pressed key is actually the user’s intended 
phoneme. If the prediction is incorrect, the user can 
repeatedly press the NEXT key until the correct 

phoneme is selected. After each phoneme selec-
tion, we present a list of up to 5 predicted words. 
We only offer word predictions after the first pho-
neme of a new word is entered. If the intended 
word appears in the prediction list, we assume it 
takes one keystroke for the user to add the word 
and a following space to the current sentence (this 
can be implemented using automatic scanning 
(Glennen and DeCoste, 1997)). 

4.2 Results 

We evaluated our prediction system using two 
commonly used metrics: keystroke savings and 
keystrokes per character. 

4.2.1 Keystroke Savings 

Keystroke Savings (KS) is defined as the percent-
age of keystrokes that the user saves by using pre-
diction methods compared to using the 
MULTITAP method: 

  

€ 

KS = 1− PREDICTIONKeystrokes

MULTITAPKeystrokes

# 

$ 

% 
% 

& 

' 

( 
( 
×100%

 
We computed KS on the three test sets for three 
methods: (1) only phoneme prediction (PP), (2) 
only word prediction (WP), (3) combined phoneme 
prediction and word prediction (PP+WP) (i.e. the 
PREDICTIVE mode).  

As shown in Figure 4, a combined phoneme and 
word prediction method performed the best with an 
average keystroke savings of 56.3%. Using only 
word prediction led to a 46.4% average KS while 
using only phoneme prediction resulted in 29.9% 
average KS. 

 

 
Figure 4. Keystroke Savings (KS) for prediction meth-
ods on three test sets. 
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4.2.2 Keystrokes Per Character 

Keystrokes per character (KSPC) is defined as the 
average number of keystrokes required to produce 
a character in the test set: 

  

€ 

KSPC=
Keystrokes

Number of characters (including spaces) 
The evaluation of KSPC allows us to compare our 
keyboard with existing character-based reduced 
keyboards. We computed the KSPC for four meth-
ods: (1) MULTITAP, (2) PP, (3) WP, (4) PP+WP. 
For comparison, we also calculated the KSPC for a 
standard 12-key mobile phone alphabetic keyboard 
(Figure 3b), which uses the character-based multi-
tap method for text entry.  

As shown in Figure 5, our frequency-based pho-
neme keyboard outperformed the standard mobile 
phone keyboard even when no prediction methods 
are applied (i.e. in the MULTITAP mode) (see 
Figure 5). At an average KSPC of 1.568, our key-
board required 19.1% fewer keystrokes per charac-
ter than the mobile phone multitap keyboard 
(KSPC=1.937). There are two reasons that might 
explain this result. First, on average one phoneme 
represents more than one character (in our diction-
ary, the character/phoneme ratio is 1.208). Second, 
our keyboard’s phonemes were initially ordered by 
the unigram frequencies.  

When applying only phoneme prediction, the av-
erage KSPC decreased to 1.100, which closely ap-
proaches the KSPC of a QWERTY keyboard 
(KSPC=1). The KSPC further reduced to 0.841 
with solely word prediction and 0.685 with com-
bined phoneme and word prediction.  

 
Figure 5. Keystrokes Per Character (KSPC) for different 
text entry methods on three test sets. 

5 Conclusions and Future Work 

In this paper we have described how statistical lan-
guage modeling techniques can be used to provide 

phoneme prediction and word prediction for pho-
neme-based AAC systems. Using hit rate meas-
urement we demonstrated how the prediction 
accuracy improved as the prediction list length in-
creased. However, a large prediction list might re-
sult in an increased time and cognitive workload 
required from the user to scan the list and select the 
desired item. Therefore, hit rate data need to be 
combined with empirical experiments with real 
users in order to determine an appropriate predic-
tion list length.  

We evaluated our prediction system on a 12-key 
phoneme keyboard, in which phonemes are 
grouped based on the manner of articulation and 
ordered using our phoneme unigram frequencies. 
We showed that we could achieve a potential key-
stroke savings of 56.3% by applying a combined 
phoneme and word prediction to our keyboard. 
Using word prediction alone proved to be more 
effective than using phoneme prediction alone, in 
terms of keystroke savings. 

 We plan to take this work forward by exploring 
two complementary research directions. 

 First, we plan to conduct empirical experiments 
with a group of AAC users to evaluate the usability 
of our phoneme predictive keyboard. We are inter-
ested in finding out if the potential keystroke sav-
ings can be translated into an actual keystroke 
savings and communication rate enhancement. In 
addition, we will analyze user’s errors in phoneme 
selection, which can be used to produce a more 
advanced auto-correction method.  

Second, we will explore how our prediction sys-
tem can be integrated into existing phoneme-based 
AAC systems rather than our reduced keyboard. In 
particular, we will focus on the REACH Sound-It-
Out Phonetic Keyboard™ (Schroeder, 2005), 
which uses a different phoneme set than our 
PHONICS set, and the PhonicStick™ (Black et al., 
2008), which has the same phoneme groupings as 
our keyboard. 

Finally, we will investigate how NLP techniques, 
such as the joint-multigram model (Bisani and 
Ney, 2008), can be applied to automatically gener-
ate orthographic spellings for OOV words. Our 
current system simply uses a <unk> placeholder 
for OOV words. While these words can still be 
spoken out by synthesizing their phoneme strings, 
it is potentially more beneficial to suggest actual 
spellings than to use such a placeholder. 
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Abstract

Most icon-based augmentative and alternative
communication (AAC) devices require users
to formulate messages in syntactic order in
order to produce syntactic utterances. Re-
liance on syntactic ordering, however, may
not be appropriate for individuals with lim-
ited or emerging literacy skills. Some of these
users may benefit from unordered message
formulation accompanied by automatic mes-
sage expansion to generate syntactically cor-
rect messages. Facilitating communication via
unordered message formulation, however, re-
quires new methods of prediction. This pa-
per describes a novel approach to word predic-
tion using semantic grams, or “sem-grams,”
which provide relational information about
message components regardless of word or-
der. Performance of four word-level predic-
tion algorithms, two based on sem-grams and
two based on n-grams, were compared on a
corpus of informal blogs. Results showed
that sem-grams yield accurate word predic-
tion, but lack prediction coverage. Hybrid
methods that combine n-gram and sem-gram
approaches may be viable for unordered pre-
diction in AAC.

1 Introduction

Many individuals with severe speech impairments
rely on augmentative and alternative communica-
tion (AAC) devices to convey their thoughts and
desires. Those with limited or emerging literacy
skills may use icon-based systems, which often re-
quire that vocabulary items be selected in syntac-
tic order to generate syntactically well-formed mes-

sages; however, selecting vocabulary items serially
and in syntactic order can be physically and cogni-
tively arduous depending on the icon organization
scheme (Udwin and Yule, 1990). Moreover, AAC
productions are often syntactically incomplete or in-
correct (Van Balkom and Welle Donker-Gimbrere,
1996), perhaps for efficiency or due to limited lin-
guistic abilities. For many users, unordered vocabu-
lary selection may alleviate the physical and cogni-
tive demands of message formulation and shift the
onus of generating syntactically complete and ac-
curate messages onto the AAC device. Although
unordered message formulation schemes have been
proposed (Karberis and Kouroupetroglou, 2002; Pa-
tel et al., 2004) and techniques have been devel-
oped for expanding incomplete input (McCoy et al.,
1998), prediction has not been incorporated. This
paper presents an initial step toward text prediction
from a set of unordered vocabulary selections.

Rate enhancement is a commonly cited issue in
AAC because aided message formulation rates are
an order of magnitude slower than spoken interac-
tion (Beukelman and Mirenda, 1998). Prediction
is a common rate enhancement technique. Text
prediction for AAC has primarily focused on well-
ordered, syntactic input and has leveraged both se-
mantic characteristics (Demasco and McCoy, 1992;
Li and Hirst, 2005; Nikolova et al., 2010) and vari-
ations of n-grams (Lesher et al., 1998; Trnka et al.,
2006). For example, semantic networks and linguis-
tic rules have been used to predict missing function
words and to apply affixes to content words (McCoy
et al., 1998). The use of n-grams to predict text en-
try has been extensively studied at both the level of
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letters (Broerse and Zwaan, 1966; Suen, 1979; How
and Kan, 2005) and words (Bickel et al., 2005). For
example, memory based language models have been
used to predict missing content words using trigrams
(Van Den Bosch, 2006). Although some recent work
has attempted to loosen syntactic requirements by
including either left or right context, some direc-
tional context has historically been required (Van
Den Bosch and Berck, 2009). Furthermore, word
prediction approaches in AAC have typically been
implemented for letter-by-letter message formula-
tion (Koester and Levine, 1996; Koester and Levine,
1997; Lesher and Rinkus, 2002; Higginbotham et
al., 2009). The current work is fundamentally novel
in that: (1) no syntactic order is implied or required
during either training or testing; and (2) the predic-
tion is implemented at word level to accommodate
icon-based interaction.

Previous work in information retrieval has ex-
plored relationships between words with regard to
distance (Lin and Hovy, 2003; Lv and Zhai, 2009),
grammatical purpose (Tzoukermann et al., 1997; Al-
lan and Raghavan, 2002), and semantic characteris-
tics (Westerman and Cribbin, 2000; Fang and Zhai,
2006; Hemayati et al., 2007), particularly for re-
trieving highly relevant documents or passages. One
study in this area resulted in an approach called s-
grams, a generalization of n-grams, in which the
distance between words directly affects the strength
of their semantic relationship (Järvelin et al., 2007).
Another approach to predicting semantically related
words is to use collocation to indicate topic changes
within a moving window of fixed length (Matiasek
and Baroni, 2003). Rather than relying on distance
to indicate relationship strength, the current work
combines frequency analysis with syntactic indica-
tions of semantic coherence.

1.1 Semantic Grams

Semantic grams, or “sem-grams,” provide an alter-
native approach to quantifying the relationship be-
tween co-occurring words. A sem-gram is defined
as a multiset of words that can appear together in a
sentence (Table 1). In English, a sentence is one of
the smallest units of language that is typically both
coherent, in terms of semantic content, and cohesive,
in that the semantic content is inter-related. Addi-
tionally, because sentences are demarcated with syn-

Table 1: Example of Sem-Grams of Length 2
Sentence: “I like to play chess with my brother.”

Filtered Words: i, like, play, chess, brother
Sem-grams and Counts:

brother, chess (1) brother, i (1)
brother, like (1) brother, play (1)
chess, i (1) chess, like (1)
chess, play (1) i, like (1)
i, play (1) like, play (1)

tactic cues such as punctuation, semantically related
items can be efficiently identified using sentence
boundary detection (Kiss and Strunk, 2006). Thus,
sem-grams leverage sentence-level co-occurrence to
extract semantic content at different levels of gran-
ularity, depending on the allowable lengths of mul-
tisets. Sem-grams can be viewed as non-directional
s-grams with a uniform weight applied to all rela-
tionships between any words in a given sentence.

In a sentence of length L (in words), the number
of n-grams of length n (in words), where L ≥ n, is
given by the expression L − n + 3, which includes
the beginning and ending n-grams that contain null
elements. By contrast, the number of sem-grams of
length n is given by the expression

(L
n

)
. Thus, there

will typically be many more sem-grams of length n
in a single sentence than n-grams of the same length.
Unlike n-grams, it is not necessary for sem-grams to
contain null elements because a sem-gram of length
S with a null element is equivalent to a sem-gram of
length S − 1 without null elements. Sem-grams of
length one, containing a single word, are equivalent
to the prior probability of that word.

1.2 Prediction Algorithms

Unordered word prediction poses the following
problem: given a multiset of existing words E that
have already been selected by a user and a set of can-
didate words C that the user may select from, which
candidate word c ∈ C is the user most likely to se-
lect in order to complete the message? As an initial
step toward addressing this problem, the following
four algorithms, two based on sem-grams and two
based on n-grams, were compared:

S1: Naive Bayesian Sem-grams Given existing
words E, rank all candidate words c ∈ C in de-
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scending order of probability according to:

P (c|E) = P (c)
∏

w∈E

P (w|c)

S1 is a modification of the Bayesian ranking of
sem-grams in that it assumes independence of ex-
isting words to each other, conditional on the given
candidate word. Using true Bayesian probabili-
ties for sem-grams, the probability of a candidate
word could be represented as the following for each
P (c|E), given w ∈ E and |E| = 3:

P (c)P (w1|c, w2, w3)P (w2|c, w3)P (w3|c)
P (w1, w2, w3)

The exact form of this equation depends on the or-
dering branch chosen, but it also requires joint prob-
abilities for sem-grams of different lengths. Assum-
ing conditional independence of the existing words
to each other, S1 only requires sem-grams of length
two.

S2: Independent Sem-grams Given existing
words E, rank all candidate words c ∈ C in de-
scending order of probability according to:

P (c|E) =
∏

w∈E

P (w, c)

The approach of S2 is a “hand of cards” approach
that treats the message formulation task as a random
drawing of sem-grams from a pool. While the for-
mula above is specified for sem-grams of length 2, it
can be extended to support sem-grams of any length.

N1: Naive Bayesian N-grams Given existing
words E, rank all candidate words c ∈ C in de-
scending order of probability according to:

P (c|E) = P (c)
∏

w∈E

P (w|c)

N1 is a copy of S1, except that the definition of the
joint probability P (w, c) includes the counts for n-
grams that contain both w and c, regardless of order.
This algorithm was designed to compare whether the
information provided by n-grams can be used to ap-
proximate the information provided by sem-grams.
N1 assigns high ranks to candidate words that are
likely to appear adjacent to all other words in the
sentence.

N2: Applied N-grams Given existing words E,
rank all candidate words c ∈ C in descending order
of probability according to:

P (c|E) =
∑
w∈E

P (w, c)

N2 is designed to leverage the strength of n-grams
and rank candidate words based on the probability
of them appearing adjacent to any of the existing
words. N2 uses the same definition of joint prob-
ability as N1, where P (w, c) includes the counts for
n-grams that contain both w and c, irrespective of
order.

2 Method

2.1 Corpus Selection and Preparation

Given the lack of large corpora of AAC message for-
mulations (Lesher and Sanelli, 2000), approxima-
tions have often been used (Wandmacher and An-
toine, 2006; Trnka and McCoy, 2007). Despite re-
cent efforts to create AAC-like corpora (Vertanen
and Kristensson, 2011), statistical prediction is of-
ten more effective with larger data sets. The Blog
Authorship Corpus (Schler et al., 2006) was se-
lected because it is freely available and tends to be
written in an informal style, such as might be seen
in diary entries or personal emails. The corpus is
both large and diverse, comprising over 140 million
words written by 19,320 bloggers in August 2004.
The bloggers ranged in age from 13 - 48 and were
equally divided between males and females.

To prepare the corpus, all blog posts were ex-
tracted as ASCII text. Every blog post was split into
sentences using the PunktSentenceTokenizer (Kiss
and Strunk, 2006) of the Natural Language Toolkit
(NLTK) (Bird et al., 2009) and then split into words
using the following regular expression:

\w+(\w*([\-\’\.]\w+)*)*

English stop words were removed according to
a popular list (Ranks, 2012) and remaining words
were stemmed using the NLTK’s PorterStemmer,
which is a modified implementation of the original
Porter stemming algorithm (Porter, 1997). Finally,
all stemmed words were examined for membership
in a stemmed American-English dictionary (Ward,
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Table 2: Sample Test Results for N1 and S1
Original Sentence: “but i went to church yesterday with the fam.”
Target Stem: went
Input Stems: yesterday, church
N1 Candidate List: went, morn, today, go, attend, work, afternoon, church, got, day, back, ...
S1 Candidate List: went, go, church, today, got, day, like, time, just, well, one, get, peopl, ...
Original Sentence: “You never see signs like that in cities.”
Target Stem: like
Input Stems: never, see, sign, citi
N1 Candidate List: just, show, sign, realli, say, want, go, seen, thought, hall, citi, live, ...
S1 Candidate List: never, will, like, can, go, love, one, just, know, want, get, live, time, ...
Original Sentence: “This semester Im taking six classes.”
Target Stem: class
Input Stems: take, semest, six
N1 Candidate List: next, month, class, hour, last, second, week, year, first, five, flag, ...
S1 Candidate List: class, month, year, last, time, one, go, day, get, school, will, first, ...
Original Sentence: “Hey, they’re in first, by a game and a half over the Yankees.”
Target Stem: game
Input Stems: yanke, hey, first, half
N1 Candidate List: game, stadium, like, hour, time, year, day, guy, hey, fan, say, one, two, ...
S1 Candidate List: game, got, like, red, time, play, team, sox, hour, go, fan, one, get, day, ...
Note: Uncommon spelling (e.g. semest) is due to stemming.

2002). Any stemmed words not found in the dictio-
nary were removed to further constrain the vocabu-
lary and account for spelling errors and nonsensical
text.

The corpus was then randomly split into a train-
ing and testing set based on authorship, with 80%
of the authors (15,451) being placed in the training
set and 20% of the authors (3,871) being placed in
the testing set. The training set comprised over 7
million sentences written by 7,682 males and 7,768
females with a combined average age of 22 years.
All n-gram and sem-gram statistics, with plus-one
smoothing, were gathered using only sentences in
the training set and both n-grams and sem-grams
were limited to a word length of 2 (bigrams).

2.2 Evaluation
Testing was conducted on 2,000 sentences that were
randomly selected from the test corpus. The same
processing steps used during training were per-
formed on the test sentences: stop words were re-
moved, the remaining words were stemmed, and all
stems not in the dictionary were filtered out. To
avoid run-on sentences and sentence boundary de-

tection errors, all test sentences were also truncated
to a maximum of 20 words. The words in each test
sentence were then shuffled and one word was re-
moved at random and designated as the target word.
Each of the four algorithms were provided the shuf-
fled words as input; as output, each algorithm at-
tempted to identify the target word by generating a
ranked list of candidates (Table 2).

In addition to the shuffled multiset of input words,
each algorithm required a seed list of candidate
words. Ideally, all known words in the corpus would
be used as candidate words. To constrain the com-
putational requirements, the two algorithms based
on n-grams (N1 and N2) were provided with the list
of most frequently co-occurring words that appeared
as n-grams with any of the multiset of input words,
limited to the top 10 n-grams for a given input word.
Similarly, each sem-gram algorithm (S1 and S2) re-
ceived a list of most frequently co-occurring words
that appeared as sem-grams with any of the multiset
of input words, limited to the top 10 sem-grams for
a given input word. With a limit of 19 input words
(20 minus the target word), each algorithm received
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at most 190 unique candidate words to rank.
Two evaluation metrics were used to quantify the

performance of each algorithm: (1) a boolean value
that was true if the output list contained the target
word in any position, indicating that the target word
had been successfully predicted; (2) if the algorithm
successfully predicted the target word, the algorithm
received a positive integer score corresponding to
the position of the target word in the output list,
with lower scores indicating more accurate predic-
tion. For example, if an algorithm suggested the tar-
get word as the first item in its ranked list, it received
a score of 1; if it suggested the target word as the
second item in its ranked list, it received a score of
2. For computational convenience, the output lists of
each algorithm were truncated to the first 100 items;
thus, if an algorithm’s output list contained the tar-
get word in a position after 100, it was marked as
failing to predict the target word.

