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Introduction

Effective and seamless Human-Computer interaction using natural language is arguably one of the
major challenges of natural language processing and artificial intelligence in general. Making
significant progress in developing natural language capabilities that support this level of interaction has
countless applications and is bound to attract many researchers from several Al fields: from robotics to
games to the social sciences.

From the natural language processing perspective the problem is often formulated as a translation task:
mapping between natural language input and a logical output language that can be executed in the
domain of interest. Unlike shallow approaches for semantic interpretation, which provide an incomplete
or underspecified interpretation of the natural language input, the output of a formal semantic interpreter
is expected to provide complete meaning representation that can be executed directly by a computer
system. Examples of such systems include robotic control, database access, game playing and more.

Current approaches to this task take a data driven approach, in which a learning algorithm is given a
set of natural language sentences as input and their corresponding logical meaning representation and
learns a statistical semantic parser: a set of parameterized rules mapping lexical items and syntactic
patterns to a logical formula.

In recent years this framework was challenged by an exciting line of research, advocating that
semantic interpretation should not be studied in isolation, but rather in the context of the external
environment (or computer system) which provides the semantic context for interpretation. This line of
research comprises several directions, focusing on grounded semantic representations, flexible semantic
interpretation models, and alternative learning protocols driven by indirect supervision signals. This
progress has contributed to expanding the scope of semantic interpretation, introduced new domains
and tasks and revealed that it is possible to make progress in this direction with reduced manual
effort. In particular, it resulted in a wide range of models, learning protocols, learning tasks, and
semantic formalisms that, while clearly related, are not directly comparable and understood under a
single framework.

The workshop consists mostly of invited speakers, but will also include several novel works. The goal
of this workshop is to provide researchers interested in the field with an opportunity to exchange ideas,
discuss other perspectives, and formulate a shared vision for this research direction.
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Abstract

This paper addresses the problem of training
an artificial agent to follow verbal instructions
representing high-level tasks using a set of in-
structions paired with demonstration traces of
appropriate behavior. From this data, a map-
ping from instructions to tasks is learned, en-
abling the agent to carry out new instructions
in novel environments.

1 Introduction

Learning to interpret language from a situated con-
text has become a topic of much interest in recent
years (Branavan et al., 2009; Branavan et al., 2010;
Branavan et al., 2011; Clarke et al., 2010; Chen
and Mooney, 2011; Vogel and Jurafsky, 2010; Gold-
wasser and Roth, 2011; Liang et al., 2011; Atrzi and
Zettlemoyer, 2011; Tellex et al., 2011). Instead of
using annotated training data consisting of sentences
and their corresponding logical forms (Zettlemoyer
and Collins, 2005; Kate and Mooney, 2006; Wong
and Mooney, 2007; Zettlemoyer and Collins, 2009;
Lu et al., 2008), most of these approaches leverage
non-linguistic information from a situated context
as their primary source of supervision. These ap-
proaches have been applied to various tasks such as
following navigational instructions (Vogel and Ju-
rafsky, 2010; Chen and Mooney, 2011; Tellex et
al., 2011), software control (Branavan et al., 2009;
Branavan et al., 2010), semantic parsing (Clarke et
al., 2010; Liang et al., 2011) and learning to play
games based on text (Branavan et al., 2011; Gold-
wasser and Roth, 2011).

In this paper, we present an approach to inter-
preting language instructions that describe complex
multipart tasks by learning from pairs of instruc-
tions and behavioral traces containing a sequence
of primitive actions that result in these instructions
being properly followed. We do not assume a one-
to-one mapping between instructions and primitive
actions. Our approach uses three main subcom-
ponents: (1) recognizing intentions from observed
behavior using variations of Inverse Reinforcement
Learning (IRL) methods; (2) translating instructions
to task specifications using Semantic Parsing (SP)
techniques; and (3) creating generalized task speci-
fications to match user intentions using probabilis-
tic Task Abstraction (TA) methods. We describe
our system architecture and a learning scenario. We
present preliminary results for a simplified version
of our system that uses a unigram language model,
minimal abstraction, and simple inverse reinforce-
ment learning.

