
NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, pages 20–28,
Montréal, Canada, June 8, 2012. c©2012 Association for Computational Linguistics

Deep Neural Network Language Models

Ebru Arısoy, Tara N. Sainath, Brian Kingsbury, Bhuvana Ramabhadran
IBM T.J. Watson Research Center

Yorktown Heights, NY, 10598, USA
{earisoy, tsainath, bedk, bhuvana}@us.ibm.com

Abstract

In recent years, neural network language mod-
els (NNLMs) have shown success in both
peplexity and word error rate (WER) com-
pared to conventional n-gram language mod-
els. Most NNLMs are trained with one hid-
den layer. Deep neural networks (DNNs) with
more hidden layers have been shown to cap-
ture higher-level discriminative information
about input features, and thus produce better
networks. Motivated by the success of DNNs
in acoustic modeling, we explore deep neural
network language models (DNN LMs) in this
paper. Results on a Wall Street Journal (WSJ)
task demonstrate that DNN LMs offer im-
provements over a single hidden layer NNLM.
Furthermore, our preliminary results are com-
petitive with a model M language model, con-
sidered to be one of the current state-of-the-art
techniques for language modeling.

1 Introduction

Statistical language models are used in many natural
language technologies, including automatic speech
recognition (ASR), machine translation, handwrit-
ing recognition, and spelling correction, as a crucial
component for improving system performance. A
statistical language model represents a probability
distribution over all possible word strings in a lan-
guage. In state-of-the-art ASR systems, n-grams are
the conventional language modeling approach due
to their simplicity and good modeling performance.
One of the problems in n-gram language modeling
is data sparseness. Even with large training cor-
pora, extremely small or zero probabilities can be

assigned to many valid word sequences. Therefore,
smoothing techniques (Chen and Goodman, 1999)
are applied to n-grams to reallocate probability mass
from observed n-grams to unobserved n-grams, pro-
ducing better estimates for unseen data.

Even with smoothing, the discrete nature of n-
gram language models make generalization a chal-
lenge. What is lacking is a notion of word sim-
ilarity, because words are treated as discrete enti-
ties. In contrast, the neural network language model
(NNLM) (Bengio et al., 2003; Schwenk, 2007) em-
beds words in a continuous space in which proba-
bility estimation is performed using single hidden
layer neural networks (feed-forward or recurrent).
The expectation is that, with proper training of the
word embedding, words that are semantically or gra-
matically related will be mapped to similar loca-
tions in the continuous space. Because the prob-
ability estimates are smooth functions of the con-
tinuous word representations, a small change in the
features results in a small change in the probabil-
ity estimation. Therefore, the NNLM can achieve
better generalization for unseen n-grams. Feed-
forward NNLMs (Bengio et al., 2003; Schwenk
and Gauvain, 2005; Schwenk, 2007) and recur-
rent NNLMs (Mikolov et al., 2010; Mikolov et al.,
2011b) have been shown to yield both perplexity and
word error rate (WER) improvements compared to
conventional n-gram language models. An alternate
method of embedding words in a continuous space
is through tied mixture language models (Sarikaya
et al., 2009), where n-grams frequencies are mod-
eled similar to acoustic features.

To date, NNLMs have been trained with one hid-

20



den layer. Adeep neural network (DNN) with mul-
tiple hidden layers can learn more higher-level, ab-
stract representations of the input. For example,
when using neural networks to process a raw pixel
representation of an image, lower layers might de-
tect different edges, middle layers detect more com-
plex but local shapes, and higher layers identify ab-
stract categories associated with sub-objects and ob-
jects which are parts of the image (Bengio, 2007).
Recently, with the improvement of computational
resources (i.e. GPUs, mutli-core CPUs) and better
training strategies (Hinton et al., 2006), DNNs have
demonstrated improved performance compared to
shallower networks across a variety of pattern recog-
nition tasks in machine learning (Bengio, 2007;
Dahl et al., 2010).

In the acoustic modeling community, DNNs
have proven to be competitive with the well-
established Gaussian mixture model (GMM) acous-
tic model. (Mohamed et al., 2009; Seide et al., 2011;
Sainath et al., 2012). The depth of the network (the
number of layers of nonlinearities that are composed
to make the model) and the modeling a large number
of context-dependent states (Seide et al., 2011) are
crucial ingredients in making neural networks com-
petitive with GMMs.