3 Results

The n-gram algorithms successfully predicted 32%
of the 2,000 test sentences while the sem-gram al-
gorithms successfully predicted 22% (Table 3). Al-
though both n-gram algorithms performed similarly,
N1 consistently predicted the target word more ac-
curately than N2. On average, N1 suggested the tar-
get word as the 16th word in its ranked list, where
N2 suggested the target word as the 20th word in its
list. While the sem-gram algorithms predicted fewer
sentences than the n-gram algorithms, they were al-
most twice as accurate on sentences that they did
predict. On average, S1 suggested the target word
as the 9th word in its ranked list; for S2, the target
word was the 13th item.

To further compare the effectiveness of sem-
grams and n-grams, sentences were grouped accord-
ing to their input length, from 1 to 19 words, and
statistics were gathered for each algorithm on each
sentence length (Table 4). For test sentences in
which the algorithms were only given a single in-
put word, both n-gram algorithms ranked the tar-
get word at least one full ranking higher than ei-
ther sem-gram algorithm, thus giving more accu-
rate predictions. For all other sentence lengths, the
sem-gram algorithms were more accurate. Between
the n-gram algorithms, N1 consistently predicted the

Table 3: Summary of Results
N1 N2 S1 S2

Sentences 2000 2000 2000 2000
# Predicted 647 649 435 435

% Predicted 32% 32% 22% 22%
Avg Score 16.26 19.70 9.04 12.67

target word more accurately and more often than N2.
Similarly, S1 consistently predicted the target word
more accurately and more often than S2.

For every input sentence length greater than one,
S1 outperformed N1 in all gathered metrics. When
comparing the prediction accuracy of N1 and S1,
S1’s prediction accuracy was also more stable, with
N1’s prediction accuracy continuing to degrade as
the length of the input sentence increased (Figure 1).

4 Discussion

Message formulation using AAC devices has histor-
ically relied on serial selection of letters or words
(icons). To produce syntactically correct messages
for icon-based AAC, selection is often required to
proceed in syntactic order. The current work aimed
to facilitate unordered vocabulary selection through
the use of text prediction. Results indicate that word
prediction for unordered message formulation is vi-
able using statistical approaches. Although the n-
gram algorithms predicted a larger number of test
sentences than the sem-gram algorithms, evalua-
tion of the ranked output indicated that the sem-
gram approaches were more accurate. Because n-
grams assume that adjacent words are strongly re-
lated, it was expected that n-grams would provide
more accurate prediction for shorter sentences; how-
ever, this advantage was not maintained as sentence
length increased beyond two words. Prediction ac-
curacy is likely to be more important in AAC de-
vices because the cognitive demands of choosing
from prediction lists can sometimes outweigh rate
enhancements (Koester and Levine, 1996; Koester
and Levine, 1997).

The use of bigrams may have resulted in poor ac-
curacy of the n-gram algorithms because there were
many more sem-grams than n-grams of length 2. In-
creasing n-gram length, up to a cardinality equal to
the number of sem-grams of length 2, could allow n-
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Table 4: Prediction Coverage (%) and Average Scores by Sentence Length
# Words N1 % N1 Avg S1 % S1 Avg N2 % N2 Avg S2 % S2 Avg

1 20.88% 3.44 12.05% 4.47 20.88% 3.42 12.05% 4.47
2 26.55% 6.07 19.47% 5.89 26.55% 6.32 19.47% 6.23
3 22.22% 7.64 16.89% 6.87 22.22% 9.82 16.89% 9.84
4 32.11% 10.46 22.94% 7.62 32.11% 11.91 22.94% 9.94
5 31.25% 12.13 21.88% 6.14 31.25% 14.02 21.88% 9.14
6 38.18% 15.25 26.67% 8.75 38.18% 17.68 26.67% 12.11
7 42.86% 16.17 29.46% 9.52 42.86% 21.77 29.46% 12.73
8 39.60% 18.08 25.74% 11.15 39.60% 22.00 25.74% 15.73
9 29.11% 19.13 20.25% 11.31 29.11% 23.48 20.25% 17.88

10 44.74% 24.47 35.53% 10.52 44.74% 23.56 35.53% 16.22
11 38.46% 28.55 26.92% 15.21 38.46% 26.80 26.92% 17.93
12 46.00% 23.39 14.00% 13.71 46.00% 41.26 14.00% 9.14
13 38.46% 24.47 25.64% 14.30 38.46% 34.07 25.64% 15.90
14 29.41% 26.30 14.71% 10.80 29.41% 39.10 14.71% 26.20
15 46.67% 32.14 20.00% 16.17 46.67% 36.79 20.00% 15.17
16 47.62% 25.70 28.57% 12.83 47.62% 30.50 28.57% 12.67
17 53.85% 23.14 38.46% 12.20 53.85% 35.14 38.46% 21.40
18 40.95% 38.35 25.71% 13.56 42.86% 43.07 25.71% 25.11
19 38.46% 23.80 38.46% 11.00 38.46% 52.40 38.46% 32.00

gram algorithms to potentially match or surpass the
prediction accuracy of sem-grams. For unordered
word prediction, this larger set of n-grams would
need to be indexed in an order-independent man-
ner, which would further increase computational de-
mands. Such prediction lags, however, are unlikely
to be tolerated by users as they engage in interactive
tasks (Higginbotham et al., 2009).

Of the two n-gram algorithms, N1 outperformed
N2 on both prediction coverage and accuracy. It was
hypothesized, however, that N2 would yield more
accurate predictions because the target word was de-
fined to be adjacent to at least one of the input words.
It was expected that N1 would unfairly reward can-
didate words that had appeared adjacent to each in-
put word in the training set, while punishing more
desirable candidate words that had not appeared ad-
jacent to some of the input words. Perhaps this bias
was not evident in the current corpus because plus-
one smoothing removed all zero probabilities for
adjacency likelihoods. Additionally, N1 may have
been more successful because it favored candidates
that were related to all input words rather than can-
didates that were strongly related to just a subset of

the input words.

Despite the encouraging prediction coverage of
n-grams and the prediction accuracy of sem-grams,
approximately two-thirds of the test sentences were
not predicted by any of the algorithms. One possible
explanation may relate to the decision to seed each
algorithm with only the top 10 most frequent words
that co-occurred with each input word. Ideally,
each algorithm would have considered all words in
the vocabulary as candidate words; however, be-
cause there were almost 40,000 unique stems in the
processed corpus, the computational requirements
were prohibitive for this initial implementation. An
open empirical question is whether increasing the
seed values to include a larger set of co-occurring
words would result in greater prediction coverage.
It should be noted, however, that while seeding sem-
grams with more candidate words may improve pre-
diction coverage, it is unlikely to increase prediction
accuracy for the n-gram approaches.

Icon-based AAC devices typically have active
vocabularies with much fewer than 40,000 words,
which may negate the need for seeding candidate
words. For example, two commonly used icon
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Figure 1: Average score per sentence length for both N1
and S1 (lower scores indicate more accurate prediction).

sets, the Widgit Symbol Set and the Mayer-Johnson
Picture Communication Symbol collection, each
contain approximately 11,000 icons (Widgit, 2012;
Mayer-Johnson, 2012). While a large dictionary was
used in this work to provide a conservative estimate
of prediction performance, it is possible that using
a smaller and more representative AAC vocabulary
would improve prediction coverage and accuracy.
Additionally, restricting vocabulary size would also
reduce computational demands, making it more fea-
sible to use all vocabulary words as candidates.

5 Conclusion and Future Directions

The current work provides a promising approach to
word prediction for AAC users who may benefit
from unordered message formulation. Sem-grams
make use of co-occurrence between words within a
sentence to improve prediction accuracy. While n-
grams have historically provided a strong founda-
tion for word prediction in letter-by-letter systems,
results indicate that they can also be used for un-
ordered word prediction, although they are not as ac-
curate as sem-grams. A hybrid approach that seeds
both types of algorithms with a superset of can-
didate words and merges the prediction lists may
simultaneously exhibit the wide prediction cover-
age of n-grams and the high prediction accuracy of
sem-grams. Such a hybrid approach could enhance
the speed of unordered message formulation and in-
crease social engagement.

Additional improvements to this work may be
possible using the breadth of information available
within well-documented and comprehensive cor-

pora. For example, while the Blog Authorship Cor-
pus included age and gender information about each
blogger, this information was not used in the present
study. To tailor prediction to individual users, it
may be possible to limit the available vocabulary and
gram-based statistics to information gathered from
users of similar age and gender. This may improve
prediction accuracy for both n-gram and sem-gram
algorithms, as well as provide an approach to de-
signing icon-based AAC devices that can evolve and
adapt to users as their needs and abilities mature, po-
tentially even suggesting new vocabulary words as
the users age.
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Abstract 

The number of people with dementia of the Alzheimer's 

type (DAT) continues to grow. One of the significant 

impacts of this disease is a decline in the ability to 

communicate using natural language. This decline in 

language facility often results in decreased social inter-

action and life satisfaction for persons with DAT and 

their caregivers. One possible strategy to lessen the ef-

fects of this loss of language facility is for the unaffect-

ed conversational partner (Facilitator) to "co-construct" 

short autobiographical stories from the life of the DAT-

affected conversational partner (Storyteller).  It has been 

observed that a skilled conversational partner can facili-

tate co-constructed narrative with individuals who have 

mild to moderate DAT.  Developing a computational 

model of this type of co-constructed narrative would 

enable assistive technology to be developed that can 

monitor a conversation between a Storyteller and Facili-

tator. This technology could provide context-sensitive 

suggestions to an unskilled Facilitator to help maintain 

the flow of conversation. This paper describes a frame-

work in which the necessary computational model of 

co-constructed narrative can be developed. An analysis 

of the fundamental elements of such a model will be 

presented.   

1 Introduction 

 

According to the Alzheimer’s Association 

[2009], 13% of Americans over the age of 65 pre-

sent with AD [Alzheimer’s Disease]. The decline 

in language associated with AD can result in de-

creased social interaction and life satisfaction for 

persons with AD and their caregivers.  In particu-

lar, persons with AD begin to feel a loss of their 

personal identity.  “Reminiscent therapy is an ex-

ample of an intervention activity that can reveal 

and support a person’s identity. Even the family 

can participate and play a major role to support 

their relative” (Cohene et al. 2005).  

 

It has been suggested that if caregivers can learn 

communication techniques to enhance social con-

versation with individuals affected by dementia of 

the Alzheimer’s type (DAT), it may make a signif-

icant difference in the quality of life of the persons 

with DAT, as well as reduce stress on their care-

givers (Dijkstra et al. 2004). One recommended 

technique (Moore and Davis 2002; Waller 2006) is 

for the unaffected conversational partner (called 

the Facilitator in this paper) to “co-construct” short 

autobiographical vignettes with the DAT-affected 

conversational partner (called the Storyteller in this 

paper). Typically, such “small stories” (Bamberg 

and Georgakopoulou 2008) present the teller’s 

self-identity (e.g., hard-working, frugal, etc.). Ac-

cording to Cheepen (1988), co-constructed narra-

tive is common in social conversation. 

Furthermore, skilled conversational partners can 

facilitate co-constructed narrative with individuals 

who have mild to moderate DAT (Davis 2005; Da-

vis & Maclagan 2009; Davis 2010). A co-

constructed narrative produced by a person with 

DAT in conversation with skilled Facilitators is 

illustrated in Figure 1.  Increased social interaction 

can improve quality of life by enabling persons 

with DAT to remain socially engaged, which in 

turn may reduce their health problems as well as 

delay memory loss (Davis and Pope 2009; Len-

chuk and Swain 2010). 
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Figure 1. An excerpt from Shenk et al. (2002, p. 409) of 

a conversation between GM, a person with early moder-

ate DAT, and her skilled conversational partners BD 

and LM. We added annotations highlighting narrative 

elements (Labov 1972). 

 

 

While there have been several notable efforts in 

the area of communication training for caregivers 

of persons with DAT (see section 2.1), none have 

focused on assistive technology for improving 

communication in real-time as the conversation is 

occurring.  This paper presents a framework for 

developing a natural language processing system, 

ASSIST (Assistive Story Intervention Technolo-

gy), which can listen to the conversation between a 

person with DAT and his conversational partner 

and provide context-sensitive suggestions to the 

unaffected participant to help maintain the flow of 

conversation. In particular, ASSIST will help the 

unaffected partner to co-construct the autobio-

graphical stories of the participant with DAT.  To 

build a system such as ASSIST will require devel-

opment of a novel computational model of narra-

tive co-construction and other communication-

enhancing techniques for conversation with per-

sons with DAT.  After reviewing related research 

efforts, we present an analysis of the unique ele-

ments of the required computational model includ-

ing an NLU component designed to interpret the 

sometimes disfluent utterances of a Storyteller with 

DAT, a Dialogue/Story Manager which recognizes 

the discourse goals of the Storyteller and plans dia-

logue acts that the Facilitator could use to co-

construct the narrative, and an NLG/Coach that 

provides the Facilitator with suggestions on what 

to say next to co-construct the narrative and sustain 

the conversation.    

2 Related Research 

2.1 DAT Caregiver Communication 

For the most part, communication training for 

caregivers of persons with DAT has used non-

technological modes of active instruction such as 

role playing with human trainers (Ripich et al. 

1998, Burgio et al. 2001) and individualized one-

on-one coaching (McCallion et al. 1999, Bourgeois 

et al. 2004). Irvine et al. (2003) describe a comput-

er program that enables a user to observe videos of 

conversations in which nurse aids demonstrate use 

of recommended communication techniques in 

conversation with patients. Davis and colleagues 

have developed a range of computer-based training 

materials (Davis and Smith 2009; Smith, Davis et 

al. 2010) providing information on stereotypes of 

aging and dementia, communication changes in 

dementia, and communication techniques such as 

“quilting” (Moore and Davis 2003), in which the 

caregiver repeats or paraphrases statements given 

by the person with DAT that seem to be elabora-

tions or evaluations of elements of a narrative. 

Green and colleagues developed and evaluated a 

menu-based interactive system for training care-

givers to engage more effectively in social conver-

sation with persons with DAT (Green 2002; Green 

and Davis 2003; Green, Lawton and Davis 2004; 

Green 2005a; Green and Bevan 2009). 

 /* orientation: */ 

1. GM:  I just lived in a regular farm home. 

Farmed cotton, corn, eh-everything 

you…grow on a farm. 

2. BD:   That’s right. 

/* complicating action: */ 

3. GM:  I had a big ol’ cotton bag tied 

around me, pickin’ a hundred pounds of 

cotton … UhhmmHmm. 

4. BD:  A hundred pounds? An’ you so ti-

ny! 

5. GM:  Huh? 

6. LM: You’re a tiny person to be carrying 

that much cotton. 

7. GM: I decided one day I’d pick a hun-

dred pounds. Guess how much! 

8. LM: How much? 

/* resolution: */ 

9. GM:  A hundred and three. 

10. LM:  Oooohh.  

11. BD: Wow. 

12. GM:  I went over. 

13. BD: That’s fantastic. 

/* evaluation: */ 

14. GM: A hundred and three—you’ve got 

to grab it to…get a hundred and three 

pounds of cotton in one day.  
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2.2 Augmentative and Alternative Communi-

cation Technology  

There has been recent interest in developing remi-

niscence technology for the general population, 

e.g., (Cosley et al. 2009; Petrelli et al. 2009). Wal-

ler (2006) cites the need to develop augmentative 

and alternative communication systems for people 

with complex communication needs (CCN) to en-

gage in conversational narrative. One assistive 

software package, Talk:About, enables someone 

with CCN to edit pre-stored text during a conversa-

tion, enabling the user to retell autobiographical 

stories. Phototalk (Allen et al. 2008) allows people 

with aphasia to manage personal photographs to 

support face-to-face communication. Non-

technology-based reminiscence therapy has been 

used in dementia care (Hsieh 2003; Woods et al. 

2005) and gerontological nursing (Burnside 1996).  

 

CIRCA is a computer system that people with de-

mentia and caregivers can use together to prompt 

reminiscing by providing multimedia stimuli (Alm 

et al. 2007). CIRCA provides touch-screen access 

to hypermedia presenting non-personalized remi-

niscence materials (e.g., photographs and music of 

a certain era). In a controlled study, CIRCA was 

compared to traditional reminiscence (TRAD) ses-

sions with materials provided by caregivers (Astell 

et al. 2010). In TRAD sessions, “the caregivers 

worked very hard to keep the interaction going, 

particularly by asking lots of questions. These were 

typically closed questions … that did not encour-

age either initiation or choosing [topics] by people 

with dementia … caregivers offer more choice dur-

ing CIRCA sessions and are much more likely to 

encourage the people with dementia to decide what 

they want to look at and talk about” (p. 7).  

 

Baecker and colleagues (Cohene et al. 2005; Mas-

simi et al. 2008; Smith et al. 2009; Damianakis et 

al. 2010) have been investigating creation and use 

of personalized DVD-based multimedia biog-

raphies by persons with AD and mild cognitive 

impairments. These researchers note that organiza-

tions such as the National Institutes of Health rec-

ommend creation of personal reminiscence aids 

such as photographs to help maintain the affected 

individual’s sense of identity (Smith et al. 2009). 

“The loss of identity is among the most devastating 

effects of Alzheimer’s disease … it is possible that 

sensitively designed technologies may help com-

pensate for identity loss by acting as external 

memory or conversational aids” (Massimi et al. 

2008).  Roark et al. (2011) report on an initial 

study of technology-assisted co-construction.  

However, their emphasis is very different from 

ours and is focused on assisting with word and 

phrase completion of general conversation involv-

ing typewritten communication. 

2.3 Narrative Technology 

Cassell’s research group has focused on systems 

that interact with human storytellers. In Grand-

Chair, an embodied conversational agent (ECA) 

portrays a grandchild who elicits autobiographical 

stories from elderly users by providing feedback 

(through speech recognition technology) while the 

stories are recorded (Smith 2000). Story Listening 

Systems (SLS) use technology to encourage young 

children to create personally relevant stories in or-

der to improve their oral linguistic skills (Cassell 

2004). Sam the CastleMate (Ryokai, Vaucelle, & 

Cassell 2003) is an SLS in which SAM, an ECA, 

listens to the child’s stories (also using speech 

recognition technology) and tells stories to the 

child. Natural language processing and statistical 

machine learning tools have been applied to the 

problem of automatic plot analysis of children’s 

stories (Halpin et al. 2004; Passonneau et al. 2007) 

and to creation of story understanding tools (Elson 

and McKeown 2009).  

 

Other researchers have focused on story genera-

tion. Narrative scholars distinguish the fabula – 

events in a fictional world – and sujhet – the au-

thor’s choices in presentation of selected elements 

of the fabula. (Note that in our future ASSIST sys-

tem, the fabula is already established when the us-

er’s stories are collected; the role of ASSIST is to 

facilitate the retelling, i.e., the sujhet.) Most past 

natural language generation research in narrative 

has focused on prose rather than dialogue (Calla-

way 2000; Theune et al. 2007; Hervás et al. 2006). 

Piwek and Stoyanchev (2010) have investigated 

automatically transforming human-authored narra-

tive prose into dialogue performed by virtual char-

acters as a way of presenting educational 

information.  
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3 Corpus Analysis  

Most previous computationally-oriented re-

search on human-human dialogue has focused on 

task-driven dialogue, i.e., dialogue intended to 

achieve an agent’s (or agents’ collaborative) task 

goals such as making a travel reservation. In con-

trast, ASSIST is modeling social conversation con-

taining co-constructed narrative. That is, through 

certain conversational moves one participant (the 

Facilitator) can enable the other participant (the 

Storyteller) to retell short autobiographical stories, 

despite the Storyteller’s language and memory 

problems associated with DAT. The model will be 

informed by interdisciplinary research on retained 

language competencies of speakers with DAT 

(Davis 2005; Guendouzi and Muller 2006), as well 

as by our own statistical and qualitative analyses of 

the Carolina Conversations Collection (CCC) Cor-

pus (Davis and Pope 2009; Pope and Davis 2011). 