Early work on grounded language learning used
features based on n-grams to represent the natural
language input (Branavan et al., 2009; Vogel and
Jurafsky, 2010). More recent methods have relied
on a richer representation of linguistic data, such as
syntactic dependency trees (Branavan et al., 2011;
Goldwasser and Roth, 2011) and semantic templates
(Tellex et al., 2011) to address the complexity of the
natural language input. Our approach uses a flexi-
ble framework that allows us to incorporate various
degrees of linguistic knowledge available at differ-
ent stages in the learning process (e.g., from depen-
dency relations to a full-fledged semantic model of
the domain learned during training).
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2 System Architecture

We represent tasks using the Object-oriented
Markov Decision Process (OO-MDP) formal-
ism (Diuk et al., 2008), an extension of Markov De-
cision Processes (MDPs) to explicitly capture rela-
tionships between objects. Specifically, OO-MDPs
add a set of classes C, each with a set of attributes
7Tc. Each OO-MDP state is defined by an unordered
set of instantiated objects. In addition to these ob-
ject definitions, an OO-MDP also defines a set of
propositional functions that operate on objects. For
instance, we might have a propositional function
toyIn (toy, room) that operates on an object
belonging to class “toy” and an object belonging to
class “room,” returning true if the specified “toy”
object is in the specific “room” object. We extend
OO0O-MDPs to include a set of propositional function
classes (F) associating propositional functions that
describe similar properties. In the context of defin-
ing a task corresponding to a particular goal, an OO-
MDP defines a subset of states 5 C S called ter-
mination states that end an action sequence and that
need to be favored by the task’s reward function.
Example Domain. To illustrate our approach, we
present a simple domain called Cleanup World, a 2D
grid world defined by various rooms that are con-
nected by open doorways and can contain various
objects (toys) that the agent can push around to dif-
ferent positions in the world. The Cleanup World
domain can be represented as an OO-MDP with four
object classes: agent, room, doorway, and toy, and a
set of propositional functions that specify whether
a toy is a specific shape (such as isStar (toy)),
the color of a room (such as isGreen (room)),
whether a toy is in a specific room (toyIn (toy,
room) ), and whether an agent is in a specific room
(agentIn (room)). These functions belong to
shape, color, toy position or agent position classes.

2.1 Interaction among IRL, SP and TA

The training data for the overall system is a set of
pairs of verbal instructions and behavior. For exam-
ple, one of these pairs could be the instruction Push
the star to the green room with a demonstration of
the task being accomplished in a specific environ-
ment containing various toys and rooms of different
colors. We assume the availability of a set of fea-
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tures for each state represented using the OO-MDP
propositional functions descibed previously. These
features play an important role in defining the tasks
to be learned. For example, a robot being taught
to move furniture around would have information
about whether or not it is currently carrying a piece
of furniture, what piece of furniture it needs to be
moving, which room it is currently in, which room
contains each piece of furniture, etc. We present
briefly the three components of our system (IRL, SP
and TA) and how they interact with each other dur-
ing learning.

Inverse Reinforcement Learning. Inverse Re-
inforcement Learning (Abbeel and Ng, 2004) ad-
dresses the task of learning a reward function from
demonstrations of expert behavior and information
about the state-transition function. Recently, more
data-efficient IRL methods have been proposed,
including the Maximum Likelihood Inverse Rein-
forcement Learning (Babeg-Vroman et al., 2011)
or MLIRL approach, which our system builds on.
Given even a small number of trajectories, MLIRL
finds a weighting of the state features that (locally)
maximizes the probability of these trajectories. In
our system, these state features consist of one of the
sets of propositional functions provided by the TA
component. For a given task and a set of sets of
state features, MLIRL evaluates the feature sets and
returns to the TA component its assessment of the
probabilities of the various sets.

Semantic Parsing. To address the problem of
mapping instructions to semantic parses, we use
a constraint-based grammar formalism, Lexical-
ized Well-Founded Grammar (LWFG), which has
been shown to balance expressiveness with practical
learnability results (Muresan and Rambow, 2007;
Muresan, 2011). In LWFG, each string is associ-
ated with a syntactic-semantic representation, and
the grammar rules have two types of constraints: one
for semantic composition (®.) and one for seman-
tic interpretation (®;). The semantic interpretation
constraints, ®;, provide access to a semantic model
(domain knowledge) during parsing. In the absence
of a semantic model, however, the LWFG learnabil-
ity result still holds. This fact is important if our
agent is assumed to start with no knowledge of the
task and domain. LWFG uses an ontology-based se-
mantic representation, which is a logical form repre-



sented as a conjunction of atomic predicates. For ex-
ample, the representation of the phrase green room
is (Xj.s=green, X.P, = X, X.isa=room). The
semantic representation specifies two concepts—
green and room—connected through a property
that can be uninstantiated in the absence of a seman-
tic model, or instantiated via the ®; constraints to
the property name (e.g, color) if such a model is
present.