The success of DNNs in acoustic modeling leads
us to explore DNNs for language modeling. In this
paper we follow the feed-forward NNLM architec-
ture given in (Bengio et al., 2003) and make the neu-
ral network deeper by adding additional hidden lay-
ers. We call such models deep neural network lan-
guage models (DNN LMs). Our preliminary experi-
ments suggest that deeper architectures have the po-
tential to improve over single hidden layer NNLMs.

This paper is organized as follows: The next sec-
tion explains the architecture of the feed-forward
NNLM. Section 3 explains the details of the baseline
acoustic and language models and the set-up used
for training DNN LMs. Our preliminary results are
given in Section 4. Section 5 summarizes the related
work to our paper. Finally, Section 6 concludes the
paper.

2 Neural Network Language Models

This section describes a general framework for feed-
forward NNLMs. We will follow the notations given

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� � �

� �

	
�
�

�����

	
�
�

�����

	
�
�

�����

	
�
�

�����

	����������
�����

�������
�����

�
�����

�
�����

�
���

�
 

!"�#"��
�����


�����$�	

�

Figure 1: Neural network language model architecture.

in (Schwenk, 2007).

Figure 1 shows the architecture of a neural net-
work language model. Each word in the vocabu-
lary is represented by aN dimensional sparse vector
where only the index of that word is 1 and the rest
of the entries are 0. The input to the network is the
concatenated discrete feature representations ofn-1
previous words (history), in other words the indices
of the history words. Each word is mapped to its
continuous space representation using linear projec-
tions. Basically discrete to continuous space map-
ping is a look-up table withN x P entries whereN
is the vocabulary size andP is the feature dimen-
sion. i’th row of the table corresponds to the contin-
uous space feature representation ofi’th word in the
vocabulary. The continuous feature vectors of the
history words are concatenated and the projection
layer is performed. The hidden layer hasH hidden
units and it is followed by hyperbolic tangent non-
linearity. The output layer hasN targets followed
by the softmax function. The output layer posterior
probabilities,P (wj = i|hj), are the language model
probabilities of each word in the output vocabulary
for a specific history,hj .

Let’s c represents the linear activations in the pro-
jection layer,M represents the weight matrix be-
tween the projection and hidden layers andV rep-
resents the weight matrix between the hidden and
output layers, the operations in the neural network

21



are as follows:

dj = tanh





(n−1)×P
∑

l=1

Mjlcl + bj



 ∀j = 1, · · · ,H

oi =
H

∑

j=1

Vijdj + ki ∀i = 1, · · · , N

pi =
exp(oi)

∑N
r=1 exp(or)

= P (wj = i|hj)

wherebj andki are the hidden and output layer bi-
ases respectively.

The computational complexity of this model is
dominated byHxN multiplications at the output
layer. Therefore, a shortlist containing only the most
frequent words in the vocabulary is used as the out-
put targets to reduce output layer complexity. Since
NNLM distribute the probability mass to only the
target words, a background language model is used
for smoothing. Smoothing is performed as described
in (Schwenk, 2007). Standard back-propagation al-
gorithm is used to train the model.

Note that NNLM architecture can also be con-
sidered as a neural network with two hidden layers.
The first one is a hidden layer with linear activations
and the second one is a hidden layer with nonlin-
ear activations. Through out the paper we refer the
first layer the projection layer and the second layer
the hidden layer. So the neural network architec-
ture with a single hidden layer corresponds to the
NNLM, and is also referred to as a single hidden
layer NNLM to distinguish it from DNN LMs.

Deep neural network architecture has several lay-
ers of nonlinearities. In DNN LM, we use the same
architecture given in Figure 1 and make the network
deeper by adding hidden layers followed by hyper-
bolic tangent nonlinearities.

3 Experimental Set-up

3.1 Baseline ASR system

While investigating DNN LMs, we worked on the
WSJ task used also in (Chen 2008) for model M lan-
guage model. This set-up is suitable for our initial
experiments since having a moderate size vocabu-
lary minimizes the effect of using a shortlist at the
output layer. It also allows us to compare our pre-
liminary results with the state-of-the-art performing
model M language model.

The language model training data consists of
900K sentences (23.5M words) from 1993 WSJ
text with verbalized punctuation from the CSR-III
Text corpus, and the vocabulary is the union of the
training vocabulary and 20K-word closed test vo-
cabulary from the first WSJ CSR corpus (Paul and
Baker, 1992). For speech recognition experiments,
a 3-gram modified Kneser-Ney smoothed language
model is built from 900K sentences. This model
is pruned to contain a total of 350K n-grams using
entropy-based pruning (Stolcke, 1998) .