The CCC corpus includes 400 recorded and tran-

scribed conversations between researchers and stu-

dents and 125 persons with DAT. Our model will 

be constructed by annotating and analyzing a set of 

the DAT conversations as described in more detail 

in Section 4. The overall goal is to analyze the ef-

ficacy of narrative co-construction and other com-

munication-enhancing techniques proposed in 

previous studies of language of persons with DAT 

(e.g., Ripich and Wykle, 1996; Ramanathan 1997; 

Moore and Davis 2002; Santo Pietro and Ostuni, 

2003) and to possibly identify other effective tech-

niques.  As context for discussion of the necessary 

analysis of the CCC, we will first present a high-

level description of the necessary system architec-

ture. 

4 System Architecture 

The ASSIST architecture is shown in Figure 2. 

While a Storyteller and Facilitator converse, 

ASSIST listens with the goals of detecting poten-

tial problems in the flow of conversation and of 

providing suggestions to the Facilitator on what to 

say next to co-construct the narrative and sustain 

conversation. The tasks of the NLU component 

include syntactic and semantic interpretation and 

reference resolution; note that these tasks may re-

quire use of biographical information about the 

Storyteller to help interpret disfluencies character-

istic of AD language. Another key task of NLU is 

to recognize the Facilitator’s use of grounding acts,  

which play a key role in narrative co-construction 

and in sustaining conversation in general. One of 

the Dialogue/Story Manager’s tasks is to recog-

nize the conversational goals of the Storyteller’s 

contributions, including narrative goals. Having 

recognized the Storyteller’s current goal, the other 

task of the Dialogue Manager is to plan the next 

dialogue act that the Facilitator could use to con-

tinue to co-construct the Storyteller’s narrative. 

The Dialogue Manager may use biographical in-

formation about the Storyteller in both tasks, i.e., 

to help recognize narrative goals and to select con-

tent when planning the next suggested narrative 

act. The NLG/Coach component is responsible 

for providing the Facilitator with one or more sug-

gested utterances that the Facilitator could say 

next. Based upon the current discourse state, the 

suggested dialogue acts provided by the Dia-

logue/Story Manager, and a coaching model, the 

NLG/Coach component chooses one or more Fa-

cilitator acts and realizes them.  In the remainder of 

this section we will describe the required analyses 

of the corpus needed to inform the development of 

the computational model for each of these main 

architectural components. 

 

 
 

Figure 2. ASSIST system architecture. 

4.1 Dialogue/Story Manager  

Part of the CCC corpus study will analyze narra-

tive features of the dialogue and related pragmatic 

and affective features. Coelho (1998) surveys vari- 
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ous approaches to narrative analysis in discourse of 

communicatively impaired adults. Our analysis 

will reflect the following characteristics of conver-

sational narrative identified in narrative studies 

(Georgakopoulou and Goutsos 1997; Polkinghorne 

1996):  

 Conversational narratives have a characteristic 

structure, consisting of an abstract, orientation, 

one or more complicating actions, resolution, 

evaluation, and coda (Labov 1972). Note that 

only the complicating action and resolution are 

required. We will annotate this structure, as 

shown in Figure 1. 

 They often convey the teller’s attitudes and 

feelings about narrated events, i.e., although 

not required the evaluation is often present. 

Furthermore, the objective truth of the events 

is not important. We will also annotate polarity 

and intensity of the evaluation (Wiebe et al. 

2005). 

 Conversational narrative is context-dependent, 

i.e., dependent upon the audience and the sit-

uation in which it is told. We will also annotate 

features of the social context such as the age, 

gender, and relationship of the conversational 

participants. 

 There are culture-specific properties that make 

a story tellable. We will annotate the recurrent 

cultural themes in the corpus informed by pre-

vious studies of narrative themes as in, e.g., 

(Polanyi 1985; Shenk et al. 2002).   

 

Although the above characteristics were derived 

from studies of narrative in other populations than 

in speakers with DAT, there is preliminary evi-

dence of their applicability to ASSIST. For exam-

ple, by examining retellings of the same stories 

over time, Davis and Maclagan (2009) found that 

“With AD story-tellers, components vanish from 

surface retellings, particularly the ab-

stract/orientation. Instead, the listener is presented 

with parts of the story’s complicating action or an 

evaluative comment that includes a fragment of the 

complication and its result”; yet, “even when full 

stories are not retrieved … the emotion is still con-

veyed to the listener” (p. 152). Comparing life-

history narratives of two rural American older 

women, one with dementia and one without, Shenk 

et al. (2002, p. 410) found similar “major themes 

that are consistent with rural American cultural 

values”, e.g., strong family ties, hard work, and 

religious faith.  

 

Based on analysis of the stories in the CCC, we 

plan to define a set of abstract narrative schemas. 

A schema will include constraints on tellability 

with respect to audience characteristics (e.g., age, 

gender, social relationship) and current topic, and a 

specification of narrative goals (e.g. present the 

Storyteller as having been hard-working and 

thrifty). Each schema will be structured according 

to Labov’s elements of a well-formed narrative. 

The schemas will be derived by analysis of the 

CCC corpus and informed by previous studies of 

narrative themes. 

 

In addition to analysis of features suggested by 

previous narrative studies, we will analyze occur-

rences of pragmatic features that may be used by a 

speaker with DAT to compensate for difficulties 

when telling a story. For example, Davis and 

Maclagan (2009) studied both  how use of unfilled 

pauses and pauses with fillers (e.g., “oh”, “um”, or 

a formulaic phrase) changed over time in DAT 

discourse, and also the placement of filled and un-

filled pauses with respect to narrative components. 

Pauses in earlier stages of DAT correlated with 

word-finding problems, while pauses in later stag-

es marked narrative components. Thus, Davis and 

Maclagan hypothesize that pauses in the later stag-

es correlate with search for the next component of 

the story. Also, the Facilitator’s contribution to the 

co-constructed narrative will be analyzed, e.g., 

when the Facilitator invites the Storyteller to begin 

a particular story and responds appropriately to an 

element supplied by the Storyteller. Development 

of the computational model for the Dia-

logue/StoryManager requires consideration of both 

the narrative structure and these related pragmatic 

and affective features. 

4.2 Natural Language Understanding (NLU)  

A skilled Facilitator tries to anticipate the kinds of 

problems that a Storyteller with DAT might have 

in a conversation and provide appropriate support 

so that the frequency and severity of DAT-related 

disfluencies will be reduced. In the event that a 

disfluency does occur, the Facilitator tries to pro-

vide support either by trying to resolve the particu-

lar kind of disfluency via a direct or indirect repair 
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or by trying to advance the story without necessari-

ly resolving the disfluency. Therefore, in order for 

ASSIST to facilitate conversation between a Story-

teller and his or her conversational partner, the 

NLU module must be able to listen to a conversa-

tion and be able to determine the following: (1) 

How fluent was the Storyteller in the prior utter-

ances? (2) If the Storyteller exhibited any issues 

with fluency, what was the nature of the problems? 

(3) What conversational strategies did the Facilita-

tor use to help alleviate issues related to fluency, if 

any, before, during or after the Storyteller’s utter-

ances? Addressing these questions requires an 

analysis of the Carolina Conversations Collection 

(CCC) as discussed below. 

Fluency 

Considerable research has investigated the lan-

guage of individuals with DAT (Bucks et al. 2000; 

Martin and Fedio 1983; Phillips et al. 1996; Sabat 

1994). Linguistic features such as long pauses, re-

starts, repetitions, unfinished sentences, pronomi-

nal reference mistakes, and filler phrases are 

prevalent in the spontaneous speech of persons 

with DAT. Further, research has shown deviations 

from the norm in syntactic measurements such as 

part-of-speech rates (nouns, verbs, adjectives, pro-

nouns), richness of vocabulary (Type Token Ratio, 

Brunet’s Index, Honore’s Statistic), and semantic 

cohesion in text (Singh and Bookless 1997).   It is 

necessary to analyze the CCC corpus to determine 

the statistical prevalence of these phenomena with-

in the corpus with a goal of making predictions 

about the relative fluency of an utterance based on 

the presence or dearth of these measurements.    

Conversational Repair Strategies 

Once we have a calculation for the level of fluency 

of each turn that a person with DAT (the Storytell-

er) takes in the dialog, we can then look at the sur-

rounding behavior of the Facilitator.    One of our 

hypotheses is that there are certain strategies that 

will be beneficial in increasing the fluency of DAT 

utterances. For example, narrative co-construction 

techniques recommended for caregivers of persons 

with DAT (Moore and Davis 2002) will be anno-

tated in the corpus, including two-syllable go-

ahead phrases (e.g., “uh huh”, “really”, “ok”), par-

aphrases and repetitions, and indirect questions. 

Most of these strategies can be described as  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3. An excerpt from Davis (2005, p. 141) of a 

conversation between GM, a person with early moderate 

DAT, and her skilled conversational partner BD. 

 

grounding acts (Clark and Schaefer 1989). The 

following seven types of grounding acts occur in 

co-constructed narratives:  

 

 Continued attention.  These utterances, such 

as “That’s right” (line 2 in Figure 1), indicate 

that the listener is paying attention to the 

speaker. 

 Relevant next contribution.  By these utter-

ances, which we call forward grounding 

moves, the conversational participant contin-

ues the conversation with a question or com-

ment that requires that he or she understood 

the previous speaker’s utterance (e.g. lines 2, 

4, and 8 in Figure 3). 

 Acknowledgement.  In addition to showing 

continued attention, these utterances provide 

an assessment, e.g. “wow” (line 11 in Figure 

1).  

 Demonstration.  The conversational partici-

pant paraphrases a previous utterance of his 

own or of the other participants (e.g. line 4 of 

Fig. 3). 

 Display.  The listener repeats all or part of the 

previous utterance verbatim (e.g. line 6 in Fig-

ure 3). 

1. BD:  You were telling me about your hus-

band. 

2. Did he preach sermons? 

3. GM:  My husband? 

4. BD: Would he be a preacher? 

5. GM: Yes. He was a preacher that preached 

“hell hot and heaven beautiful!”  

(They both laugh.) 

6. BD: Heaven beautiful … 

7. GM:  Yes. “Hell hot and heaven beautiful!” 

That was one of his messages. I don’t  

know… he preached all right. He was 

an Evangelistic-type preacher. 

8. BD: I bet you went many places! 

9. GM: Well, I had my family while I was 

young and couldn’t go. I mean … you can’t 

go with a bunch of little kids. 

10. BD:  No you can’t. 
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 Completion. The conversational participant 

completes the utterance of the previous speak-

er. 

 Request for repair. The listener indicates that 

he or she did not understand all or part of the 

previous utterance (e.g. line 3 in Figure 3). 

 

The first five types are described in Clark and 

Schaefer (1989) while Completion and Request for 

Repair have been described in Traum (1994) and 

elsewhere. Of particular importance is the use of 

the Relevant next contribution or forward ground-

ing move. Persons with DAT have difficulty with 

lexical retrieval and other memory tasks associated 

with generating language (Martin and Fedio 1983). 

An effective Facilitator will provide lexical prim-

ing and syntactic structures to help these memory 

tasks (Ramanathan 1997; Orange 2001).   

 

Unlike previous research on techniques for auto-

matic grading of children’s written stories (e.g. 

Halpin et al. 2004), the contributions of the partner 

with DAT will not necessarily be counted as dis-

fluent when details are missing, incorrect, or pre-

sented out of temporal sequence. As discussed pre- 

viously, in conversation with people with DAT 

narrative elements are often missing and a narra-

tive may consist of as little as a fragment of the 

complicating action and the evaluation. The Facili-

tator’s role is not to correct inaccuracies, to de-

mand clarification, or to tell the story for the 

Storyteller. For example, suppose the Storyteller 

said, "I uh used to have a farm there." Suppose that 

the word "there" is not something that the Facilita-

tor can resolve based on the context of the conver-

sation. So, from the Facilitator's point of view, to 

understand the story better, it might make sense to 

resolve the word "there" by asking, "Where was 

your farm?" However, a more appropriate response 

would be a grounding move that prompts the con-

tinuation of the story without asking a wh-

question: "Really? You were a farmer?" 

 

By analyzing the CCC corpus, we can determine 

the prevalence of the above grounding actions by 

the Facilitator. Based on the fluency of the Story-

teller’s subsequent utterances, we can determine 

the relative effectiveness of these strategies on in-

creasing or decreasing Storyteller fluency. This 

analysis can be further refined by examining the 

types of disfluency exhibited by the Storyteller 

before and after these grounding actions. In turn, 

this data can be used to make predictions about 

what repair strategies a conversational participant 

might use in response to a particular type of disflu-

ent utterance. Based on the analysis techniques 

presented in Cherney et. al. (1998), we will be able 

to examine the extent to which greater fluency in 

the Storyteller utterances leads to more complete 

and coherent narrative.  This anaylsis is also used 

in the development of the NLG/Coach module as 

described below. 

 

4.3 NLG/Coach 

Based upon the current discourse state and the 

suggested dialogue acts provided by the Dia-

logue/Story Manager, the NLG/Coach component 

must choose one or more Facilitator acts and real-

ize them.  The coaching model will be based upon 

empirical studies of the CCC of effective repair 

strategies for conversing with persons with AD, as 

well as a study of particular syntactic forms used 

with specific strategies.  This analysis makes great 

use of the necessary analysis about fluency and 

especially conversational repair strategies de-

scribed in the previous section about NLU. 

5 Summary 

Co-constructed narrative between a person with 

DAT, and a skilled conversational partner offers a 

means by which persons with DAT and their care-

givers may improve their social interaction and life 

satisfaction.  Assistive technology can play a role 

in enabling even an unskilled conversational part-

ner in maintaining the flow of the conversation.  

This paper presents an architecture for such a sys-

tem, ASSIST, and describes how analysis of an 

existing corpus, the Carolinas Conversation Col-

lection (CCC), can inform the development of the 

computational model for co-constructed narrative 

in ASSIST.  We have begun preliminary analysis 

of excerpts from the CCC. 
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Abstract

Currently, health care costs associated with
aging at home can be prohibitive if individ-
uals require continual or periodic supervision
or assistance because of Alzheimer’s disease.
These costs, normally associated with human
caregivers, can be mitigated to some extent
given automated systems that mimic some of
their functions. In this paper, we present in-
augural work towards producing a generic au-
tomated system that assists individuals with
Alzheimer’s to complete daily tasks using ver-
bal communication. Here, we show how to
improve rates of correct speech recognition
by preprocessing acoustic noise and by mod-
ifying the vocabulary according to the task.
We conclude by outlining current directions of
research including specialized grammars and
automatic detection of confusion.

1 Introduction

In the United States, approximately $100 billion are
spent annually on the direct and indirect care of in-
dividuals with Alzheimer’s disease (AD), the major-
ity of which is attributed to long-term institutional
care (Ernst et al., 1997). As the population ages, the
incidence of AD will double or triple, with Medi-
care costs alone reaching $189 billion in the US by
2015 (Bharucha et al., 2009). Given the growing
need to support this population, there is an increas-
ing interest in the design and development of tech-
nologies that support this population at home and
extend ones quality of life and autonomy (Mihailidis
et al., 2008).

∗Contact: frank@cs.toronto.edu

Alzheimer’s disease is a type of progres-
sive neuro-degenerative dementia characterized by
marked declines in mental acuity, specifically in
cognitive, social, and functional capacity. A decline
in memory (short- and long-term), executive capac-
ity, visual-spacial reasoning, and linguistic ability
are all typical effects of AD (Cummings, 2004).
These declines make the completion of activities of
daily living (e.g., finances, preparing a meal) diffi-
cult and more severe declines often necessitate care-
giver assistance. Caregivers who assist individuals
with AD at home are common, but are often the pre-
cursor to placement in a long-term care (LTC) facil-
ity (Gaugler et al., 2009).

We are building systems that automate, where
possible, some of the support activities that currently
require family or formal (i.e., employed) caregivers.
Specifically, we are designing an intelligent dialog
component that can engage in two-way speech com-
munication with an individual in order to help guide
that individual towards the completion of certain
daily household tasks, including washing ones hands
and brushing ones teeth. A typical installation setup
in a bathroom, shown in figure 1, consists of video
cameras that track a user’s hands and the area in and
around the sink, as well as microphones, speakers,
and a screen that can display prompting informa-
tion. Similar installations are being tested in other
household rooms as part of the COACH project (Mi-
hailidis et al., 2008), according to the task; this is
an example of ambient intelligence in which tech-
nology embedded in the environment is sensitive to
the activities of the user with it (Spanoudakis et al.,
2010).
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Our goal is to encode in software the kinds of
techniques used by caregivers to help their clients
achieve these activities; this includes automati-
cally identifying and recovering from breakdowns
in communication and flexibly adapting to the in-
dividual over time. Before such a system can be de-
ployed, the underlying models need to be adjusted
to the desired population and tasks. Similarly, the
speech output component would need to be pro-
grammed according to the vocabularies, grammars,
and dialog strategies used by caregivers. This paper
presents preliminary experiments towards dedicated
speech recognition for such a system. Evaluation
data were collected as part of a larger project exam-
ining the use of communication strategies by formal
caregivers while assisting residents with moderate to
severe AD during the completion of toothbrushing
(Wilson et al., 2012).

2 Background – communication strategies

Automated communicative systems that are more
sensitive to the emotive and the mental states of their
users are often more successful than more neutral
conversational agents (Saini et al., 2005). In order to
be useful in practice, these communicative systems
need to mimic some of the techniques employed
by caregivers of individuals with AD. Often, these
caregivers are employed by local clinics or medical
institutions and are trained by those institutions in
ideal verbal communication strategies for use with
those having dementia (Hopper, 2001; Goldfarb and
Pietro, 2004). These include (Small et al., 2003) but
are not limited to:

1. Relatively slow rate of speech rate.
2. Verbatim repetition of misunderstood prompts.
3. Closed-ended questions (i.e., that elicit yes/no

responses).
4. Simple sentences with reduced syntactic com-

plexity.
5. Giving one question or one direction at a time.
6. Minimal use of pronouns.

These strategies, though often based on observa-
tional studies, are not necessarily based on quantita-
tive empirical research and may not be generalizable
across relevant populations. Indeed, Tomoeda et al.
(1990) showed that rates of speech that are too slow

(a) Environmental setup

(b) On-screen prompting

Figure 1: Setup and on-screen prompting for COACH.
The environment includes numerous sensors including
microphones and video cameras as well as a screen upon
which prompts can be displayed. In this example, the
user is prompted to lather their hands after having applied
soap. Images are copyright Intelligent Assistive Technol-
ogy and Systems Lab).

may interfere with comprehension if they introduce
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problems of short-term retention of working mem-
ory. Small, Andersen, and Kempler (1997) showed
that paraphrased repetition is just as effective as ver-
batim repetition (indeed, syntactic variation of com-
mon semantics may assist comprehension). Further-
more, Rochon, Waters, and Caplan (2000) suggested
that the syntactic complexity of utterances is not
necessarily the only predictor of comprehension in
individuals with AD; rather, correct comprehension
of the semantics of sentences is inversely related to
the increasing number of propositions used – it is
preferable to have as few clauses or core ideas as
possible, i.e., one-at-a-time.