During the learning phase, the SP component, us-
ing an LWFG grammar that is learned offline, pro-
vides to TA the logical forms (i.e., the semantic
parses, or the unlabeled dependency parses if no se-
mantic model is given) for each verbal instruction.
For example, for the instruction Move the chair into
the green room, the semantic parser knows initially
that move is a verb, chair and room are nouns, and
green is an adjective. It also has grammar rules of
the form S — Verb NP PP: &, ®;;,' but it has
no knowledge of what these words mean (that is, to
which concepts they map in the domain model). For
this instruction, the LWFG parser returns the logical
form:

(X1 .isa=move, X1.Argl= X2)move,
(Xa.det=the) i, (Xz.isa=chair) .p iy
(X1.Py = X3, Py.isa=into),,, (X3.det=the), ,,
(Xy.isa=green, X3.Py = X3)green,
(X3.isa=room)room)-

The subscripts for each atomic predicate in-
dicate the word to which that predicate corre-
sponds.  This logical form corresponds to the
simplified logical form move (chairl, rooml),
P1 (rooml, green), where predicate P1 is unin-
stantiated. A key advantage of this framework is that
the LWFG parser has access to the domain (seman-
tic) model via ®; constraints. As a result, when TA
provides feedback about domain-specific meanings
(i.e., groundings), the parser can incorporate those
mappings via the ®; constraints (e.g., move might
map to the predicate bl ockToRoom with a certain
probability).

Task Abstraction. The termination conditions
for an OO-MDP task can be defined in terms of the
propositional functions. For example, the Cleanup

"For readability, we show here just the context-free back-
bone, without the augmented nonterminals or constraints.
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World domain might include a task that requires the
agent to put a specific toy (¢1) in a specific room
(r1). In this case, the termination states would be
defined by states that satisfy toyIn(¢;,r1) and the
reward function would be defined as R,(s,s’) =
{1 : toyIn(t{',r); =1 : otherwise}. However,
such a task definition is overly specific and cannot
be evaluated in a new environment that contains dif-
ferent objects. To remove this limitation, we define
abstract task descriptions using parametric lifted re-
ward and termination functions. A parametric lifted
reward function is a first-order logic expression in
which the propositional functions defining the re-
ward can be selected as parameters. This repre-
sentation allows much more general tasks to be de-
fined; these tasks can be evaluated in any environ-
ment that contains the necessary object classes. For
instance, the reward function for an abstract task
that encourages an agent to take a toy of a certain
shape to a room of a certain color (resulting in a re-
ward of 1) would be represented as R,(s,s’) = {1 :
' ctoy I croomP1(t) AP2(r) A toyIn(t,r); —1:
otherwise}, where P1 is a propositional function
that operates on toy objects and P2 is a propositional
function that operates on room objects. An analo-
gous definition can be made for termination condi-
tions. Given the logical forms provided by SP, TA
finds candidate tasks that might match each logi-
cal form, along with a set of possible groundings
of those tasks. A grounding of an abstract task is
the set of propositional functions to be applied to
the specific objects in a given training instance. TA
then passes these grounded propositional functions
as the features to use in IRL. (If there are no can-
didate tasks, then it will pass all grounded proposi-
tional functions of the OO-MDP to IRL.) When IRL
returns a reward function for these possible ground-
ings and their likelihoods of representing the true re-
ward function, TA determines whether any abstract
tasks it has defined might match. If not, TA will
either create a new abstract task that is consistent
with the received reward functions or it will modify
one of its existing definitions if doing so does not
require significant changes. With IRL indicating the
intended goal of a trace and with the abstract task in-
dicating relevant parameters, TA can then inform SP
of the task/domain specific meanings for the logical
forms.



A Learning from Scratch Scenario. Our sys-
tem is trained using a set of sentence-trajectory
pairs ((S1,71),...,(Sn,Tn)). Initially, the sys-
tem does not know what any of the words mean
and there are no pre-existing abstract tasks. Let’s
assume that Sy is Push the star into the green
room.This sentence is first processed by the SP com-
ponent, yielding the following logical forms: L;
is push(starl,rooml),amod(rooml, green) and
Lo is push(starl), amod(room]1, green),
into(starl,room1).  These logical forms and
their likelihoods are passed to the TA compo-
nent, and TA induces incomplete abstract tasks,
which define only the number and kinds of ob-
jects that are relevant to the corresponding re-
ward function. TA can send to IRL a set of
features involving these objects, together with 77,
the demonstration attached to S;. This set of
features might include: agentTouchToy(¢1),
toyIn(ty,ry), toyIn(ti,re), agentIn(ry). IRL
sends back a weighting of the features, and TA
can select the subset of features that have the
highest weights (e.g, (1.91, toyIn(¢1,r1)), (1.12,
agentTouchToy(t1)), (0.80, agent In(ry)). Us-
ing information from SP and IRL, TA can now create
a new abstract task, perhaps called blockToRoom,
adjust the probabilities of the logical forms based on
the relevant features obtained from IRL, and send
these probabilities back to SP, enabling it to adjust
its semantic model.

The entire system proceeds iteratively. While it is
designed, not all features are fully implemented to
be able to report experimental results. In the next
section, we present a simplified version of our sys-
tem and show preliminary results.