Acoustic models are trained on 50 hours
of Broadcast news data using IBM Attila
toolkit (Soltau et al., 2010). We trained a
cross-word quinphone system containing 2,176
context-dependent states and a total of 50,336
Gaussians.

From the verbalized punctuation data from the
training and test portions of the WSJ CSR corpus,
we randomly select 2,439 unique utterances (46,888
words) as our evaluation set. From the remaining
verbalized punctuation data, we select 977 utter-
ances (18,279 words) as our development set.

We generate lattices by decoding the develop-
ment and test set utterances with the baseline acous-
tic models and the pruned 3-gram language model.
These lattices are rescored with an unpruned 4-gram
language model trained on the same data. After
rescoring, the baseline WER is obtained as 20.7%
on the held-out set and 22.3% on the test set.

3.2 DNN language model set-up

DNN language models are trained on the baseline
language model training text (900K sentences). We
chose the 10K most frequent words in the vocabu-
lary as the output vocabulary. 10K words yields 96%
coverage of the test set. The event probabilities for
words outside the output vocabulary were smoothed
as described in (Schwenk, 2007). We used the un-
pruned 4-gram language model as the background
language model for smoothing. The input vocabu-
lary contains the 20K words used in baseline n-gram
model. All DNN language models are 4-gram mod-
els. We experimented with different projection layer
sizes and numbers of hidden units, using the same
number of units for each hidden layer. We trained
DNN LMs up to 4 hidden layers. Unless otherwise
noted, the DNN LMs are not pre-trained, i.e. the

22



weights are initialized randomly, as previous work
has shown deeper networks have more impact on im-
proved performance compared to pre-training (Seide
et al., 2011).

The cross-entropy loss function is used during
training, also referred to as fine-tuning or backprop-
agation. For each epoch, all training data is random-
ized. A set of 128 training instances, referred to as
a mini-batch, is selected randomly without replace-
ment and weight updates are made on this mini-
batch. After one pass through the training data, loss
is measured on a held-out set of 66.4K words and
the learning rate is annealed (i.e. reduced) by a fac-
tor of 2 if the held-out loss has not improved suf-
ficiently over the previous iteration. Training stops
after we have annealed the weights 5 times. This
training recipe is similar to the recipe used in acous-
tic modeling experiments (Sainath et al., 2012).

To evaluate our language models in speech recog-
nition, we use lattice rescoring. The lattices gener-
ated by the baseline acoustic and language models
are rescored using 4-gram DNN language models.
The acoustic weight for each model is chosen to op-
timize word error rate on the development set.

4 Experimental Results

Our initial experiments are on a single hidden layer
NNLM with 100 hidden units and 30 dimensional
features. We chose this configuration for our ini-
tial experiments because this models trains in one
day of training on an 8-core CPU machine. How-
ever, the performance of this model on both the
held-out and test sets was worse than the baseline.
We therefore increased the number of hidden units
to 500, while keeping the 30-dimensional features.
Training a single hidden layer NNLM with this con-
figuration required approximately 3 days on an 8-
core CPU machine. Adding additional hidden lay-
ers does not have as much an impact in the train-
ing time as increased units in the output layer. This
is because the computational complexity of a DNN
LM is dominated by the computation in the output
layer. However, increasing the number of hidden
units does impact the training time. We also experi-
mented with different number of dimensions for the
features, namely 30, 60 and 120. Note that these
may not be the optimal model configurations for our

1 2 3 4
19

19.5

20

20.7

Number of hidden layers

H
el

d−
ou

t s
et

 W
E

R
(%

)

 

 

4−gram LM
DNN LM: h=500, d=30
DNN LM: h=500, d=60
DNN LM: h=500, d=120

Figure 2: Held-out set WERs after rescoring ASR lattices
with 4-gram baseline language model and 4-gram DNN
language models containing up to 4 hidden layers.

set-up. Exploring several model configurations can
be very expensive for DNN LMs, we chose these
parameters arbitrarily based on our previous experi-
ence with NNLMs.