Although not the empirical subject of this pa-
per, we are studying methods of automating the
resolution of communication breakdown. Much of
this work is based on the Trouble Source-Repair
(TSR) model in which difficulties in speaking, hear-
ing, or understanding are identified and repairs are
initiated and carried out (Schegloff, Jefferson, and
Sacks, 1977). Difficulties can arise in a number
of dimensions including phonological (i.e., mispro-
nunciation), morphological/syntactic (e.g., incorrect
agreement among constituents), semantic (e.g., dis-
turbances related to lexical access, word retrieval,
or word use), and discourse (i.e., misunderstanding
of topic, shared knowledge, or cohesion) (Orange,
Lubinsky, and Higginbotham, 1996). The major-
ity of TSR sequences involve self-correction of a
speaker’s own error, e.g., by repetition, elaboration,
or reduction of a troublesome utterance (Schegloff,
Jefferson, and Sacks, 1977). Orange, Lubinsky,
and Higginbotham (1996) showed that while 18%
of non-AD dyad utterances involved TSR, whereas
23.6% of early-stage AD dyads and 33% of middle-
stage AD dyads involved TSR. Of these, individu-
als with middle-stage AD exhibited more discourse-
related difficulties including inattention, failure to
track propositions and thematic information, and
deficits in working memory. The most common
repair initiators and repairs given communication
breakdown involved frequent ‘wh-questions and hy-
potheses (e.g., “Do you mean?”). Conversational
partners of individuals with middle-stage AD initi-
ated repair less frequently than conversational part-
ners of control subjects, possibly aware of their de-
teriorating ability, or to avoid possible further con-
fusion. An alternative although very closely related

paradigm for measuring communication breakdown
is Trouble Indicating Behavior (TIB) in which the
confused participant implicitly or explicitly requests
aid. In a study of 7 seniors with moderate/severe de-
mentia and 3 with mild/moderate dementia, Watson
(1999) showed that there was a significant difference
in TIB use (ρ < 0.005) between individuals with
AD and the general population. Individuals with
AD are most likely to exhibit dysfluency, lack of up-
take in the dialog, metalinguistic comments (e.g., “I
can’t think of the word”), neutral requests for repeti-
tion, whereas the general population are most likely
to exhibit hypothesis formation to resolve ambiguity
(e.g., “Oh, so you mean that you had a good time?”)
or requests for more information.

2.1 The task of handwashing

Our current work is based on a study completed by
Wilson et al. (2012) towards a systematic observa-
tional representation of communication behaviours
of formal caregivers assisting individuals with mod-
erate to severe AD during hand washing. In that
study, caregivers produced 1691 utterances, 78% of
which contained at least one communication strat-
egy. On average, 23.35 (σ = 14.11) verbal strate-
gies and 7.81 (σ = 5.13) non-verbal strategies were
used per session. The five most common communi-
cation strategies employed by caregivers are ranked
in table 1. The one proposition strategy refers to
using a single direction, request, or idea in the utter-
ance (e.g. “turn the water on”). The closed-ended
question strategy refers to asking question with a
very limited, typically binary, response (e.g., “can
you turn the taps on?”) as opposed to questions elic-
iting a more elaborate response or the inclusion of
additional information. The encouraging comments
strategy refers to any verbal praise of the resident
(e.g., “you are doing a good job”). The paraphrased
repetition strategy is the restatement of a misunder-
stood utterance using alternative syntactic or lexical
content (e.g., “soap up your hands....please use soap
on your hands”). There was no significant difference
between the use of paraphrased and verbatim repe-
tition of misunderstood utterances. Caregivers also
reduced speech rate from an average baseline of 116
words per minute (s.d. 36.8) to an average of 36.5
words per minute (s.d. 19.8).

The least frequently used communication strate-
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Number of occurrences % use of strategy Uses per session
Verbal strategy Overall Successful Overall Successful Mean SD
One proposition 619 441 35 36 8.6 6.7
Closed-ended question 215 148 12 12 3.0 3.0
Encouraging comments 180 148 10 12 2.9 2.5
Use of resident’s name 178 131 10 11 2.8 2.5
Paraphrased repetition 178 122 10 10 3.0 2.5

Table 1: Most frequent verbal communication strategies according to their number of occurrences in dyad communi-
cation. The % use of strategy is normalized across all strategies, most of which are not listed. These results are split
according to the total number of uses and the number of uses in successful resolution of a communication breakdown.
Mean (and standard deviation) of uses per session are given across caregivers. Adapted with permission from Wilson
et al. (2012).

gies employed by experienced caregivers involved
asking questions that required verification of a res-
ident’s request or response (e.g., “do you mean
that you are finished?”), explanation of current ac-
tions (e.g., “I am turning on the taps for you”), and
open-ended questions (e.g., “how do you wash your
hands?”).

The most common non-verbal strategies em-
ployed by experienced caregivers were guided touch
(193 times, 122 of which were successful) in which
the caregiver physically assists the resident in the
completion of a task, demonstrating action (113
times. 72 of which were successful) in which an
action is illustrated or mimicked by the caregiver,
handing an object to the resident (107 times, 85 of
which were successful), and pointing to an object
(105 times, 95 of which were successful) in which
the direction to an object is visually indicated by
the caregiver. Some of these strategies may be em-
ployed by the proposed system; for example, videos
demonstrating an action may be displayed on the
screen shown in figure 1(a), which may replace to
some extent the mimicry by the caregiver. A pos-
sible replication of the fourth most common non-
verbal strategy may be to highlight the required ob-
ject with a flashing light, a spotlight, or by display-
ing it on screen; these solutions require tangential
technologies that are beyond the scope of this cur-
rent study, however.

3 Data

Our experiments are based on data collected by Wil-
son et al. (submitted) with individuals diagnosed
with moderate-to-severe AD who were recruited
from long-term care facilities (i.e., The Harold and

Grace Baker Centre and the Lakeside Long-Term
Care Centre) in Toronto. Participants had no pre-
vious history of stroke, depression, psychosis, alco-
holism, drug abuse, or physical aggression towards
caregivers. Updated measures of disease severity
were taken according to the Mini-Mental State Ex-
amination (Folstein, Folstein, and McHugh, 1975).
The average cognitive impairment among 7 individ-
uals classified as having severe AD (scores below
10/30) was 3.43 (σ = 3.36) and among 6 individ-
uals classified as having moderate AD (scores be-
tween 10/30 and 19/30) was 15.8 (σ = 4.07). The
average age of residents was 81.4 years with an aver-
age of 13.8 years of education and 3.1 years of resi-
dency at their respective LTC facility. Fifteen formal
caregivers participated in this study and were paired
with the residents (i.e., as dyads) during the comple-
tion of activities of daily living. All but one care-
giver were female and were comfortable with En-
glish. The average number of years of experience
working with AD patients was 12.87 (σ = 9.61).

The toothbrushing task follows the protocol of the
handwashing task. In total, the data consists of 336
utterances by the residents and 2623 utterances by
their caregivers; this is manifested by residents utter-
ing 1012 words and caregivers uttering 12166 words
in total, using 747 unique terms. The toothbrushing
task consists of 9 subtasks, namely: 1) get brush and
paste, 2) put paste on brush, 3) turn on water, 4) wet
tooth brush, 5) brush teeth, 6) rinse mouth, 7) rinse
brush, 8) turn off water, 9) dry mouth.

These data were recorded as part of a large
project to study communication strategies of care-
givers rather than to study the acoustics of their
transactions with residents. As a result, the record-
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ings were not of the highest acoustic quality; for
example, although the sampling rate and bit rate
were high (48 kHz and 384 kbps respectively), the
video camera used was placed relatively far from the
speakers, who generally faced away from the mi-
crophone towards the sink and running water. The
distribution of strategies employed by caregivers for
this task is the subject of ongoing work.

4 Experiments in speech recognition

Our first component of an automated caregiver
is the speech recognition subsystem. We test
two alternative systems, namely Carnegie Mellon’s
Sphinx framework and Microsoft’s Speech Plat-
form. Carnegie Mellon’s Sphinx framework (pock-
etsphinx, specifically) is an open-source speech
recognition system that uses traditional N -gram
language modeling, sub-phonetic acoustic hidden
Markov models (HMMs), Viterbi decoding and
lexical-tree structures (Lamere et al., 2003). Sphinx
includes tools to perform traditional Baum-Welch
estimation of acoustic models, but there were not
enough data for this purpose. The second ASR sys-
tem, Microsoft’s Speech Platform (version 11) is
less open but exposes the ability to vary the lexicon,
grammar, and semantics. Traditionally, Microsoft
has used continuous-density HMMs with 6000 tied
HMM states (senones), 20 Gaussians per state, and
Mel-cepstrum features (with delta and delta-delta).

Given the toothbrushing data described in section
3, two sets of experiments were devised to config-
ure these systems to the task. Specifically, we per-
form preprocessing of the acoustics to remove envi-
ronmental noise associated with toothbrushing and
adapt the lexica of the two systems, as described in
the following subsections.

4.1 Noise reduction

An emergent feature of the toothbrushing data is
very high levels of acoustic noise caused by the
running of water. In fact, the estimated signal-to-
noise ratio across utterances range from −2.103 dB
to 7.63 dB, which is extremely low; for comparison
clean speech typically has an SNR of approximately
40 dB. Since the resident is likely to be situated close
to this source of the acoustic noise, it becomes im-
portant to isolate their speech in the incoming signal.

Speech enhancement involves the removal of
acoustic noise d(t) in a signal y(t), including am-
bient noise (e.g., running water, wind) and signal
degradation giving the clean ‘source’ signal x(t).
This involves an assumption that noise is strictly ad-
ditive, as in the formula:

y(t) = x(t) + d(t). (1)

Here, Yk, Xk, and Dk are the kth spectra of the
noisy observation y(t), source signal x(t), and un-
correlated noise signal d(t), respectively. Generally,
the spectral magnitude of a signal is more important
than its phase when assessing signal quality and per-
forming speech enhancement. Spectral subtraction
(SS), as the name suggests, subtracts an estimate of
the noisy spectrum from the measured signal (Boll,
1979; Martin, 2001), where the estimate of the noisy
signal is estimated from samples of the noise source
exclusively. That is, one has to learn estimates based
on pre-selected recordings of noise. We apply SS
speech enhancement given sample recordings of wa-
ter running. The second method of enhancement
we consider is the log-spectral amplitude estimator
(LSAE) which minimizes the mean squared error
(MMSE) of the log spectra given a model for the
source speech Xk = Ak exp(jωk), where Ak is the
spectral amplitude. The LSAE method is a modifi-
cation to the short-time spectral amplitude estima-
tor that attempts to find some estimate Âk that min-
imizes the distortion

E

[(
logAk − log Âk

)2
]
, (2)

such that the log-spectral amplitude estimate is

Âk = exp (E [lnAk |Yk])

=
ξk

1 + ξk
exp

(
1

2

∫ ∞
vk

e−t

t
dt

)
Rk,

(3)

where ξk is the a priori SNR,Rk is the noisy spectral
amplitude, vk = ξk

1+ξk
γk, and γk is the a posteriori

SNR (Erkelens, Jensen, and Heusdens, 2007). Of-
ten this is based on a Gaussian model of noise, as
it is here (Ephraim and Malah, 1985). We enhance
our recordings by both the SS and LSAE methods.
Archetypal instances of typical, low, and (relatively)
high SNR waveform recordings and their enhanced
versions are shown in 4.1.
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(a) Dyad1.1

(b) Dyad4.2

(c) Dyad11.1

Figure 2: Representative samples of toothbrushing data
audio. Figures show normalized amplitude over time for
signals cleaned by the LSAE method overlaid over the
larger-amplitude original signals.

We compare the effects of this enhanced audio
across two ASR systems. For the Sphinx system,
we use a continuous tristate HMM for each of the 40
phones from the CMU dictionary trained with audio
from the complete Wall Street Journal corpus and
the independent variable we changed was the num-
ber of Gaussians per state (n. Γ). These parame-
ters are not exposed by the Microsoft speech system,
so we instead vary the minimum threshold of confi-
dence C ∈ [0..1] required to accept a word; in theory
lower values of C would result in more insertion er-
rors and higher values would result in more deletion
errors. For each system, we used a common dic-
tionary of 123, 611 unique words derived from the
Carnegie Mellon phonemic dictionary.

Table 2 shows the word error rate for each of
the two systems. Both the SS and LSAE methods
of speech enhancement result in significantly better
word error rates than with the original recordings at
the 99.9% level of confidence according to the one-
tailed paired t-test across both systems. The LSAE
method has significantly better word error rates than
the SS method at the 99% level of confidence with
this test. Although these high WERs are impractical
for a typical system, they are comparable to other re-
sults for speech recognition in very low-SNR envi-
ronments (Kim and Rose, 2003). Deng et al. (2000),
for example, describe an ASR system trained with
clean speech that has a WER of 87.11% given addi-
tive white noise for a resulting 5 dB SNR signal for
a comparable vocabulary of 5000 words. An inter-
esting observation is that even at the low confidence
threshold of C = 0.2, the number of insertion er-
rors did not increase dramatically relative to for the
higher values in the Microsoft system; only 4.0% of
all word errors were insertion errors at C = 0.2, and
2.7% of all word errors at C = 0.8.

Given Levenshtein alignments between annotated
target (reference) and hypothesis word sequences,
we separate word errors across residents and across
caregivers. Specifically, table 3 shows the propor-
tion of deletion and substitution word errors (relative
to totals for each system separately) across residents
and caregivers. This analysis aims to uncover dif-
ferences in rates of recognition between those with
AD and the more general population. For exam-
ple, 12.6% of deletion errors made by Sphinx were
words spoken by residents. It is not possible to at-
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Word error rate %
Parameters Original SS LSAE

Sphinx

n. Γ = 4 98.13 75.31 70.61
n. Γ = 8 98.13 74.95 69.66
n. Γ = 16 97.82 75.09 69.78
n. Γ = 32 97.13 74.88 67.22

Microsoft

C = 0.8 97.67 73.59 67.11
C = 0.6 97.44 72.57 67.08
C = 0.4 96.85 71.78 66.54
C = 0.2 94.30 71.36 64.32

Table 2: Word error rates for the Sphinx and Microsoft
ASR systems according to their respective adjusted pa-
rameters, i.e., number of Gaussians per HMM state (n. Γ)
and minimum confidence threshold (C). Results are given
on original recordings and waveforms enhanced by spec-
tral subraction (SS) and MMSE with log-spectral ampli-
tude estimates (LSAE).

tribute word insertion errors to either the resident or
caregiver, in general. If we assume that errors should
be distributed across residents and caregivers in the
same proportion as their respective total number of
words uttered, then we can compute the Pearson χ2

statistic of significance. Given that 7.68% of all
words were uttered by residents, the observed num-
ber of substitutions was significantly different than
the expected value at the 99% level of confidence
for both the Sphinx and Microsoft systems, but the
number of deletions was not significantly different
even at the 95% level of confidence. In either case,
however, substantially more errors are made propor-
tionally by residents than we might expect; this may
in part be caused by their relatively soft speech.

Proportion of errors
Sphinx Microsoft

Res. Careg. Res. Careg.
deletion 13.9 86.1 12.6 87.4
substitution 23.2 76.8 18.4 81.6

Table 3: Proportion of deletion and substitution errors
made by both (Res)idents and (Careg)ivers. Proportions
are relative to totals within each system.

4.2 Task-specific vocabulary

We limit the common vocabulary used in each
speech recognizer in order to be more specific to the
task. Specifically, we begin with the 747 words ut-
tered in the data as our most restricted vocabulary.

Then, we expand this vocabulary according to two
methods. The first method adds words that are se-
mantically similar to those already present. This
is performed by taking the most common sense for
each noun, verb, adjective, and adverb, then adding
each entry in the respective synonym sets accord-
ing to WordNet 3.0 (Miller, 1995). This results in
a vocabulary of 2890 words. At this point, we it-
eratively add increments of words at intervals of
10, 000 (up to 120, 000) by selecting random words
in the vocabulary and adding synonym sets for all
senses as well as antonyms, hypernyms, hyponyms,
meronyms, and holonyms. The result is a vocabu-
lary whose semantic domain becomes increasingly
generic. The second approach to adjusting the vo-
cabulary size is to add phonemic foils to more re-
stricted vocabularies. Specifically, as before, we be-
gin with the restricted 747 words observed in the
data but then add increments of new words that
are phonemically similar to existing words. This
is done exhaustively by selecting a random word
and searching for minimal phonemic misalignments
(i.e., edit distance) among out-of-vocabulary words
in the Carnegie Mellon phonemic dictionary. This
approach of adding decoy words is an attempt to
model increasing generalization of the systems. Ev-
ery vocabulary is translated into the format expected
by each recognizer so that each test involves a com-
mon set of words.

Word error rates are measured for each vocabu-
lary size across each ASR system and the manner in
which those vocabularies were constructed (seman-
tic or phonemic expansion). The results are shown
in figure 4.2 and are based on acoustics enhanced
by the LSAE method. Somewhat surprisingly, the
method used to alter the vocabulary did appear to
have a very large effect. Indeed, the WER across
the semantic and phonemic methods were correlated
at ρ >= 0.99 across both ASR systems; there was
no significant difference between traces (within sys-
tem) even at the 60% level of confidence using the
two-tailed heteroscedastic t-test.

5 Ongoing work

This work represents the first phase of development
towards a complete communicative artificial care-
giver for the home. Here, we are focusing on the
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Figure 3: Word error rate versus size of vocabulary (log
scale) for each of the Sphinx and Microsoft ASR systems
according to whether the vocabularies were expanded by
semantic or phonemic similarity.

speech recognition component and have shown re-
ductions in error of up to 72% (Sphinx ASR with
n.Γ = 4) and 63.1% (Sphinx ASR), relative to base-
line rates of error. While significant, baseline er-
rors were so severe that other techniques will need
to be explored. We are now collecting additional
data by fixing the Microsoft Kinect sensor in the
environment, facing the resident; this is the default
configuration and may overcome some of the ob-
stacles present in our data. Specifically, the beam-
forming capabilities in the Kinect (generalizable to
other multi-microphone arrays) can isolate speech
events from ambient environmental noise (Balan and
Rosca, 2002). We are also collecting speech data for
a separate study in which individuals with AD are
placed before directional microphones and complete
tasks related to the perception of emotion.

As tasks can be broken down into non-linear (par-
tially ordered) sets of subtasks (e.g., replacing the
toothbrush is a subtask of toothbrushing), we are
specifying grammars ‘by hand’ specific to those sub-
tasks. Only some subset of all subtasks are possible
at any given time; e.g., one can only place tooth-
paste on the brush once both items have been re-
trieved. The possibility of these subtasks depend on
the state of the world which can only be estimated
through imperfect techniques – typically computer

vision. Given the uncertainty of the state of the
world, we are integrating subtask-specific grammars
into a partially-observable Markov decision process
(POMDP). These grammars include the semantic
state variables of the world and break each task
down into a graph-structure of interdependent ac-
tions. Each ‘action’ is associated with its own gram-
mar subset of words and phrases that are likely to
be uttered during its performance, as well as a set
of prompts to be spoken by the system to aid the
user. Along these lines, we we will attempt to gen-
eralize the approach taken in section 4.2 to gener-
ate specific sub-vocabularies automatically for each
subtask. The relative weighting of words will be
modeled based on ongoing data collection.
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Abstract

Tactile maps are important substitutes for vi-
sual maps for blind and visually impaired peo-
ple and the efficiency of tactile-map reading
can largely be improved by giving assisting ut-
terances that make use of spatial language. In
this paper, we elaborate earlier ideas for a sys-
tem that generates such utterances and present
a prototype implementation based on a seman-
tic conceptualization of the movements that the
map user performs. A worked example shows
the plausibility of the solution and the output
that the prototype generates given input derived
from experimental data.