3 A Simplified Model and Experiments

In this section, we present a simplified version of our
system with a unigram language model, inverse rein-
forcement learning and minimal abstraction. We call
this version Model 0. The input to Model 0 is a set
of verbal instructions paired with demonstrations of
appropriate behavior. It uses an EM-style algorithm
(Dempster et al., 1977) to estimate the probability
distribution of words conditioned on reward func-
tions (the parameters). With this information, when
the system receives a new command, it can behave
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in a way that maximizes its reward given the pos-
terior probabilities of the possible reward functions
given the words.

Algorithm 1 shows our EM-style Model 0. For
all possible reward—demonstration pairs, the E-step
of EM estimates z;; = Pr(R;|(S;,T;)), the prob-
ability that reward function I2; produced sentence-
trajectory pair (.S;, 7;), This estimate is given by the
equation below:

i = PrI(S.T)) = e Pr((5 IR
— s s Pr(GIR) T Prluly)

’wkESi

where S; is the i*" sentence, 7T} is the trajectory
demonstrated for verbal command S;, and w;, is an
element in the set of all possible words (vocabulary).
If the reward functions I2; are known ahead of time,
Pr(T;|R;) can be obtained directly by solving the
MDP and estimating the probability of trajectory 7T;
under a Boltzmann policy with respect to R;. If the
Rjs are not known, EM can estimate them by run-
ning IRL during the M-step (Babeg-Vroman et al.,
2011).

The M-step in Algorithm 1 uses the current esti-
mates of zj; to further refine the probabilities xy; =
Pr(wg|R;):

i Yw,eS; Pr(Rj\Si) + €
X EZN(SZ)ZJZ +e€

xk;j = Pr(wk\Rj) =

where ¢ is a smoothing parameter, X is a normalizing
factor and IV (.S;) is the number of words in sentence
Si.

To illustrate our Model 0 performance, we se-
lected as training data six sentences for two tasks
(three sentences for each task) from a dataset we
have collected using Amazon Mechanical Turk for
the Cleanup Domain. We show the training data
in Figure 1. We obtained the reward function for
each task using MLIRL, computed the Pr(7;|R;),
then ran Algorithm 1 and obtained the parameters
Pr(wg|R;). After this training process, we pre-
sented the agent with a new task. She is given the
instruction Sy: Go to green room. and a starting
state, somewhere in the same grid. Using parame-
ters Pr(wy|R;), the agent can estimate:



Algorithm 1 EM-style Model 0
Input: Demonstrations {(S1,71), ..., (Sx, Tn)},
number of reward functions J, size of vocabulary
K.
Initialize: x4, ..
repeat

E Step: Compute
Pr(R;
Zji = pr(éhJT)i) Pr(T;|R;) [lw,es; Thj-

., X jK, randomly.

M step: Compute
_ 1 Suwyes; Pr(Ry]Si)+e
until target number of iterations completed.

Pr(Sy|R1) = [lu,esy Prwg|R1) = 8.6 x 1077,
PI‘(SN|R2) = HkaSN PI‘(’wk‘Rg) =4.1 X 10_4,
and choose the optimal policy corresponding to re-
ward R, thus successfully carrying out the task.
Note that Ry and Rp corresponded to the two tar-
get tasks, but this mapping was determined by EM.
We illustrate the limitation of the unigram model by
telling the trained agent to Go with the star to green,
(we label this sentence S’%). Using the learned
parameters, the agent computes the following esti-
mates:

Pr(Sy|R1) = [T, esr, Pr(wglR1) = 8.25 x 1077,
Pr(Sy|R2) = [Ty, esr, Pr(wglR2) = 2.10 x 1075,
The agent wrongly chooses reward Ry and goes to
the green room instead of taking the star to the green
room. The problem with the unigram model in this
case is that it gives too much weight to word fre-
quencies (in this case go) without taking into ac-
count what the words mean or how they are used
in the context of the sentence. Using the system de-
scribed in Section 2, we can address these problems
and also move towards more complex scenarios.

4 Conclusions and Future Work

We have presented a three-component architecture
for interpreting natural language instructions, where
the learner has access to natural language input and
demonstrations of appropriate behavior. Our future
work includes fully implementing the system to be
able to build abstract tasks from language informa-
tion and feature relevance.

©
O

Push the star into the green room Go to side green.

©

Push the star into the teal room. End at the green.

©

Go into the green room.

Take the star to the green room.

Figure 1: Training data for 2 tasks: Taking the star to the
green room (left) and Going to the green room (right).
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In order for robots to robustly understand humain the external world [Tellex et al., 2011].

Abstract

In order for robots to effectively understand
natural language commands, they must be able
to acquire a large vocabulary of meaning rep-
resentations that can be mapped to perceptual
features in the external world. Previous ap-
proaches to learning thegeoundedmeaning
representations require detailed annotations at
training time. In this paper, we present an
approach which is capable of jointly learning
a policy for following natural language com-
mands such as “Pick up the tire pallet,” as well
as a mapping between specific phrases in the
language and aspects of the external world;
for example the mapping between the words
“the tire pallet” and a specific object in the
environment. We assume the action policy
takes a parametric form that factors based on
the structure of the language, based on the G
framework and use stochastic gradient ascent
to optimize policy parameters. Our prelimi-
nary evaluation demonstrates the effectiveness
of the model on a corpus of “pick up” com-
mands given to a robotic forklift by untrained
users.

Introduction

1971, MacMahon et al., 2006] or learned [Matuszek
et al., 2010, Chen and Mooney, 2011, Liang et al.,
2011, Branavan et al., 2009]. Because word mean-
ings are represented as symbols, rather than percep-
tually grounded features, the mapping between these
symbols and the external world must still be de-
fined. Furthermore, the uncertainty of the mapping
between constituents in the language and aspects of
the external world cannot be explicitly represented
by the model.

Language grounding approaches, in contrast, map
words in the language tgroundingsin the external
world [Mavridis and Roy, 2006, Hsiao et al., 2008,
Kollar et al., 2010, Tellex et al., 2011]. Groundings
are the specific physical concept that is referred to
by the language and can be objects (e.g., a truck
or a door), places (e.g., a particular location in the
world), paths (e.g., a trajectory through the envi-
ronment), or events (e.g., a sequence of robot ac-
tions). This symbol grounding approach [Harnad,
1990] represents word meaningsfasctionswhich
take as input a perceptual representation of a ground-
ing and return whether it matches words in the lan-
guage. Recent work has demonstrated how to learn
grounded word meanings from a parallel corpus of
natural language commands paired with groundings
How-

language, they must have access to meaning repver, learning model parameters required that the
resentations capable of mapping between symbgtarallel corpus be augmented with additional an-
in the language and aspects of the external worlgotations specifying the alignment between specific
which are accessible via the robot’s perception syghrases in the language and corresponding ground-
tem. Previous approaches have represented wadrs in the external world. Figure 1 shows an ex-
meanings as symbols in some specific symboliample command from the training set paired with
language, either programmed by hand [Winogradhese alignment annotations, represented as arrows
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pointing from each linguistic constituent to a corre-
sponding grounding.

Our approach in this paper relaxes these annota-
tion requirements and learns perceptually grounded
word meanings from amnalignedparallel corpus
that only provides supervision for the top-level ac
tion that corresponds to a natural language con
mand. Our system takes as input a state/action spe
for the robot defining a space of possible grounding
and available actions in the external world. In addi
tion it requires a corpus of natural language co
mands paired with the correct action executed if
the environment. For example, an entry in the cor ==

pus consists qfanatural Ignguage command Sl_Jch BRjure 1: Sample entry from an aligned corpus,
"PI'Ck up'the tire pallet” given to a robotic fOI’k|Ift', where mappings between phrases in the language
paired with an action sequence of the robot as driveg, groundings in the external world are explicitly
to the tire pallet, inserts its forks, and raises it off th%pecified as arrows. Learning the meaning of “the

ground, drives to the truck., and sets it down. _ truck” and “the pallet” is challenging when align-

a new training algorithm that combines the Gen-
eralized Grounding Graph (g framework intro-
duced by Tellex et al. [2011] with the policy gra-
dient method described by Branavan et al. [2009].
We assume a specific parametric form for the action
policy that is defined by the linguistic structure of
the natural language command. The system learns
a policy parameters that maximize expected reward
using stochastic gradient ascent. By factoring the
policy according to the structure of language, we can
propagate the error signal to each term, allowing the
system to infer groundings for each linguistic con-

Put the pallet on the truck

stituent even without direct supervision. We eval- 7 =gl
uate our model using a corpus of natural language 2 :E
commands collected from untrained users on the in-

ternet, commanding the robot to pick up objects or O
drive to locations in the environment. The evalua- 1 ®2
tion demonstrates that the model is able to predict CB a)
both robot actions and noun phrase groundings with AT )\5

high accuracy, despite having no direct supervision “Pick up”  “the pallet.”
for noun phrase groundings.

Figure 2: Grounding graph for “Pick up the tire pal-
2 Background let.

We briefly review the & framework, introduced by

Tellex et al. [2011]. In order for a robot to un-

derstand natural language, it must be able to map

between words in the language and corresponding

groundings in the external world. The aim is to find
8



the most probable groundings ...~ given the 2.1 Inference
languageA and the robot's model of the environ-|, order to use the &framework for inference, we

ment)M: want to infer the groundings; ...y that maxi-
mize the distribution
argmax p(71 ... yn|A, M) Q)
1N argmax p(7y1 ... Y|P, A) 4)
1IN

M consists of the robot's location, the loca-
tions, geometries, and perceptual tags of objects, amthich is equivalent to maximizing the joint distribu-
available actions the robot can take. For brevity, wéon of all groundingsy; ... vyy, ® andA,
omit M from future equations in this section.