1 Introduction

Humans use maps in everyday scenarios. Especially
for blind and visually impaired people, tactile maps
are helpful accessible substitutes for visual maps
(Espinosa, Ungar, Ochaita, Blades, & Spencer, 1998;
Ungar, 2000). However, tactile maps are less efficient
than visual maps, as they have to be read sequen-
tially. A further problem of physical tactile maps is
restricted availability. While physical tactile maps are
rarely available and costly to produce, modern haptic
human-computer interfaces can be used to present
virtual variants of tactile maps (virtual tactile maps)
providing a similar functionality. For example, the
Sensable Phantom Omni device used in our research
enables a user to feel virtual three-dimensional ob-
jects (see Figure 1). It can be thought of as a reverse
robotic arm that makes virtual haptic perception pos-
sible by generating force feedback. In the context of
the research discussed, these objects are virtual tac-
tile maps. These consist of a virtual plane on which

streets and potential landmarks (such as buildings)
are presented as cavities.

In recent work, Habel, Kerzel, and Lohmann
(2010) have suggested a multi-modal map called
Verbally Assisting Virtual-Environment Tactile Map
(VAVETaM) with the goal to enable more efficient
acquisition of spatial survey (overview) knowledge
for blind and visually impaired people.

VAVETaM extends the approaches towards multi-
modal maps (see Section 2) by generating situated
spatial language. The prototype described reacts to
the user’s exploration movements more like a human
verbally assisting a tactile map reader would do, e.g.,
by describing spatial relations between objects on
the map. The users may explore the map freely, i.e.,
they choose which map objects are of interest and
in which order they explore them. This demands for
situated natural language generation (Roy & Reiter,
2005), which produces timely appropriate assisting
utterances. Previously, the suggested system has not
been implemented.

The goal of this paper is to show that the ideas of
Lohmann, Kerzel, and Habel (2010) and Lohmann,
Eschenbach, and Habel (2011) can be implemented
in a prototype which is able to generate helpful as-
sisting utterances; that is, to show that the language-
generation components of VAVETaM are technically
possible. The remainder of the paper is structured as
follows: We first briefly survey some related work
in Section 2, and then describe the overall structure
of VAVETaM in Section 3. We then present a de-
scription of our system in Section 4 paying special
attention to the input to natural language generation
(Subsection 4.1) and the generation component itself
(Subsection 4.2). We show the appropriateness of the
approach by discussing an example input, the pro-
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Figure 1: The Sensable Omni Haptic Device and a Visual-
ization of a Virtual Tactile Map.

cesses performed, and the automatically generated
output in Section 5 before we close with concluding
remarks in Section 6.

2 Related Work

To make maps more accessible for visually impaired
people by overcoming drawbacks of uni-modal tac-
tile maps, a number of multi-modal systems that com-
bine haptics and sound have been developed. An
early system is the NOMAD system. It is based on
a traditional physical tactile map, which is placed
on a touch pad. The system allows for the associa-
tion of sound to objects on the map (Parkes, 1988,
1994). The approach to use traditional physical tac-
tile maps as overlays on touch pads has been used
in various systems that were developed subsequently
(e.g., Miele, Landau, & Gilden, 2006; Wang, Li,
Hedgpeth, & Haven, 2009). Overviews of research
on accessible maps for blind and visually impaired
people can be found in Buzzi, Buzzi, Leporini, and
Martusciello (2011) and in De Almeida (Vasconcel-
los) and Tsuji (2005). Other researchers have ad-
vanced the way haptic perception is realized by using
more flexible human-computer-interaction systems
that do not need physical tactile map overlays. For
example, Zeng and Weber (2010) have proposed an
audio-tactile system which is based on a large-scale

braille display and De Felice, Renna, Attolico, and
Distante (2007) presented the Omero system, which
makes use of a virtual haptic interface similar to the
interface used in our research.

Existing systems work on the basis of sounds or
canned texts that are associated to objects or areas
on the map. Sound playback starts when the user
touches a map object or, in some systems, by click-
ing or tapping on it. Yet, when humans are asked to
verbally assist a virtual tactile map explorer, they
produce assisting utterances in which they make
much more use of spatial language and give brief
augmenting descriptions of the objects that are cur-
rently explored and their surroundings (Lohmann et
al., 2011). Based on this, Lohmann and colleagues
suggest which informational content should be in-
cluded in assisting utterances for a tactile-map read-
ing task. Among the types of information that are
suggested for verbal assisting utterances is informa-
tion allowing for identification of objects, e.g., by
stating its name (e.g., ‘This is 42nd Avenue’); in-
formation about the spatial relation of objects (‘The
church is above the museum’); and talking about
the ends of streets that are explored (‘This street is
restricted to the left by the map frame’).

Empirical (Wizard-of-Oz-like) research with 24
blindfolded sighted participants has concerned an
audio-tactile system that makes use of assisting ut-
terances containing the information discussed above
and shown its potential. Different outcome measures,
among them sketch maps and a verbal task, showed
an improved knowledge acquisition with verbal as-
sisting utterances compared to a baseline condition in
which participants verbally only received information
about the names of objects (Lohmann & Habel, forth-
coming). Empirical research with blind and visually
impaired people is ongoing. Data from the ongoing
experiment with blind and visually impaired partic-
ipants is used to show the function of the system in
Section 5.

3 The Structure of VAVETaM

In this section we will recap the overall structure of
VAVETaM as presented by Habel et al. (2010) and
Lohmann et al. (2010). Figure 2 depicts the relevant
parts of the structure.

The Virtual-Environment Tactile Map (VETM)
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Figure 2: The Interaction of the Generation Components with Other Components of VAVETaM (modified version
following Habel et al., 2010).

knowledge base forms the basis for rendering the
tactile map, for analyzing movements, and for verbal-
izing assistive utterances forming the central knowl-
edge component in the architecture.

Knowledge needed for natural-language genera-
tion is represented in a propositional format which
is linked to knowledge needed for movement classi-
fication and for the haptic presentation of the map.
The latter is stored in a spatial-geometric, coordinate-
based format. The knowledge for assistance gener-
ation is represented using the Referential-Nets for-
malism developed by Habel (1986) and successfully
used by Guhe, Habel, and Tschander (2004) for nat-
ural language generation. Knowledge for verbaliza-
tion is organized by interrelated Referential Objects
(RefOs), which are the potential objects of discourse.
A referential object consists of an identifier for the
object (an arbitrary string, for example pt3), addi-
tional associated information such as the sort of the
object, and associated propositional information that
can be verbalized (such as the name of the object
and relations to other objects, e.g., that the object is
‘left of’ another object). Important sorts of objects
in the map domain are potential landmarks, regions,
the frame of the map, and tracks and track segments1.
See Lohmann et al. (2011) for a discussion of the
propositional layer of the VETM knowledge base.

The Haptic Device provides a stream of position
data. This stream of data is the input to the Map-
Exploratory-Procedures Observer (MEP Observer)
component and its subcomponents which analyzes
the movements the map user performs. By categoriz-
ing the movements and specifying them with identi-

1A track is a structure enabling locomotion, such as a street.
The meaning of the term is similar to the meaning of the term
‘path’ introduced by Lynch (1960).

fiers of the objects currently explored by the user, a
conceptualization of the user’s movements is created
that is suitable as input to the component dealing
with assisting-utterance generation. For the case of
tactile-map explorations, different circumstances af-
fect which information shall be given via natural
language in an exploration situation: (a) what kind
of information is the user is trying to get (exploration
category), (b) about which object the user is trying
to get information, and (c) what has happened before
(history).

The Map-Knowledge Reasoning (MKR) compo-
nent serves as memory for both the MEP Observer
and the GVA component by keeping track of ver-
bal and haptic information that has been presented
to the user. This component hence helps to avoid
unnecessary verbal repetitions.

The Generation of Verbal Assistance (GVA) com-
ponent, which is at the core of the prototype that
we will present in Section 4, solves the central task
of natural language generation. This component se-
lects the knowledge that is suitable for verbalization
in an exploration situation from the VETM knowl-
edge base and prepares it in a way appropriate for
further output. It sends preverbal messages (PVMs,
see Levelt, 1989), propositional representations of
the semantics of the planned utterance, to the Formu-
lation & Articulation components for the generation
of a surface structure and final utterance.

4 Description of the Prototype

In order to show how an artificial system is able to
generate situated assistance in a well-formed fashion,
we present a prototype implementation of the core
components for natural language generation in the
VAVETaM system.
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We implemented dummy components in place for
the Map-Knowledge Reasoning (MKR) and MEP
Observer components to allow us to test the natural
language output. The MKR Simulator provides basic
functions sufficient to avoid unnecessary repetitions
of utterances by preventing production of the same
message for a defined time period. An exception
to this rule are those messages that are needed to
identify an object on the map, such as ‘This is Dorfs-
traße’, which are given every time the user touches
an object.2 The MEP Simulator generates input to
the component as the MEP Observer is planned to
do (see Kerzel & Habel, 2011, for a discussion of a
possible technical realization).

In the following subsection, we will discuss Map-
Exploratory Procedures (MEPs), which are output
by the MEP Observer and form the basic input to
the generation component (GVA), which we then
discuss in Subsection 4.2. Finally, we present the
inner workings of the Formulation & Articulation
components in Subsection 4.3.

4.1 Conceptualization of the User’s Movements

One of the core challenges for situated natural lan-
guage generation is to timely connect the user’s per-
cepts (in the case of virtual-tactile-map exploration
indicated by movements that the user performs with
the device) to symbolic natural language (Roy &
Reiter, 2005). The task to be solved is to have a
well-specified conceptualization of exploration situa-
tions. An exploration situation is constituted by the
kind of movements the user performs, the map ob-
jects the user wants to gain knowledge about (which
constitutes the haptic focus (Lohmann et al., 2011)),
and the haptic exploration and verbalization history.
In the structure of the VAVETaM system, the MEP
Observer fulfills the task of categorizing the user’s
movements and detecting objects in the haptic focus.
Lohmann et al. (2011) discuss how Map-Exploratory
Procedures (MEPs), a specialization of Exploratory
Procedures, introduced as categories of general hap-
tic interaction by Lederman and Klatzky (2009), can
be used to categorize the map user’s movements.
MEP types are shown in Table 1.

For example, a trackMEP is, straightforwardly,

2User studies showed that the verbal identification is neces-
sary to recognize the haptic objects.

MEP Type Indication
trackMEP Exploration of a track

or track segment object
landmarkMEP Exploration of a potential

landmark object
regionMEP Exploration of a region object
frameMEP Exploration of a frame object
stopMEP No exploration

Table 1: Map Exploratory Procedures (MEPs).
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Figure 3: Visualization of a Part of a Virtual Tactile Map.

characterized by a track-following movement indi-
cating that the user wants to know something about
a track object. MEPs are (optionally) specified with
identifier(s) that link objects on the propositional
layer of the VETM knowledge base as belonging to
the haptic focus of the MEP.

In this work, we extend the concept to be able to
cope with multiple objects or parts of objects that
can simultaneously be in the user’s haptic focus. The
following example illustrates overlapping haptic foci
(see Figure 3). Consider the track with the name
‘Dorfstraße’ being represented as track object pt5 on
the propositional layer of the VETM knowledge base.
If the track pt5 forms a dead end, this dead end can
additionally be represented as a unique track segment
object (pts55). When the user explores the track pt5
from the left to the right, at a certain point, both pt5
and pts55 are in the haptic focus.

Since the user is exploring a track, the movement
is characterized by a trackMEP which is specified
by the objects pt5 and pts55 and either will be in the
primary haptic focus.3 Thus, in this case, pts55 is in

3Notice that the decision whether in fact pt5 or pts55 are
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Figure 4: The Architecture of the Generation of Verbal Assistance Component.

the secondary haptic focus. It is reasonable to talk
about both, the track and the dead end itself. As a
notational convention, we denote MEPs by their type,
the object in primary focus (if available), and a (possi-
bly empty) list of objects in secondary focus. For the
example above, we write trackMEP(pt5, [pts55]).

4.2 Structure of the Generation Component

The focus of our prototype is on the GVA component
of the VAVETaM system that solves the ‘What to
say?’ task, the task of determining the content appro-
priate for utterance in an exploration situation (Reiter
& Dale, 2000; De Smedt, Horacek, & Zock, 1996).
This component interacts with different components
introduced above (see Section 3): (1) it receives the
conceptualization of the user’s movements (MEPs
and specifications) from the MEP Observer; (2) it
accesses the propositional layer of the VETM knowl-
edge base in order to retrieve information about the
objects that is suitable for verbalization; (3) it inter-
acts with the MKR component, which keeps track of
the exploration and verbalization history; and (4) it
then sends semantic representations in the form of
preverbal messages (PVMs) to the Formulation &
Articulation components.

The GVA component consists of several subcom-
ponents which are visualized in Figure 4. The GVA
Controller controls the execution of other processes
through controlling the Agenda, which is an ordered
list of preverbal-message representations of utter-
ances.4 Once the GVA component receives a (spec-
ified) MEP describing the user’s movements from
the MEP Observer, it looks up Utterance Plans &

focussed primarily upon is up to the MEP Observer component.
4The term ‘Agenda’ is used in a similar context in the Colla-

gen system (Rich, Sidner, & Lesh, 2001).

Agenda Operations that specify which information to
express is suitable in the given exploration situation
and where it should be placed on the Agenda. The
PVM Construction component searches an utterance
plan that allows to construct a preverbal message
that contains this information. The top element of
the Agenda is passed on to the Formulation & Ar-
ticulation component as soon as that component has
finished uttering the previous element.

In the current implementation of the GVA, utter-
ance plans are stored as lists of potential messages
and construction rules. For example, with a track-
MEP, associated knowledge is stored that the object
shall first be identified (by either stating the name
associated to that object, e.g., ‘Dorfstraße’ or choos-
ing a referring expression that allows for definite
identification). Then, if available, information about
geometric relations such as parallelism with other
linear objects on the map is selected from the VETM
knowledge base, followed by information about spa-
tial relations with other map objects. Subsequently,
the construction of a preverbal message that informs
the user about the extent of the track in the haptic
focus is tried, followed by information about cross-
ings the track has. For each of these construction
rules is tested whether the VETM knowledge base
contains suitable information. If it does, a preverbal
message is generated and added to the Agenda unless
the MKR component rejects the message because
this utterance is inappropriate given the exploration
and verbalization history, which prevents unneces-
sary repetitions of information. For example, if the
user has previously explored the track pt5 and already
received the information that the buildings ‘Lidl’ and
‘Aldi’ (cf. Figure 3) are above the track a short time
before, the articulation of this information is pre-
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Figure 5: Literal Translation of the Template for a German
Identification Message.

vented and the user is given other information (or
none, if no more suitable information is available).

4.3 Formulation and Articulation

In the prototype system presented, formulation is
implemented in a template-based approach (Reiter
& Dale, 2000). The Formulation component uses
a set of sentence templates which consist of partial
lexicalizations and gaps to fill with information for
the exploration situations. Additionally, a lexicon
stores knowledge about natural language expressions
that can be used to express spatial situations. Fig-
ure 5 shows a simple template used for the genera-
tion of identification messages.5 Of the four utter-
ance parts depicted in the left box, one is chosen
randomly enabling some variation in the utterances.
If the MKR component has marked the preverbal
message as a repetition of a previously articulated
utterance, a marker word is placed in the sentence
(here: ‘again’). Then, the sentence is completed by
either selecting the name of the object in focus from
the VETM knowledge base or by selecting a referring
expression. The former results in utterances such as
‘This is Dorfstraße’. This text is then synthesized
using text-to-speech (TTS) software.

5 A Worked Example

As described, the development of the component that
conceptualizes the user’s movement is not yet fin-
ished. Therefore, to show the function of the imple-
mentation, we used example inputs that were derived
by manually annotating screen-records from experi-
mental data that was previously collected in Wizard-
of-Oz-like experiments with blindfolded sighted,
blind, and visually impaired people. In these ex-

5Note that the system is implemented in German; the order-
ing of elements indead leads to grammatically correct German
sentences.

periments, participants received pre-recorded verbal
assisting utterances that were selected by the experi-
menter using a custom-built software tool based on a
visualization of the user’s movement on a computer
screen (Lohmann & Habel, forthcoming, and Sec-
tion 2). Using video records of the visualizations
of the user’s movements, the first author manually
annotated the relevant MEPs and their specifications
that, in the VAVETaM structure, the MEP Observer
component should output. These manually annotated
MEPs form the input to test the prototype system.6

In order to exemplify the function of the gener-
ation system, a small part of one of the annotated
inputs is detailed in this section.7 Figure 6 visual-
izes a part of the movement of a visually impaired
map explorer and the corresponding names and iden-
tifiers of the objects used for the specification of the
MEPs in the VETM knowledge base. As the figure
shows, the map explorer touches the track pt3, com-
ing from the left. The track is explored for a while
with small movements. (This position is remained
for a relatively long time, maybe listening to the on-
going utterances.) Then, the map explorer proceeds
to the bottom end of the track before following the
track upwards. Figure 6 shows that the bottom end of
the track is conceptualized as distinct track segment,
track segment pts33, which is part of the track pt3.

p
t3
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se
lw

eg

p
ts
3
3

Kartenrand [map frame]

Figure 6: Example Movement a Visually Impaired Map
Explorer Performed in an Ongoing Experiment.

The annotated MEPs and their specification of this
small exploration movement are shown in Table 2.
The GVA component and the Formulation & Articu-
lation components generate detailed log files that in-

6Detecting MEPs is an instance of event detection in virtual
haptic environments (Kerzel & Habel, 2011), which showed
its applicability for the task in an early prototype (M. Kerzel,
personal communication).

7We also tested other annotated inputs; this example is repre-
sentative of the behavior of the prototype.
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Time in Seconds Input to the GVA
. . . . . .
33.0–54.0 trackMEP(pt3)
54.0–57.0 trackMEP(pt3, [pts33])
57.0–57.8 trackMEP(pt3)
. . . . . .

Table 2: Manually Categorized MEPs and Specifications
for the Exploration Depicted in Figure 6.

dicate which information has been selected from the
VETM knowledge base, which preverbal messages
(PVMs) are put onto the Agenda, and how utterances
are articulated. Based on the log files, we detail the
processes performed by the GVA component and the
resulting verbal output in Table 3.