To learn this distribution, one standard approach argmax p(y1 ... YN, @, A). (5)
is to factor it based on certain independence assump- TN
tions, then train models for each factor. Natural We assume thak and~; ...~y are independent
language has a well-known compositional, hierawhen® is not known, yielding:
chical argument structure [Jackendoff, 1983], and a

- ) B " DA~ .. A 6
promising approach is to exploit this structure in or- a;gnﬁx P24 - yw)p(A)p(n - w) - (6)
der to factor the model. However, if we define a di- . : .
i This independence assumption may seem unintu-
rected model over these variables, we must assun%e R
. . o Itive, but it is justified because the correspondence
a possibly arbitrary order to the conditiorngl fac- .
B . Yanable@ breaks the dependency betwe&rand
tors. For example, for a phrase such as “the tire pal-
...7n- If we do not know whethet . .. ~yy cor-

let near the other skid,” we could factorize in either'*
. ) respond ta\, we assume that the language does not
of the following ways:

tell us anything about the groundings.

Finally, for simplicity, we assume that any object
in the environment is equally likely to be referenced
by the language, which amounts to a constant prior
Depending on the order of factorization, we will®"71---IN- In Fhe future, we plgn to incorporate
need different conditional probability tables that corM@dels of attention and salience into this prior. We
respond to the meanings of words in the languaglgnerer(A) since it does not depend of . ..y,

To resolve this issue, another approach is to udgading to:

Bayes’ Rule to estimate th&A|v; ...~yy), but this argmax p(®|A, 1 ... 7n) )
approach would require normalizing over all possi- V- AN

ble words in the languag&. Another alternative  1q compute the maximum value of the objective
is to use an undirected model, but this approach j§ gquation 7, the system performs beam search
intractable because it requires normalizing over allyer , .. vy, computing the probability of each
possible values of ali; variables in the model, in- 3ssignment from Equation 7 to find the maximum
cluding continuous attributes such as location angohability assignment. ~ Although we are using
Size. p(®|A,v1...vn) as the objective functiond is

To address these problems, théf@amework in- fixed, and they; . .. v are unknown. This approach
troduced a correspondence vecbto capture the s yalid because, given our independence assump-
dependency between ...y andA. Each entry iong n(®|A, v, . ..~y) corresponds to the joint dis-
in ¢; € ® corresponds to whether linguistic con-yinytion over all the variables given in Equation 5.
stituent); € A corresponds to grounding. We In order to perform beam search, we factor the

assume that; ...~y are independent ak unless  model according to the hierarchical, compositional
® is known. Introducingb enables factorization ac- jinguistic structure of the command:

cording to the structure of language with local nor-
malization at each factor over a space of just the two p(®|A,~v1...vn) = Hp(¢i|)\i, Yir - Vi) (8)
possible values fop;. i

p(’ytiresa rYskid|A) = p(’)/skid|’)/tiresv A) X p(’Ytires|A) (2)
p(’Ytiresv ’Yskid|A) = P(’Ytires|’Yskida A) X P(%kid|A) (3)

9



This factorization can be represented graphicallywith these annotations, whereas annotating the val-
we call the resulting graphical model tgeunding ues of all the variables, including negative examples
graphfor a natural language command. The directet time-consuming and error prone. Once we know
model for the command “Pick up the pallet” appearthe model parameters we can use existing inference
in Figure 2. The\ variables correspond to languageto find groundings corresponding to word meanings,
the v variables correspond to groundings in the exas in Equation 4.

ternal world, and thep variables arel'rue if the We are given a corpus ab training examples.
groundings correspond to the language, &idse Each examplé consists of a natural language com-
otherwise. mandA? with an associated grounding graph with

In the fully supervised case, we fit model paramgrounding variableg?. Values for the grounding
eters® using an aligned parallel corpus of labeledrariables are not known, except for an observed
positive and negative examples for each linguistizalueg? for the top-level action random variabte.
constituent. The &framework assumes a log-linearFinally, an example has an associated environmental
parametrization with feature functiong and fea- context or semantic map/¢. Each environmental

ture weightd);: context will have a different set of objects and avail-
able actions for the robot. For example, one training
(A, 1. ..yN) = (9) example might contain a command given in an envi-

1 ronment with a single tire pallet; another might con-

H 7z eXP(Z 0ifi(%i: X% %)) (10) " tain a command given in an environment with two
! J box pallets and a truck.

h We define a sampling distribution to choose val-
ues for thel™ variables in the model using the’G

I:rﬁ\mework with parameter®:

This function is convex and can be optimized wit
gradient-based methods [McCallum, 2002].

Features correspond to the degree to which ea
I" correctly ground_s\i. For a relation such as “‘on,” p(T%a?, A4, M, ©) (12)
a natural feature is whether the grounding corre-
sponding to the head noun phrase is supported Bext, we define a reward function for choosing the
the grounding corresponding to the argument nougprrect grounding,, for a training example:
phrases. However, the featusepports(v;,~;) e 4 d

: d d 1 ifyg=g

alone is not enough to enable the model to learn that r(I'¢ g5) = a ¢ (13)
- a —1 otherwise
on” corresponds tosupports(vy;,v;). Instead we
need a feature that also takes into account the Wokre~,, is a grounding variable for the top-level ac-

on:” tion corresponding to the command; it is one of the
variables in the vector. Our aim is to find model
supports(7yi, ;) A (fon” € \;) (11)  parameters that maximize expected reward when
drawing values fol? from p(I'Y|®? A4, M7, ©)
3 Approach over the training set:

Our goal is to learn quel parameters for thé G argmax ZEp(pd@d,,\d,Md,@)r(Fd,gff) (14)
framework from an unaligned corpus of natural lan- S)
guage commands paired with robot actions. Previ-
ously, the system learned model paramegrssing Expanding the expectation we have:

an aligned corpus in which values for all ground- .

ing variables are known at training time, and anno-

tators provided both positive and negative examplesarggrl ax Z Z r(0%, ga)p(T7|2%, A%, M7, ©)

for each factor. In this paper we describe how to ¢ T (15)
relax this annotation requirement so that only the

top-level action needs to be observed in order td/e use stochastic gradient descent to find model pa-
train the model. It is easy and fast to collect dataameters that maximize reward. First, we take the

10
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derivative of the expectation with respectéo (We | |nput:
drop thed subscripts for brevity.) 1: Initial values for parameter§)°.
o 2: Training datasetD.
a6, Zrriesare) (T ga) = 3: Number of iterations'.
9 4: Step sizeq.
> (T, g0) 2 p(T|®,A,M,0)  (16) | s
00,
r 6: © «— OV
Focusing on the inner term, we expand it with 7: for t € T do
Bayes’ rule: 8: for d € D do
o 9: Vo + %Ep(rd@d,/\d’Md’@)T(Fd, gg)
p(T|®,A, M,0) = 10: end for
s 11: O+ 06 +aV
9 p(®T, A, M,0)p(I'|A, M, ) a7 | 12 end for ave
OOk p(2[A, M, 0) Output: Estimate of parametefs

We assume the priors do not dependdan
Figure 3: Training algorithm.
p(C|M) 8

p(®[A) 90,"
For brevity, we compresE, A, andM in the vari-
able X. Next, we take the partial derivative of the

likelihood of ®. First we assume each factor is inde-
pendent.

p(®[T, A, M, ©) (18)

We approximate the expectation ovér with
highly probable bindings for th& and update the
gradient incrementally for each example. The train-
ing algorithm is given in Figure 3.

4 Resaults

0 0
a9 71X, ©) = 5o T[p(6ilX. ©) (19) - :
k= We present preliminary results for the learning algo-

p(6;]X,0) rithm using a corpus of natural language commands
— Hp(¢i|X’ 0) x Z M given to a robotic forklift. We collected a corpus

; p(4;1X,0) of natural language commands paired with robot ac-
(20) tions by showing annotators on Amazon Mechani-

cal Turk a video of the robot executing an action and
asking them to describe in words they would use to
command an expert human operator to carry out the
commands in the video. Frames from a video in our
corpus, together with commands for that video ap-
K (6] X,0) = 1) pear in Figure 4. Since commands often spanned
/ multiple parts of the video, we annotated the align-

Finally, we assume the distribution ovey takes a
log-linear form with feature functiong, and param-
etersdy, as in the G framework.

ment between each top-level clause in the command
p(¢]X,0) x (fk:(fb’X) — Eywix0) [fr(¢, X)] ) and the robot's motion in the video. Our initial eval-

uation uses only commands from the corpus that
We substitute back into the overall expression for theontain the words “pick up” due to scaling issues

partial derivative of the expectation: when running on the entire corpus.
8 We report results using a random cost function as
0% Eyrix.0)r(T, ga) = a baseline as well as the learned parameters on a

training set and a held-out test set. Table 1 shows
performance on a training set using small environ-

ments (with one or two other objects) and a test set
Z fr(95, X) — Epyix,0) [fk(qﬁ X)] (22)  of small and large environments (with up to six other

objects).