During the user’s long first exploration movement
of the track pt3 from seconds 33 to 54, which is con-
ceptualized by trackMEP(pt3), the GVA component
expresses all the information that is associated with
the track pt3 in the VETM. The first message informs
the user about the identity of the track by stating the
identifying utterance ‘This is Amselweg’. Then, the
user is informed about geometric relations of this
track to other tracks. In the present case, information
about parallelism with the track pt4 is available in the
VETM and a corresponding utterance is produced.
Subsequently, the user is informed about the extent
of the track, i.e., where it ends. Then, information
about the intersections the track has is uttered. These
are all assisting utterances that are possible given the
current MEP and the knowledge base.8

Next, the user moves downwards resulting in the
distinct track segment pts33 coming into secondary
focus. All PVMs about the object in primary focus
(pt3) are blocked by the MKR component, as they
have just been uttered. Thus, a message that informs
the user about his or her position on the track segment
is formulated, resulting in a message such as ‘Here,
Amselweg is restricted by the map frame’. When the
user leaves the track segment pt33, no further assist-
ing utterances are given as all information associated
with the track pt3 has been expressed recently.

8Note that the order in which information is given is fixed
in the current system as explained in Subsection 4.2. Whether
giving the messages in another order, which is potentially more
flexible, is more helpful, has to be further evaluated.

. . .

33.0–54.0 s
MEP Simulator fires trackMEP(pt3)
GVA receives: trackMEP(pt3)
GVA clears agenda due to MEP change
PVM Construction is able to generate PVMs of class:
Identification, Geometric Relation, Extension, Junc-
tions
PVMs Identification, Geometric Relation, Extension,
Junctions, are put on the Agenda (0 prohibited by Map-
Knowledge Reasoner)
Formulation getting Identification PVM for the RefO
pt3: the following aspects have been chosen by PVM
Construction: name ‘Amselweg’
Speechout: “Dies ist der Amselweg.” [“This is Amsel-
weg.”]
Formulation getting Geometric Relation PVM for the
RefO pt3: the following aspects have been chosen by
the PVM Construction: IS PARALLEL TO with the
arguments [pt3, pt4]
Speechout: “Parallel zu ihm verläuft die Blumenstraße.”
[“. . . which is parallel to Blumenstraße”]
Formulation getting Extent PVM for the RefO pt3: the
following aspects have been chosen by the PVM Con-
struction: predicate HAS UPPER LIMIT with the ar-
guments [pt3, ptco1]; predicate HAS LOWER LIMIT
with the arguments [pt3, pfr3]
Speechout: “. . . er muendet nach oben in die Dorfstraße
und endet unten am Kartenrand.” [“. . . it forms a corner
with Dorfstraße at the top and at the bottom is restricted
by the map frame.”]
Formulation getting Junctions PVM for the RefO pt3:
the following aspects have been chosen by the PVM
Construction: predicate IS IN TRACK CONFIG with
the arguments [pt3, ptco4]
Speechout: “Außerdem hat er eine Kreuzung mit
der Hochstraße.” [“Furthermore, the street crosses
Hochstraße.”]
54.0–57.0 s
MEP Simulator changes MEP specification to track-
MEP(pt3, [pts33])
GVA receives: trackMEP(pt3, [pts33])
GVA detects secondary focus change
PVM Construction is able to generate PVMs of class:
Identification
Identification-class PVM is put at the front of the
Agenda (0 prohibited by Map-Knowledge Reasoner)
Formulation getting Identification PVM for the RefO
pts33
. . .
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. . .
Speechout: “Hier endet der Amselweg am Kartenrand.”
[“Here, Amselweg is restricted by the map frame.”]
57.0–57.8 s
MEP Simulator changes MEP specification to track-
MEP(pt3)
GVA receives: trackMEP(pt3)
Nothing happens, primary focus not new
. . .

Table 3: The Processes and Output (German and Trans-
lated) of the GVA and the Formulator.

6 Conclusion

We presented a prototype system that generates situ-
ated assisting utterances for tactile-map explorations
to ease tactile map learning. The prototype is based
on an earlier concept. We focussed on the GVA
component in the system, which solves the ‘What
to say?’ task of natural language generation, taking
into account the situated context. We exemplified
the working of the component in a testing environ-
ment based on a conceptualization of a part of a
real tactile-map exploration, for which it generates
plausible and timely output that is comparable to
assisting utterances that were in previous research
tested in Wizard-of-Oz-like experiments with blind-
folded sighted people and in ongoing experiments
with blind and visually impaired people. Therefore,
we conclude that a generation system working in the
manner described is technically possible. We also
explained in detail the structure and implementation
of MEPs, which are the basis for categorization of the
user’s movements and, with additional specification,
the input to the GVA component.

More fine-grained analysis is needed to gain
knowledge (1) about how much information should
be given via the verbal channel to maximize effi-
ciency, and (2) whether the system can be improved
by using more flexible Utterance Plans.

7 Discussion and Outlook

One problem which became apparent in the experi-
ments and also in preliminary tests of the fully inte-
grated prototype system is the fact that the user’s ex-
ploration movements on the map may be very quick.
In these cases, the information to be delivered may
already be outdated when the assistive utterance con-

veys this information. This is partly due to the Ger-
man word order, as can be seen in Figure 5, which
shows the template for identification messages.

Problems can occur in cases where an utterance
is verbalized shortly before the user starts exploring
another map object. In this case, the exploration situ-
ation changes during articulation. Currently, the com-
ponents concerned with language generation work in
a modularized sequential manner without feedback.
If an utterance was sent to formulation, it cannot not
be changed anymore. Hence, it can happen that as-
sisting utterances and the user’s exploration are not
in all cases timely.

One possible remedy to this problem is to extend
the formulation to work in an incremental fashion
such that it explicitly handles situations in which a
currently articulated utterance is outdated (e.g., an
identification utterance that is no longer valid because
the object to be identified has gone out of focus) and
by altering it to a new utterance of similar structure
(i.e., an identification utterance for a different ob-
ject which just came into the haptic focus). In this
case, it could adapt the ongoing utterance (if it is
still in an early stage of production) to replace the
previous identifying word (e.g., ‘Amselweg’) with
the new word (i.e., ‘Dorfstraße’). Of course, this is
only possible if the articulation (text-to-speech syn-
thesis) works in an incremental fashion (i.e., it is able
to change yet unspoken parts of an ongoing utter-
ance). Such work is currently ongoing and we plan
to integrate this functionality in our future work.
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Abstract 

American Sign Language (ASL) synthesis 
software can improve the accessibility of in-
formation and services for deaf individuals 
with low English literacy. The synthesis com-
ponent of current ASL animation generation 
and scripting systems have limited handling of 
the many ASL verb signs whose movement 
path is inflected to indicate 3D locations in the 
signing space associated with discourse refer-
ents. Using motion-capture data recorded 
from human signers, we model how the mo-
tion-paths of verb signs vary based on the lo-
cation of their subject and object.  This model 
yields a lexicon for ASL verb signs that is pa-
rameterized on the 3D locations of the verb’s 
arguments; such a lexicon enables more real-
istic and understandable ASL animations.  A 
new model presented in this paper, based on 
identifying the principal movement vector of 
the hands, shows improvement in modeling 
ASL verb signs, including when trained on 
movement data from a different human signer. 

1 Introduction 

American Sign Language (ASL) is a primary 
means of communication for over 500,000 people 
in the U.S. (Mitchell et al., 2006).  As a natural 
language that is not merely an encoding of English, 
ASL has a distinct syntax, word order, and lexicon. 
Someone can be fluent in ASL yet have significant 
difficulty reading English; in fact, due to various 
educational factors, the majority of deaf high 
school graduates (age 18+) in the U.S. have a 
fourth-grade (age 10) English reading level or low-
er (Traxler, 2000).  This leads to accessibility chal-
lenges for deaf adults when faced with English text 
on computers, video captions, or other sources.  

Technologies for automatically generating com-
puter animations of ASL can make information 
and services accessible to deaf people with lower 
English literacy. While videos of sign language are 
feasible to produce in some contexts, animated 
avatars are more advantageous than video when 
the information content is often modified, the con-
tent is generated or translated automatically, or 
signers scripting a message in ASL wish to pre-
serve anonymity.  This paper focuses on ASL and 
producing accessible sign language animations for 
people who are deaf in the U.S., but many of the 
linguistic issues, literacy rates, and animation tech-
nologies discussed within are also applicable to 
other sign languages used internationally.   

2 Use Of Space, Inflected Verbs 

ASL signers can associate entities or concepts they 
are discussing with arbitrary locations in space 
(Liddle, 2003; Lillo-Martin, 1991; McBurney, 
2002; Meier, 1990).  After an entity is first men-
tioned, a signer may point to a 3D location in space 
around his/her body; to refer to this entity again, 
the signer (or his/her conversational partner) can 
point to this location. Many linguists have studied 
this pronominal use of space (Klima et al. 1979; 
Liddell, 2003; McBurney, 2002; Meier, 1990). 
Some argue that signers tend to pick 3D locations 
on a semi-circular arc floating at chest height in 
front of their torso (McBurney, 2002; Meier, 1990); 
others argue that signers pick 3D locations at dif-
ferent heights and distances from their body (Lid-
dell, 2003).  Regardless, there are an infinite 
number of locations where entities may be associ-
ated for pronominal reference; as discussed below, 
this also means that there are a potentially infinite 
number of ways for some verbs to be performed: a 
finite fixed lexicon for ASL is not sufficient. 
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While ASL verbs have a standard citation form, 
many can be inflected to indicate the 3D location 
in space at which their subject and/or object have 
been associated (Liddell, 2003; Neidle et al., 2000; 
Padden, 1988).  Linguists refer to such verbs as 
“inflecting” (Padden, 1988), “indicating” (Liddell, 
2003), or “agreeing” verbs (Cormier, 2002). We 
use the term “inflecting verbs” in this paper.  When 
they appear in a sentence, their standard motion 
path may be modified such that the movement or 
orientation goes from the 3D location of their sub-
ject and toward the 3D location of their object (or 
more complex effects).  The resulting performance 
is a synthesis of the verb’s standard lexical motion 
path and the 3D locations associated with the sub-
ject and object. Because the verb sign indicates its 
subject and/or object, the names of the subject and 
object may not be otherwise expressed in the sen-
tence.  If the signer chooses to mention them in the 
sentence, it is legal to use the citation-form (unin-
flected) version of the verb, but the resulting sen-
tences tend to appear less fluent.  In prior studies, 
we have found that native ASL signers who view 
ASL animations report that those that include spa-
tially inflected verbs and entities associated with 
locations in space are easier to understand (than 
those which lack spatial pronominal reference and 
lack verb inflection) (Huenerfauth and Lu, 2012).  

Fig. 1 shows the ASL verb EMAIL, which in-
flects for its subject and object locations.  Some 
ASL verbs do not inflect or inflect for their ob-
ject’s location only (Liddell, 2003; Padden, 1988).  
There are other categories of ASL verbs (e.g., “de-
picting,” “locative,” or “classifier”) whose move-
ments convey complex spatial information and 
other forms of verb inflection (e.g., for temporal 
aspect); these are not the focus of this paper.  

 
Fig. 1. Two inflected versions of the ASL verb EMAIL: 

(top) subject associated with location on left and object on 
right, (bottom) subject on right and object on left. 

3 Related Work on Sign Animation 

Given how the association of entities with loca-
tions in space affects how signs are performed, it is 
not possible to pre-store all possible combinations 
of all the signs the system may need.  For pointing 
signs, inflecting verbs, and other space-affected 
signs, successful ASL systems must synthesize a 
specific instance of the sign as needed. Few sign 
language animation researchers have studied spa-
tial inflection of verbs. There are two major types 
of ASL animation research: scripting software (El-
liott et al., 2008; Traxler, 2000) or generation 
software (e.g., Fotinea et al., 2008; Huenerfauth, 
2006; Marshall and Safar, 2005; VCom3D, 2012) 
as surveyed previously by (Huenerfauth and Han-
son, 2009). Unfortunately, current generation and 
scripting systems for sign language animations 
typically do not make extensive use of spatial loca-
tions to represent entities under discussion, the 
output of these systems looks much like the anima-
tions without space use and without verb inflection 
that we evaluated in (Huenerfauth and Lu, 2012). 

For instance, Sign Smith Studio (VCom3D, 
2012), a commercially available scripting system 
for ASL, contains a single uninflected version of 
most ASL verbs in its dictionary. To produce an 
inflected form of a verb, a user must use an ac-
companying piece of software to precisely pose a 
character’s hands to produce a verb sign; this sig-
nificantly slows down the process of scripting an 
ASL animation. One British Sign Language anima-
tion generator (Marshall and Safar, 2005) can as-
sociate entities under discussion with a finite 
number of locations in space (approximately 6). Its 
repertoire also includes a few verbs whose sub-
ject/object are positioned at these locations. How-
ever, most of the verbs handled by their system 
involved relatively simple motion paths for the 
hands from subject to object locations, and the sys-
tem did not allow for the arrangement of pronomi-
nal reference points at arbitrary locations in space.   

Toro (Toro, 2004; 2005) focused on ASL in-
flected verbs; they analyzed the videos of human 
signers to note the 2D hand locations in the image 
for different verbs. Next, they wrote animation 
code for planning motion paths for the hands based 
on their observations. A limitation of this work is 
that asking humans to look for hand locations in a 
video and write down angles and coordinates is 
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inexact; further, a human looked for patterns in the 
data – machine learning approaches were not used.  

There are some sign language animation re-
searchers who have used modeling techniques ap-
plied to human motion data.  Researchers studying 
coarticulation for French Sign Language (LSF) 
animations (Segouat & Braffort, 2009) digitally 
analyzed the movements of human signers in video 
and trained mathematical models of the move-
ments between signs, which could be used during 
animation synthesis.  Because collecting data from 
human via video requires researchers to estimate 
movements from a 2D image, it is more accurate 
and efficient to use motion-capture sensors.  Du-
arte et al. collected data via motion capture in their 
SignCom project for LSF (Duarte and Gibet, 2011), 
and they reassembled elements of the recordings to 
synthesize novel animations.  

4 Our Prior Modeling Research 

The goal of our research is to construct computa-
tional models of ASL verbs that can automate the 
work of human users of scripting software or be 
used within generation. Given the name of the 
verb, the location in space associated with verb’s 
subject, and the location associated with the object, 
our software should access its parameterized lexi-
con of ASL verb signs to synthesize the specific 
inflected form needed for a sentence.  Our tech-
nique for building these parameterized lexicon en-
tries for each verb is data-driven: based on samples 
of sign language motion from human signers. Spe-
cifically, we record a list of examples of each verb 
for a variety of arrangements of the verb’s subject 
and object around the signer’s body.  Fig. 2. shows 
how we identified 7 locations on an arc around the 
signer; we then collected examples of each verb for 
all possible combinations of these seven locations 
for subject and object. Table 1 lists the ASL verbs 
modeled in our prior work (Huenerfauth and Lu, 
2010; Lu and Huenerfauth, 2011).   

 
Fig. 2. Front & top view of arc positions around the signer. 

Table 1: Five ASL Verbs We Have Modeled 
Verb Inflection 

Type 
Description 

ASK Subject & 
Object 

The signer moves an extended index finger from 
the “asker” (subject) to the “person being asked” 
(object).  During the movement, the finger bends 
into a hooked shape. (ASL “1” to “X” 
handshape.) 

GIVE Subject & 
Object 

In this two-handed version of the sign, the signer 
moves two hands as a pair from the “giver” 
(subject) toward the “recipient” (object). (Both 
hands have an ASL “flat-O” handshape.) 

MEET Subject & 
Object 

Signer moves two index fingers towards each 
other (pointing upward) to “meet” at some point 
in the middle. (ASL “1” handshape.) 

SCOLD Object 
Only 

The signer “wags” (bounces up and down while 
pointing) an extended index finger at the “person 
being scolded” (object).  (ASL “1” handshape.) 

TELL Object 
Only 

The signer moves an extended index finger from 
the mouth/chin toward the “person being told” 
(object). (ASL “1” handshape.) 

 
For verbs inflected for both subject and object 

location (MEET, GIVE), our training data con-
tained 42 examples for all non-reflexive combina-
tions of the 7 arc positions.  For verbs inflected for 
object location only (TELL, SCOLD, ASK), 7 ex-
amples were collected.  While we focused on these 
five verbs as examples, we intend for our lexicon 
building methodology to be generalizable to other 
verbs and other sign languages. In our early work 
(Huenerfauth and Lu, 2010), we collected samples 
of inflected verbs by asking a native ASL signer 
with animation experience to produce these verbs 
using the Gesture Builder sign creation software 
(VCom3D, 2012).  In later work, we collected 
more natural/accurate data by using motion-
capture equipment to record a human signer per-
forming a verb for various arrangements of sub-
ject/object in space (Lu and Huenerfauth, 2011).   

Regardless of the data source, we extracted the 
hand position for each keyframe for each verb.  (A 
keyframe is an important moment for a movement; 
a straight-line path can be represented merely by 
its beginning and end.)  Thus, for a two-handed 
verb (e.g., GIVE) that is inflected for both subject 
and object, we collected 504 location values: 42 
examples x 2 keyframes x 2 hands x 3 (x, y, z) val-
ues.  Next, we fit third-order polynomial models 
for each dimension (x, y, z) of the hand position at 
each keyframe – parameterized on the arc locations 
of the verb’s subject and object for that instance in 
the training data (Huenerfauth and Lu, 2010).   

At this point, we could use the model to synthe-
size novel ASL verb sign instances (properly in-
flected for different locations of subject and object, 
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including combinations not present in the training 
data) by predicting the location of the hand for 
each of the keyframes of a verb, given the location 
of the verb’s subject and object on the arc.  Our 
animation software is keyframe based, and it uses 
inverse kinematics and motion interpolation to syn-
thesize a full animation from a list of hand location 
targets for specific keyframe times during the ani-
mation. Additional details appear in (Huenerfauth 
and Lu, 2010; Lu and Huenerfauth, 2011).   

To evaluate our models in prior work, we con-
ducted a variety of user-based and distance-metric-
based evaluations. For instance, we showed native 
ASL signer participants animations of short ASL 
stories that contained verbs (some versions pro-
duced by our model, and some produced by a hu-
man animator) to measure whether the stories 
containing our modeled verbs were easily under-
stood, as measured on comprehension questions or 
side-by-side subjective evaluations (Huenerfauth 
and Lu, 2010).  No significant differences in com-
prehension or evaluation scores were observed in 
these prior studies, indicating that the ASL anima-
tions synthesized from our model had similar qual-
ity to verb signs produced by a human animator. 

5 Collecting More Verb Examples 

In prior work, we used motion-capture data from 
only a single human signer performing many in-
flected forms of five ASL verbs.  For this paper, 
we asked two additional signers to perform exam-
ples of each inflected form of the five verbs.  This 
section summarizes the collection methodology, 
described in detail in (Lu and Huenerfauth, 2011).  
During a videotaped 90-minute recording session, 
each native ASL signer wore a set of motion-
capture sensors while performing a set of ASL 
verb signs, for various given arrangements of the 
subject and object in the signing space. We use an 
Intersense IS-900 motion capture system with an 
overhead ultrasonic speaker array and hand, head, 
and torso mounted sensors with directional micro-
phones and gyroscope to record location (x, y, z) 
and orientation (roll, pitch, yaw) data for the 
hands, torso, and head of the signer during the 
study. We placed colored targets around the perim-
eter of the laboratory at precise angles, relative to 
where the signer was seated, corresponding to the 
points on the arc in Fig. 2.  Fig. 4. shows how we 
set up the laboratory during the data collection 

with 10cm colored paper squares were attached to 
the walls; the two squares visible in Fig. 4 corre-
spond to arc positions 0.9 and 0.6 in Fig. 2. These 
squares served as “targets” for the signer to use as 
“subject” and “object” when performing various 
inflected verb forms.  