Eyrx,0)7(T; ga) X
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% Correct
Actions Concrete Noun Phrases

Before Training 31% 61%
After Training 100% 92%

(a) Training (small environments)

(a) t=0 (b) t=20 (c)t=30 % Correct
Pick up pallet with refridgerator [sic] and place on truck to Actions Concrete Noun Phrases
the left. .
Before Training 3% 26%
A di stance away you shoul d see a rectangul ar box. Approach it YA
slowy and load it up onto your forklift. Slowy proceed to After Trammg 84% 77%
back out and then make a sharp turn and approach the truck.
Rai se your forklift and drop the rectangul ar box on the back of (b) Testing (smaii and |arge environments)
the truck.
Go to the pallet with the refrigerator on it and pick it . i
up. Mve the pallet to the truck trailer. Place the pallet on Table 1 RESUItS on the tralnlng Set and teSt Set'
the trailer.
Pick up the pallet with the refrigerator and place it on
the trailer.
(d) Commands ing to a natural language command [Hsiao et al.,

2008, MacMahon et al., 2006, Skubic et al., 2004,
Figure 4: Frames from a video in our dataset, pairedzifcak et al., 2009]. Our work moves beyond
with natural language commands. this framework by defining a probabilistic graphical
model according to the structure of the natural lan-

. uage command, inducing a distribution over plans
As expected, on the training set the system lear

thd groundings.
a good policy, since it is directly rewarded for act- d g _
ing correctly. Because the environments are small, M0dels that learned word meanings [Tellex et al.,

the chance of correctly grounding concrete nouf011, Kollar et al., 2010] require detailed align-

phrases with a random cost function is high HowMment annotations between constituents in the lan-

ever after training performance at grounding nougu29e and objects, places, paths, or events in the ex

phrases increases to 92% even though the systéﬂ'inal world. _Previous approaches capable of learn-
had no access to alignment annotations for nodR9 from unaligned data [Vogel and Jurafsky, 2010,

phrases at training time; it only observes rewarfranavan et al., 2009] used sequential models that
based on whether it has acted correctly. could not capture the hierarchical structure of lan-

Next, we report performance on a test set to assesac9¢ Matuszek et al. [2010], Liang et al. [2011]

generalization to novel commands given in novel erji’—anI Chen and Mooney [2011] describe models that

. . . rn compositional semanti word meanin
vironments. Since the test set includes larger e gam compositional semantics, but word meanings

vironments with up to six objects, baseline perfor_are symbolic structures rather than patterns of fea-

mance is lower. However the trained system is api&resin the external world.

to achieve high performance at both inferring cor- There has been a variety of work in transferring

rect actions as well as correct object groundings, déction policies between a human and a robot. In imi-
spite having no access to a reward signal of any kin@tion learning, the goal is to create a system that can
during inference. This result shows the system ha¥atch a teacher perform an action, and then repro-
learned genei‘ai word meanings that appiy in novguce that action [Kruger et al., 2007, Chernova and

contexts not seen at training time. Veloso, 2009, Schaal et aI., 2003, Ekvall and Kragic,
2008]. Rybski et al. [2007] developed an imitation
5 Reated Work learning system that learns from a combination of

imitation of the human teacher, as well as natural
Beginning with SHRDLU [Winograd, 1971], many language input. Our work differs in that the system
systems have exploited the compositional structumust infer an action from the natural language com-
of language to statically generate a plan correspondiands, rather than from watching the teacher per-
12



form an action. The system is trained off-line, and on Robotics and Automation (ICRARges 4163—
the task of the robot is to respond on-line to the nat- 4168, 2009.

ural language command. S. Ekvall and D. Kragic. Robot learning from
demonstration: a task-level planning approach.
International Journal of Advanced Robotic Sys-

In this paper we described an approach for learning tems 5(3), 2008.
perceptually grounded word meanings from an urS. Harnad. The symbol grounding problehysica
aligned parallel corpus of language paired with robot D, 43:335-346, 1990.

actions. The training algorithm jointly infers poli- k Hsiao. S. Tellex. S. Vosoughi, R. Kubat, and
cies that correspond to natural language commandsp Rey. Object schemas for grounding language

as well as alignments between noun phrases in thej, 5 responsive roboConnection Scienc@0(4):
command and groundings in the external world. In >53 576 2008.

iti hi - . "
.add' 0N, our approach fearns grpunded word _mearez. S. Jackendoff.Semantics and Cognitipmpages
ings or distributions corresponding to words in the
161-187. MIT Press, 1983.

language, that the system can use to follow novel
commands that it may have never encountered dut- Kollar, S. Tellex, D. Roy, and N. Roy. Toward un-
ing training. We presented a preliminary evaluation derstanding natural language directions Phoc.
on a small corpus, demonstrating that the system is ACM/IEEE Int'l Conf. on Human-Robot Interac-
able to infer meanings for concrete noun phrases de-tion (HRI), pages 259-266, 2010.
spite having no direct supervision for these values.V. Kruger, D. Kragic, A. Ude, and C. Geib. The

There are many directions for improvement. We meaning of action: A review on action recogni-
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Our approach points the way towards a framework gependency-based compositional semantics. In
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