 
Fig. 4. This three-quarter view illustrates the layout of the 
laboratory during the motion capture data collection; the 
signer is facing a camera (off-screen to the right). Sitting 
behind the camera is another signer conversing with him. 

Another native ASL signer sitting behind the 
video camera prompted the performer to produce 
each inflected verb form by pointing to the colored 
squares for the subject and the object for each of 
the 42 samples we wanted to record for each verb. 
At the beginning of the session, the signer was 
asked to make several large arm movements and 
hand claps (Fig. 5) to facilitate the later synchroni-
zation of the motion capture stream with the video 
data and scaling the data from the recorded human 
to match the body size of the VCom3D avatar.  

 
Fig. 5. Arm movements the signer was asked to perform to 
facilitate calibration of the collected motion capture data. 

  
Fig. 6. The signer signed the number that corresponded to 
each verb example being performed (left) and a close-up 

view of the hand-mounted sensor used in the study (right). 
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Occasionally during the recording session (and 
whenever the signer made a mistake and needed to 
repeat a sign), the signer was asked to sign the se-
quence number of the verb example being recorded 
(Fig. 6); this facilitated later analysis of the video.  

We needed to identify timecodes in the motion 
capture data stream that correspond to the begin-
ning and ending keyframes of each verb recorded. 
We asked a native ASL signer to view the video 
after the recording session to identify the time in-
dex (video frame number) that corresponded to the 
start and end movement of each verb sign that we 
recorded. (If we had modeled signs with more 
complex motion paths, we might have needed 
more than two keyframes.) These time codes were 
used to extract hand location (x, y, z) data from the 
motion capture stream for each hand for each 
keyframe for each verb example that was recorded.  

6 Modeling the Verb Path as a Vector 

Although experimental evaluations of verb models 
produced in prior work based on motion-capture 
data from a single human signer were positive (Lu 
and Huenerfauth, 2011), this may not have been a 
realistic test.  When constructing a large-scale sign 
language animation system, it may not be possible 
to gather all of the needed training examples for all 
of the verbs for a large lexicon from a single signer.  
For instance, if you wish to learn performances of 
a verb from examples of the inflected form of that 
verb that happen to appear in a corpus, then you 
would likely need to mix data recorded from mul-
tiple signers to produce your training data set for 
learning the inflected verb animation model. 

The challenge of using data from multiple sign-
ers is that an ASL verb performance consists of: (1) 
non-meaningful/idiosyncratic variation in how dif-
ferent people perform a verb (or how one person 
performs a verb on different occasions) and (2) 
meaningful/essential aspects of how a verb should 
be performed (that should be rather invariant 
across different signers or different occasions).  
We prefer a model that captures the essential na-
ture of the verb but not the signer-specific elements; 
models attuned too much to the specifics of a sin-
gle human’s performance may overfit to that one 
individual’s version of the verb (or that one occa-
sion when the signer performed).  Further, while 
motion-capture data recorded from humans with 
different body proportions can be somewhat re-

scaled to fit the animated character’s body size to 
be used by the sign language animation system, no 
“retargeting” algorithm is perfect. If signer-specific 
idiosyncrasies are captured in the verb animation 
model, then the variation in data sources used 
when building a large-scale sign language anima-
tion project may be apparent in its output.  

Our prior modeling technique explicitly learned 
the starting and ending location of the hands for 
each instance of a verb based on a human signer’s 
movements.  However, when different signers per-
form a verb (e.g., GIVE with subject at arc position 
-0.6 and object at 0.3), they may not select exactly 
the same point in 3D space for their hands to start 
and stop.  What is common across all of the varia-
tions in the performance is the overall direction 
that the hands move through the signing space.  
We can find empirical evidence for this intuition if 
we compare motion-capture data of the three dif-
ferent signers we recorded (section 5) performing 
the same ASL inflecting verbs.  When we calculate 
Euclidean distance between different signer’s start-
ing location and their ending locations of the hands 
for identical verb examples, we see inter-signer 
variability (Fig. 7).  If we instead calculate the Eu-
clidean distance between the vector (direction and 
magnitude) of the hand movement from the start to 
the ending location between signers, we see much 
smaller inter-signer variability (Fig. 7). Section 7 
explains the scale and formula used for the dis-
tance metrics in Fig. 7 and elsewhere in this paper. 

 
Fig. 7.  Inter-signer variability in ASL verb signs, re-

ported using a “point” or “vector” distance metric. 
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Using these results as intuition, we present a 
new model of ASL inflecting verbs in this paper, 
based on this “vector” approach to modeling the 
movement of the signer’s hands through space.  
We assume that what is essential to a human’s per-
formance of an inflected ASL verb is the direction 
that the hands travel through space, not the specific 
starting and ending locations in space.  Thus, we 
model each verb example as a tuple of values: the 
difference between the x-, the y-, and the z-axis 
values for the starting and ending location of the 
hand.  (The model has three parameters for a one-
handed sign and six parameters for a two-handed 
sign.)  Using this model, we followed a similar 
polynomial fitting technique summarized in sec-
tion 4 – except that we are now modeling a smaller 
number of parameters – our new “vector” model 
uses only three values per hand (deltax, deltay, 
deltaz), instead of six per hand in our prior “point” 
model, which represented start and end location of 
the hand as (xstart, ystart, zstart, xend, yend, zend).  

This new model can then be used to synthesize 
animations of ASL verb signs for given subject and 
object arc positions around the signer – the differ-
ence from our prior work is that these new models 
only represent the movement vector for the hands, 
not their specific starting and ending locations.   

The purpose of building a model of a verb is 
that we wish to use it as a parameterized lexical 
entry in a sign language animation synthesis sys-
tem; thus, we must explain how the model can be 
used to synthesize a novel verb example, given its 
input parameters (the arc position of the subject 
and the object of the verb).  While our new vector 
model predicts the motion vector for the hands, 
this is not enough; we need starting and ending 
locations for the hands (an infinite number of 
which are possible for a given vector).  Thus, we 
need a way to select a starting location for the 
hands for a specific verb instance (and then based 
on the vector, we would know the ending location).   

We observe that, for a given verb, there are 
some locations in the signing space that are likely 
for the signer’s hands to occupy and some regions 
that are less likely.  Some motion paths through the 
signing space travel through high-likelihood “pop-
ular” regions of the signing space, and some, 
through less likely regions.  Thus, we can build a 
Gaussian mixture model of the likelihood that a 
hand might occupy a specific location in the sign-
ing space during a particular ASL verb.  For a giv-

en motion vector, one possible starting point in the 
signing space will lead to a path that travels 
through a maximally likely region of the signing 
space.  Thus, we can search possible starting points 
for the hands for a given vector and identify an 
optimal path for the hands given a Gaussian mix-
ture model of hand location likelihood.   

Fig. 8 shows a (two-dimensional) illustration of 
our approach for selecting a starting location for 
the hand when synthesizing a verb.  The concentric 
groups of ovals in the image represent the compo-
nent Gaussians in the mixture model, which was fit 
on the data from the locations that one hand occu-
pied during a signer’s performances of a verb.  
Given the vector (direction and magnitude) for the 
hand’s motion path for a verb (predicted by our 
model), we can systematically search the signing 
space for all possible starting locations for the hand 
– to identify the starting location that yields a path 
through the signing space with maximum probabil-
ity (as predicted by the Gaussian model).  The ar-
rows shown in Fig. 8 represent a few possible 
paths for the hand given several possible starting 
locations, and one of these arrows travels a path 
through the model with maximum probability. 

 
Fig. 8. This 2D diagram illustrates how the starting lo-

cation for the hand can be selected that yields a path 
through the mixture model with maximum probability.   

Specifically, for each signer, for each hand, for 
each verb, we used the recorded motion-capture 
data stream between the start-times and end-times 
of all of the verb examples as training data, and 
then we fit a 3D Gaussian mixture model for each, 
to represent the probability that the hand would 
occupy each location in the signing space during 
that verb.  We used a model with 6 component 
Gaussians for modeling the signing space for each 
of the verbs SCOLD, GIVE, ASK, and MEET. 
Due to the fast movement (and thus short clips of 
recorded motion-capture data) for the verb TELL, 
we only had sufficient data to fit a 5-component 
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Gaussian model for the locations of the hand dur-
ing this verb (TELL is a one-handed verb).  When 
we need to synthesize a verb, then we use our vec-
tor model to predict a movement vector for the 
hands, and then we perform a grid search through 
the signing space (in the x, y, and z dimensions) to 
identify an optimal starting location for the hand.  
If run-time efficiency is a concern, optimization or 
estimation methods could be applied to this search. 

In summary, the vector direction and magnitude 
of the hands are based on a model that is parame-
terized on: the verb, the location of the subject on 
an arc around the signer, and the location of the 
object on this arc.  When a specific instance of a 
verb must be synthesized, a starting point for the 
hand is selected that maximizes the probability of 
the entire trajectory of the hands through space, 
based on a Gaussian mixture model specific to that 
verb (but not parameterized on any specific sub-
ject/object locations in space). All instances of the 
verb in the training data were used to train the mix-
ture model, due to data sparseness considerations. 

7 Distance Metric Evaluation  

Because the premise of this paper is that models of 
ASL verbs based on a motion vector representation 
would do a better job of capturing the essential 
aspects of a verb’s motion path across signers, we 
conducted an inter-signer cross-validation of our 
new model. We built separate models on the data 
from each of our three signers, and then we com-
pared the resulting model’s predictions for all 42 
verb instances collected from the other two signers.  
For comparison purposes, we also trained three 
models (one per signer) using the “point”-based 
model from our prior work (Lu and Huenerfauth, 
2011).   Fig. 9 presents the results; the values of 
each bar are the average “error” for each synthe-
sized verb example for all five ASL verbs in Table 
1.  The error score for a verb example is the aver-
age of four values: (1) Euclidean distance between 
the start location of the right hand as predicted by 
the model and the start location of the right hand of 
the human signer data being used for evaluation, 
(2) same for the end location for the right hand, (3) 
same for the start location for the left hand, and (4) 
same for end location for the left hand. 

Fig. 9 shows that the new “vector” model has 
lower error scores than our older “point” model 
presented in prior work.  To interpret the Euclidean 

distance value, it is useful to know that the scale of 
the coordinate space used for the verb model is set 
such that shoulder width of a signer would be 1.0.  
As a baseline for comparison, the average inter-
signer variation (based on the values shown in Fig. 
7) is also plotted in Fig. 9. 

 
Fig. 9. Evaluation of the “Point” and “Vector” models for 

all five ASL verbs listed in Table 1. 

Next, we wanted to compare the two models 
under two assumptions: (1) it may not be possible 
to gather a large number of examples of a verb 
from a single signer and (2) it may be necessary to 
mix data from multiple signers when assembling a 
training data set for a verb model.  For instance, 
these conditions would hold if a researcher were 
using examples of a verb performance extracted 
from a multi-signer corpus to assemble a training 
set.  Due to the limited size of most sign language 
corpora (and the many possible combinations of 
subject and object position in the signing space), a 
training set gathered in this manner would likely 
contain a relatively small number of training ex-
amples – possibly gathered from multiple signers. 

To test the models under these conditions, we 
assembled three training data sets – using the data 
from our three recorded signers.  Each data set in-
cluded 22 examples of the performance of an ASL 
inflected verb for a subset of the various possible 
combinations of subject and object locations in the 
signing space – with half of the examples from one 
signer and half from another.  After training a 
model on each data set, then the model was evalu-
ated against the 42 examples of each verb perfor-
mance recorded from the third signer (who was not 
part of the training data used for that model).  This 
process was repeated for a total of three times (for 
all combinations of the data from the three sign-
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ers).  For comparison purposes, we also trained 
three models (one based on each of the three two-
signer data sets) using the “point”-based model 
from our prior work (Lu and Huenerfauth, 2011). 

Fig. 10 shows the results for two of the verbs in 
Table 1 (ASK and GIVE); the “vector” model has 
lower error scores than our older “point” model. 

 
Fig. 10. Evaluation of the “Point” and “Vector” models 
trained on a small “mixed” data set from two signers. 

Examples of animations of the ASL verbs syn-
thesized using each of these models are on our lab 
website: http://latlab.cs.qc.cuny.edu/slpat2012/ 

8 Conclusion And Future Work 

This paper presented and evaluated a new method 
of constructing a lexicon of ASL verb signs whose 
motion path depends on the location in the signing 
space associated with the verb’s subject and object.  
We used motion capture data from multiple signers 
to evaluate whether our new models do a better job 
of capturing the signer-invariant and occasion-
invariant aspect of an ASL inflected verb’s move-
ment, compared to our prior modeling approach.  
The parameterized models of ASL verb move-
ments produced in this paper could be used to syn-
thesize a desired verb instance for a potentially 
infinite number of arrangements of the subject and 
object of the verb in the signing space – based on 
the collection of a finite number of examples of a 
verb performance from a human signer.  

Using this technique, generation software could 
include flexible lexicons that can be used to syn-
thesize an infinite variety of inflecting verb in-
stances, and scripting software could more easily 
enable users to include inflecting verbs in a sen-
tence (without requiring the user to create a custom 
animations of a body movement for a particular 
inflected verb sign). While this paper demonstrates 
our method on five ASL verbs, this technique 
should be applicable to more ASL verbs, more 
ASL signs parameterized on spatial locations, and 
signs in other sign languages used internationally.  

In this paper, we studied a set of ASL verbs 
with relatively simple motion-paths (consisting of 
straight line movements, which therefore only re-
quired two keyframes per verb); in future work, we 
may analyze verbs with more complex movements 
of the hands.  Further, our vector models represent 
the magnitude (length) of the hands’ motion path 
through space; in future work, we may explore 
techniques for rescaling these vector lengths.  In 
future work, we will also use hand orientation data 
from our motion capture sessions to synthesize 
hand orientation for sign animations.  We also plan 
to experiment with modeling how the timing of 
keyframes varies with subject/object positions.   

Finally, we also plan on conducting a user-
based evaluation study using animations synthe-
sized by the models presented in this paper – to 
determine if native ASL signers who view anima-
tions containing such verbs find them to be more 
grammatical, understandable, and natural.   
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Abstract

This paper addresses the problem of automatic
text simplification. Automatic text simplifica-
tions aims at reducing the reading difficulty
for people with cognitive disability, among
other target groups. We describe an automatic
text simplification system for Spanish which
combines a rule based core module with a sta-
tistical support module that controls the ap-
plication of rules in the wrong contexts. Our
system is integrated in a service architecture
which includes a web service and mobile ap-
plications.

1 Introduction

According to the Easy-to-Read Foundation at least
5% of the world population is functional illiterate
due to disability or language deficiencies. Easy
access to digital content for the intellectual dis-
abled community or people with difficulty in lan-
guage comprehension constitutes a fundamental hu-
man right (United Nations, 2007); however it is far
from being a reality. Nowadays there are several
methodologies that are used to make texts easy to
read in such ways that they enable their reading by
a target group of people. These adapted or simpli-
fied texts are currently being created manually fol-
lowing specific guidelines developed by organiza-
tions, such as the Asociación Facil Lectura,1 among
others. Conventional text simplification requires a
heavy load of human resources, a fact that not only
limits the number of simplified digital content ac-

1http://www.lecturafacil.net

cessible today but also makes practically impossi-
ble easy access to already available (legacy) mate-
rial. This barrier is especially important in contexts
where information is generated in real time – news
– because it would be very expensive to manually
simplify this type of “ephemeral” content.

Some people have no problem reading compli-
cated official documents, regulations, scientific lit-
erature etc. while others find it difficult to under-
stand short texts in popular newspapers or maga-
zines. Even if the concept of "easy-to-read" is not
universal, it is possible in a number of specific con-
texts to write a text that will suit the abilities of most
people with literacy and comprehension problems.
This easy-to-read material is generally characterized
by the following features:

• The text is usually shorter than a standard text
and redundant content and details which do not
contribute to the general understanding of the
topic are eliminated.2 It is written in varied
but fairly short sentences, with ordinary words,
without too many subordinate clauses.

• Previous knowledge is not taken for granted.
Backgrounds, difficult words and context are
explained but in such a way that it does not dis-
turb the flow of the text.

• Easy-to-read is always easier than standard lan-
guage. There are differences of level in differ-

2Other providers, for example the Simple English Wikipedia
(http://simple.wikipedia.org) explicitly oppose to
content reduction. The writing guidelines for the Simple En-
glish Wikipedia include the lemma "Simple does not mean
short".
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ent texts, all depending on the target group in
mind.

Access to information about culture, literature,
laws, local and national policies, etc. is of
paramount importance in order to take part in so-
ciety, it is also a fundamental right. The United Na-
tions (2007) "Convention on the Rights of Persons
with Disabilities" (Article 21) calls on governments
to make all public information services and docu-
mentation accessible for different groups of people
with disabilities and to encourage the media - tele-
vision, radio, newspapers and the internet - to make
their services easily available to everyone. Only a
few systematic efforts have been made to address
this issue. Some governments or organisations for
people with cognitive disability have translated doc-
uments into a language that is "easy to read", how-
ever, in most countries little has been done and orga-
nizations and people such as editors, writers, teach-
ers and translators seldom have guidelines on how to
produce texts and summaries which are easy to read
and understand.

1.1 Automatic Text Simplification

Automatic text simplification is the process by
which a computer transforms a text for a particular
readership into an adapted version which is easier to
read than the original. It is a technology which can
assist in the effort of making information more ac-
cessible and at the same time reduce the cost associ-
ated with the mass production of easy texts. Our re-
search is embedded within the broader context of the
Simplext project (Saggion et al., 2011).3 It is con-
cerned with the development of assistive text simpli-
fication technology in Spanish and for people with
cognitive disabilities. The simplification system is
currently under development. Some of the compo-
nents for text simplification are operational, while
other parts are in a development stage. The sys-
tem is integrated in a larger service hierarchy which
makes it available to the users. This paper concen-
trates on syntactic simplification, as one specific as-
pect, which is a central, but not the only aspect of
automatic text simplification. More concretely, we
present a syntactic simplification module, which is

3http://www.simplext.es

based on a hybrid technique: The core of the sys-
tem is a hand-written computational grammar which
reduces syntactic complexity and the application of
the rules in this grammar is controlled by a statisti-
cal support system, which acts as a filter to prevent
the grammar from manipulating wrong target struc-
tures. Section 2 describes related work, in the con-
text of which our research has been carried out. Sec-
tion 3 justifies the hybrid approach we have taken
and section 4 describes our syntactic simplification
module, including an evaluation of the grammar and
the statistical component. Finally, in section 5 we
show how our simplification system is integrated in
a larger architecture of applications and services.

2 Related Work

As it has happened with other NLP tasks, the first
attempts to tackle the problem of text simplifica-
tion were rule-based (Chandrasekar et al., 1996;
Siddharthan, 2002). In the last decade the focus
has been gradually shifting to more data driven ap-
proaches (Petersen and Ostendorf, 2007) and hybrid
solutions. The PorSimples (Aluísio et al., 2008;
Gasperin et al., 2010) project used a methodology
where a parallel corpus was created and this cor-
pus was used to train a decision process for sim-
plification based on linguistic features. Siddharthan
(2011) compares a rule-based simplification system
with a simplification system based on a general pur-
pose generator.

Some approaches have concentrated on specific
constructions which are especially hard to under-
stand for readers with disabilities (Carroll et al.,
1998; Canning et al., 2000), others focused on text
simplification as a help for other linguistic tasks
such as the simplification of patent texts (Mille and
Wanner, 2008; Bouayad-Agha et al., 2009). Re-
cently the availability of larger parallel or quasi-
parallel corpora, most notably the combination of
the English and the Simple English Wikipedia,
has opened up new possibilities for the use of
more purely data-driven approaches. Zhu et al.
(2010), for example, use a tree-based simplification
model which uses techniques from statistical ma-
chine translation (SMT) with this data set.

A recent work, which is interesting because of
its purely data-driven setup, is Coster and Kauchak
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(2011). They use standard software from the field
of statistical machine translation (SMT) and apply
these to the problem of text simplification. They
complement these with a deletion component which
was created for the task. They concentrate on four
text simplification operations: deletion, rewording
(lexical simplification), reordering and insertions.
Text simplification is explicitly treated in a simi-
lar way to sentence compression. They use stan-
dard SMT software, Moses (Koehn et al., 2007) and
GIZA++ (Och and Ney, 2000), and define the prob-
lem as translating from English (represented by the
English Wikipedia) to Simple English (represented
by the Simple English Wikipedia). The translation
process can then imply any of the four mentioned
operations. They compared their approach to var-
ious other systems, including a dedicated sentence
compression system (Knight and Marcu, 2002) and
show that their system outperforms the others when
evaluated on automatic metrics which use human
created reference text, including BLEU (Papineni et
al., 2002). Their problem setting does, however, not
include sentence splitting (as we will describe be-
low). Another potential problem is that the met-
rics they use for evaluation compare to human ref-
erences, but they do not necessarily reflect human
acceptability or grammaticality.

Woodsend and Lapata (2011) use quasi-
synchronous grammars as a more sophisticated
formalism and integer programming to learn to
translate from English to Simple English. This
system can handle sentence splitting operations
and the authors use both automatic and human
evaluation and show an improvement over the
results of Zhu et al. (2010) on the same data set, but
they have to admit that learning from parallel bi-text
is not as efficient as learning from revision histories
of the Wiki-pages. Text simplification can also be
seen as a type of paraphrasing problem. There are
various data-driven approaches to this NLP-task
(Madnani and Dorr, 2010), but they usually focus on
lexical paraphrases and do not address the problem
of sentence splitting, either.

Such data-driven methods are very attractive, es-
pecially because they are in principle language in-
dependent, but they do depend on a large amount of
data, which are not available for the majority of lan-
guages.

3 A Hybrid Approach to Text
Simplification

There are several considerations which lead us to
take a hybrid approach to text simplification. First
of all there is a lack of parallel data in the case of
Spanish. Within our project we are preparing a cor-
pus of Spanish news texts (from the domain of na-
tional news, international news, society and culture),
consisting of 200 news text and their manually sim-
plified versions. The manual simplification is time
consuming and requires work from specially trained
experts, so the resulting corpus is not very big, even
if the quality is controlled and the type of data is very
specific for our needs. It is also very hard to find
large amounts of parallel text from other sources. In
order to use data driven techniques we would require
amounts of bi-text comparable to those used for sta-
tistical machine translation (SMT) and this makes it
nearly impossible to approach the problem from this
direction, at least for the time being.

But there are also theoretic considerations which
make us believe that a rule based approach is a good
starting point for automatic text simplification. We
consider that there are at least four separate NLP
tasks which may be combined in a text simplifica-
tion setting and which may help to reduce the read-
ing difficulty of a text. They all have a different na-
ture and require different solutions.

• Lexical simplification: technical terms, for-
eign words or infrequent lexical items make a
text more difficult to understand and the task
consists in substituting them with counterparts
which are easier to understand.

• Reduction of syntactic complexity: long sen-
tences, subordinate structure and especially re-
cursive subordination make a text harder to un-
derstand. The task consists in splitting long
sentences in a series of shorter ones.

• Content reduction: redundant information
make a text harder to read. The task consists
in identifying linguistic structures which can be
deleted without harming the text grammatical-
ity and informativeness in general. This task is
similar to the tasks of automatic summarization
and sentence compression.
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• Clarification: Explaining difficult concepts re-
duces the difficulty of text understanding. The
task consists in identifying words which need
further clarification, selecting an appropriate
place for the insertion of a clarification or a
definition and finding an appropriate text unit
which actually clarifies the concept.

There is at least one task of the mentioned which
does not fully correspond to an established machine
learning paradigm in NLP, namely the reduction of
syntactic complexity. Consider the example (1), an
example from our corpus; (2) is the simplification
which was produced by our system.

(1) Se trata de un proyecto novedoso y pionero
que coordina el trabajo de seis concejalías,
destacando las delegaciones municipales de
Educación y Seguridad . . .

"This is a new and pioneering project that
coordinates the work of six councillors,
highlighting the municipal delegations Ed-
ucation and Safety . . . "

(2) Se trata de un proyecto novedoso y pionero ,
destacando las delegaciones municipales de
Educación y Seguridad . . .
Este proyecto coordina el trabajo de seis
concejalías.

"This is a new and pioneering project, high-
lighting the municipal delegations Educa-
tion and Safety . . .
This project coordinates the work of six
councillors."

What we can observe here is a split operation
which identifies a relative clause, cuts it out of the
matrix clause and converts it into a sentence of its
own. In the process the relative pronoun is deleted
and a subject phrase (este proyecto / this project) has
been added, whose head noun is copied from the ma-
trix clause. It is tempting to think that converting a
source sentence A in a series of simplified sentences
{b1, . . . , bn} is a sort of translation task, and a very
trivial one. In part this is true: most words translate
to a word which is identical in its form and they hap-
pen to appear largely in the same order. The difficult
part of the problem is that translation is usually an
operation from sentence to sentence, while here the

problem setting is explicitly one in which one input
unit produces several output units. This also affects
word alignment: in order to find the alignment for
the word proyecto in (1) the alignment learner has
to identify the word proyecto in two sentences in
(2). The linear distance between the two instances of
this noun is considerable and the sentences in which
two alignment targets occur are not even necessarily
adjacent. In addition, there may be multiple occur-
rences of the same word in the simplified text which
are not correct targets; the most apparent case are
functional words, but even words which are gener-
ally infrequent may be used repeatedly in a small
stretch of text if the topic requires it (in this para-
graph, for example, the word translation occurs 4
times and the word sentence 5 times). While a ma-
chine can probably learn the one-to-may translations
which are needed here, a non-trivial extension of the
machine-translation setting is needed and the learn-
ing problem needs to be carefully reformulated. Ap-
plying standard SMT machinery does not seem to
truly address the problem of syntactic simplification.
In fact, some approaches to SMT try use text simpli-
fication as a pre-process for translation; for exam-
ple Poornima et al. (2011) apply a sentence splitting
module in order to improve translation quality.

On the other hand, other sub-task mentioned
above can be treated with data driven methods. Lex-
ical simplification requires the measurement of lex-
ical similarity, combined with word sense disam-
biguation. Content reduction is very similar to ex-
tractive summarization or sentence compression and
the insertion of clarifications can be broken down
into three learnable steps: identification of difficult
words, finding an insertion site and choosing a suit-
able definition for the target word.

4 Syntactic Simplification

We are developing a text simplification system
which will integrate different simplification mod-
ules, such as syntactic simplification, lexical simpli-
fication (Drndarevic and Saggion, 2012) and content
reduction. At the moment the most advanced mod-
ule of this system is the one for syntactic simplifica-
tion. In (Bott et al., 2012) we describe the function-
ing of the simplification grammar in more detail.

For the representation of syntactic structures we
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use dependency trees. The trees are produced by the
Mate-tools parser (Bohnet, 2009) and the syntactic
simplification rules are developed within the MATE
framework (Bohnet et al., 2000). MATE is a graph
transducer which uses hand written grammars. For
grammar development we used a development cor-
pus of 282 sentences.

The grammar mainly focuses on syntactic simpli-
fication and, in particular, sentence splitting. The
types of sentence splitting operations we treat at the
moment are the following ones:

• Relative clauses: we distinguish between sim-
ple relative clauses which are only introduced
by a bare relative pronoun (e.g. a question
which is hard to answer) and complex relative
clauses which are introduced by a preposition
and a relative pronoun (e.g. a question to which
there is no answer)

• Gerundive constructions and participle con-
structions (e.g. the elections scheduled for next
November)

• Coordinations of clauses (e.g.[the problem is
difficult] and [there is probably no right an-
swer]) and verb phrases (e.g. The problem [is
difficult] and [has no easy solution]).

• Coordinations of objects clauses (e.g. . . . to get
close to [the fauna], [the plant life] and [the
culture of this immense American jungle re-
gion])

We carried out a evaluation of this grammar,
which is resumed in Table 1. This evaluation looked
at the correctness of the output. Many of the er-
rors were due to wrong parse trees and and the
grammar produced an incorrect output because the
parsed input was already faulty. In the case of rel-
ative clauses nearly 10% occurred because of this
and in the case of gerundive construction 37% of
the errors belonged into that category. We also
found that many of the syntactic trees are ambigu-
ous and cannot be disambiguated only on the basis
of morphosyntactic information. A particular case
of such ambiguity is the distinction between restric-
tive and non-restrictive relative clauses. Only non-
restrictive clauses can be turned into separate sen-
tences and the distinction between the two types is

usually not marked by syntax in Spanish4. Error
analysis showed us that 57.58% of all the errors re-
lated to relative clauses were due to this distinction.
A further 18.18% of the error occurred because the
grammar wrongly identified complement clauses as
relative clauses (in part because of previous parsing
errors).

For this reason, and according to our general phi-
losophy to apply data-driven approaches whenever
possible, we decided to apply a statistical filter in
order to filter out cases where the applications of
the simplification rules lead to incorrect results. Fig-
ure 1 shows the general architecture of the automatic
simplification system, including the statistical filter.
The nucleus of the system in its current state is the
syntactic simplification system, implemented as a
MATE grammar, which consists of various layers.

Original Text

Parser
Marking of 

Target Structure
Statisitcal
Filtering

Mate-Tools

Simplified Text

Application of 
Structural 
Changes

MATE

Mate-Tools

Figure 1: The architecture of the simplification system

Syntactic simplification is carried out in three
steps: first a grammar looks for suitable target struc-
tures which could be simplified. Such structures are
then marked with an attribute that informs subse-
quent levels of the grammar. After that the statistical
filter applies and classifies the marked target struc-
tures according to whether they should be changed
or not. In a third step the syntactic manipulations
themselves are carried out. This can combine dele-
tions, insertions and copying of syntactic nodes or
subtrees.

4In English it is mandatory to place non-restrictive relative
clauses between commas, even if many writers do not respect
this rule, but in Spanish comma-placement is only a stylistic
recommendation.
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Operation Precision Recall Frequency
Relative Clauses (all types) 39.34% 0.80% 20.65%
Gerundive Constructions 63.64% 20.59% 2.48%
Object coordination 42.03% 58.33% 7.79%
VP and clause coordination 64.81% 50% 6.09%

Table 1: Percentage of right rule application and frequency of application (percentage of sentences affected) per rule
type

4.1 Statistical Filtering
Since the training of such filters requires a certain
amount of hand-annotated data, so far we only im-
plemented filters for simple and complex relative
clauses. These filters are implemented as binary
classifiers. For each structure which the grammar
could manipulate, the classifier decides if the sim-
plification operation should be carried out or not.
In this way, restrictive relative clauses, comple-
ment clauses and other non-relative clause construc-
tions should be retained by the filter and only non-
restrictive relative clauses are allowed to pass.

For the training of the filters we hand annotated
a selection of sentences which contained the rele-
vant type of relative clauses (150 cases for simple
and 116 for complex). The training examples were
taken from news texts published in the on-line edi-
tion of an established Spanish newspaper. The style
in which these news were written was notably differ-
ent from the news texts of the corpus we are devel-
oping in within our project, in that they were much
more complex and contained more cases of recursive
subordination. The annotators reported that some of
the sentences had to be re-read in order to fully un-
derstand them; this is not uncommon in this type of
news which may contain opinion columns and in-
depth comments.

In our classification framework we consider one
set of contextual features arising from tokens sur-
rounding the target structure to be classified5 – the
relative pronoun marked by the simplification iden-
tification rules. This set is composed of, among oth-
ers, the position of the target structure in the sen-
tence; the parts of speech tags of neighbour token;
the depth of the target in a dependency tree; the de-
pendency information to neighbour tokens, etc.

Linguistic intuitions such as specific construc-
5A 5 words window to the left and to the right.

tions which, according to the Spanish grammar,
could be considered as indicating that the simplifi-
cation can or cannot take place. These features are
for example: the presence of a definite or indefinite
article; the presence of a comma in the vicinity of
the pronoun; specific constructions such as ya que
(since), como que (as), etc. where que is not relative
pronoun; context where que is used as a comparative
such as in más....que (more... than); contexts where
que is introducing a subordinate complement as in
quiero que (I want that ...); etc. While some of these
features should be implemented relying on syntactic
analysis we have relied for the experiments reported
here on finite state approximations implementing all
features in regular grammars using the GATE JAPE
language (Cunningham et al., 2000; Maynard et al.,
2002). For other learning tasks such as deciding
for the splitting of coordinations or the separation
of participle clauses we design and implement spe-
cific features based on intuitions; contextual features
remain the same for all problems.

The classification framework is implemented in
the GATE system, using the machine learning li-
braries it provides (Li et al., 2005). In particular,
we have used the Support Vector Machines learn-
ing libraries (Li and Shawe-Taylor, 2003) which
have given acceptable classification results in other
NLP tasks. The framework allows us to run cross-
validation experiments as well as training and test-
ing.

Table 2 shows the performance of the statistical
filter in isolation, i.e. the capacity of the filter alone
to distinguish between good and bad target struc-
tures for simplification operations. The in-domain
performance was obtained by a ten-fold cross clas-
sification of the training data. The out-of-domain
evaluation was carried out over news texts from our
own corpus, the same collection we used for the
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Figure 2: A simplified news text produced by the service
on a tablet computer running Android

evaluation of the grammar and the combination of
the grammar with the statistical filter. The perfor-
mance is given here as the overall classification re-
sult. Table 3 shows the performance of the grammar
with and without application of the filter.6

4.2 Discussion

We can observe that the statistical filters have a
quite different performance when they are applied
in-domain and out-of-domain (cf. Table 2), espe-
cially in the case of simple relative clauses. We
attribute this to the fact that the style of the texts
which we used for training is much more compli-
cated than the texts which we find in our own cor-
pus. The annotators commented that many relative
clauses could not turned into separate sentences be-
cause of the overall complexity of the sentence. This
problem seems to propagate into the performance
of the combination of the grammar with the filter
(cf. Table 3). The precision improves with filter-
ing, but the recall drops even more. Again, we sus-
pect that the filter is very restrictive because in the
training data many relative clauses were not separa-
ble, due to the overall sentence complexity which is
much lesser in the corpus from which the test data
was taken. For the near future we plan to repeat

6The results here are not fully comparable to Table 1, be-
cause in order to evaluate the filter, we did not consider parse
errors, as we did in the previous evaluation.

Este miércoles las personas con Sindrome de Down celebran
si día mundial . En España , hay más de 34 .000 personas con
esta discapacidad . esta discapacidad ocurre en uno de cada
800 nacimientos .

El Sídrome de Down es un trastorno genético . este trastorno
causa la presencia de una copia extra del cromosoma 21 en
vez de los dos habituales ( trisomía del par 21 ) . La
consecuencia es un grado variable de discapacidad cognitiva y
unos rásgos físicos particulares y reconocibles .

Se trata de la causa más frecuente de discapacidad cognitiva
psíquica congénita y debe su nombre a John Langdon Haydon
Down . este Landgdon fue el primero en describir esta
alteración genética en 1866 . Siegue sin conocerse con
exactitud las causas . estas causas provocan el exceso
cromosómico , aúnque se relaciona estadística mente con
madres de más de 35 años .

Table 4: The simplified text shown in figure2

the experiment with annotated data which is more
similar to the test set. The performance in the case
of complex relative clauses is much better. We at-
tribute the difference between simple and complex
relative clauses to the fact that the complex construc-
tions cannot be confounded with other, non-relative,
constructions, while in the case of the simple type
this danger is considerable. The somewhat unre-
alistic value of 100% is a consequence of the fact
that in the part of the corpus we annotated complex
relative clauses were not very frequent. We took
some additional cases from our corpus into consider-
ation, evaluating more cases from the corpus where
the corresponding rule was applied7 and the value
dropped to slightly over 90%.

5 Integration of the Simplification System
in Applications

As we have mentioned in the introduction, our text
simplification system is integrated in a larger service
and application setting. Even if some modules of the
system must still be integrated, we have an operative
prototype which includes a mobile application and a
web service.

In the context of the Simplext project two mo-
bile applications have been developed. The first one
runs on iOS (developed by Apple Inc. for its de-
vices: Iphone, Ipad and Ipod touch), and the other
one on Android (developed by Google, included in
many different devices). These applications allow

7For these cases we could not calculate recall because this
would have implied a more extensive annotation of all the sen-
tences of the part of the corpus from which they were taken.
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Operation Precision Recall F-score
Simple Relative Clauses (in domain) 85.41% 86.77% 86.06%
Complex Relative Clauses (in domain) 70.88% 71.33% 71.10 %
Simple Relative Clauses (out of domain) 76.35% 76.35% 76.35%
Complex Relative Clauses (out of domain) 90.48% 85.71% 88.10%

Table 2: The performance of the statistical filter in isolation

Operation Precision Recall F-score
Simple Relative Clauses (Grammar) 47.61% 95.24% 71.43%
Complex Relative Clauses (Grammar) 62.50% 55.56% 59.02%
Simple Relative Clauses (Grammar + Filter) 59.57% 66.67% 63.12%
Complex Relative Clauses (Grammar + Filter) 100% 55.56% 77.78%

Table 3: The performance of grammar and the statistical filter together

to read news feeds (RSS / Atom) from different
sources through a proxy that provide the language
simplification mechanism. The mobile applications
are basically RSS/Atom feed readers, with simpli-
fication capabilities (provided by the service layer).
Both applications work the same way and allow to
the user functionalities as keeping a list of favourite
feeds, adding and removing feeds, marking content
as favourite and showing the simplified and origi-
nal versions of the content. Also a web service was
created, which works in a similar way for RSS and
Atom feeds and allows to simplify the text portion
of other publicly available websites.

Figure 2 shows a screen capture of the mobile ap-
plication running in a Android tablet, displaying a
simplification example of a text taken from a news
website. The display text of this image is reproduced
in Table 4 for better readability. The text itself is too
long for us to provide a translation, but it can be seen
that many sentences have been split. Also a series of
minor problems can be seen, which we will resolve
in the near future: The first word of a sentence is still
in lower case and the head noun of the named en-
tity John Langdon Haydon Down was not correctly
identified.

6 Conclusions

Automatic text simplification is an Assistive Tech-
nology which help people with cognitive disabilities
to gain access to textual information. In this paper
we have presented a syntactic simplification module

of a automatic text simplification system which is
under development. We have presented arguments
for the decision of using a hybrid strategy which
combines a rule-based grammar with a statistical
support component, we have described the imple-
mentation of this idea and have given a contrastive
evaluation of the grammar with and without statisti-
cal support. The simplification system we described
here is integrated in a user-oriented service architec-
ture with mobile applications and web services. In
future work we will further enhance the system and
integrate new components dedicated to other simpli-
fication aspects, such as lexical simplification and
content reduction.
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