Figure 2 shows held-out WER as a function of the
number of hidden layers for 4-gram DNN LMs with
different feature dimensions. The same number of
hidden units is used for each layer. WERs are ob-
tained after rescoring ASR lattices with the DNN
language models only. We did not interpolate DNN
LMs with the 4-gram baseline language model while
exploring the effect of additional layers on DNN
LMs. The performance of the 4-gram baseline lan-
guage model after rescoring (20.7%) is shown with
a dashed line.h denotes the number of hidden units
for each layer andd denotes the feature dimension
at the projection layer. DNN LMs containing only a
single hidden layer corresponds to the NNLM. Note
that increasing the dimension of the features im-
proves NNLM performance. The model with 30 di-
mensional features has 20.3% WER, while increas-
ing the feature dimension to 120 reduces the WER to
19.6%. Increasing the feature dimension also shifts
the WER curves down for each model. More im-
portantly, Figure 2 shows that using deeper networks
helps to improve the performance. The 4-layer DNN
LM with 500 hidden units and 30 dimensional fea-
tures (DNN LM: h = 500 and d = 30) reduces
the WER from 20.3% to 19.6%. For a DNN LM
with 500 hidden units and 60 dimensional features
(DNN LM: h = 500 andd = 60), the 3-layer model
yields the best performance and reduces the WER
from 19.9% to 19.4%. For DNN LM with 500 hid-

23



den units and 120 dimensional features (DNN LM:
h = 500 andd = 120), the WER curve plateaus
after the 3-layer model. For this model the WER
reduces from 19.6% to 19.2%.

We evaluated models that performed best on the
held-out set on the test set, measuring both perplex-
ity and WER. The results are given in Table 1. Note
that perplexity and WER for all the models were cal-
culated using the model by itself, without interpolat-
ing with a baselinen-gram language model. DNN
LMs have lower perplexities than their single hid-
den layer counterparts. The DNN language models
for each configuration yield 0.2-0.4% absolute im-
provements in WER over NNLMs. Our best result
on the test set is obtained with a 3-layer DNN LM
with 500 hidden units and 120 dimensional features.
This model yields 0.4% absolute improvement in
WER over the NNLM, and a total of 1.5% absolute
improvement in WER over the baseline 4-gram lan-
guage model.

Table 1: Test set perplexity and WER.
Models Perplexity WER(%)

4-gram LM 114.4 22.3

DNN LM: h=500,d=30
with 1 layer (NNLM) 115.8 22.0
with 4 layers 108.0 21.6

DNN LM: h=500,d=60
with 1 layer (NNLM) 109.3 21.5
with 3 layers 105.0 21.3

DNN LM: h=500,d=120
with 1 layer (NNLM) 104.0 21.2
with 3 layers 102.8 20.8

Model M (Chen, 2008) 99.1 20.8

RNN LM (h=200) 99.8 -
RNN LM (h=500) 83.5 -

Table 1 shows that DNN LMs yield gains on top
of NNLM. However, we need to compare deep net-
works with shallow networks (i.e. NNLM) with the
same number of parameters in order to conclude
that DNN LM is better than NNLM. Therefore, we
trained different NNLM architectures with varying
projection and hidden layer dimensions. All of these
models have roughly the same number of parameters
(8M) as our best DNN LM model, 3-layer DNN LM

with 500 hidden units and 120 dimensional features.
The comparison of these models is given in Table 2.
The best WER is obtained with DNN LM, showing
that deep architectures help in language modeling.

Table 2: Test set perplexity and WER. The models have
8M parameters.

Models Perplexity WER(%)

NNLM: h=740,d=30 114.5 21.9
NNLM: h=680,d=60 108.3 21.3
NNLM: h=500,d=140 103.8 21.2

DNN LM: h=500,d=120
with 3 layers 102.8 20.8

We also compared our DNN LMs with a model M
LM and a recurrent neural network LM (RNNLM)
trained on the same data, considered to be cur-
rent state-of-the-art techniques for language model-
ing. Model M is a class-based exponential language
model which has been shown to yield significant im-
provements compared to conventional n-gram lan-
guage models (Chen, 2008; Chen et al., 2009). Be-
cause we used the same set-up as (Chen, 2008),
model M perplexity and WER are reported directly
in Table 1. Both the 3-layer DNN language model
and model M achieve the same WER on the test set;
however, the perplexity of model M is lower.

The RNNLM is the most similar model to DNN
LMs because the RNNLM can be considered to have
a deeper architecture thanks to its recurrent connec-
tions. However, the RNNLM proposed in (Mikolov
et al., 2010) has a different architecture at the in-
put and output layers than our DNN LMs. First,
RNNLM does not have a projection layer. DNN
LM hasN × P parameters in the look-up table and
a weight matrix containing(n − 1) × P × H pa-
rameters between the projection and the first hid-
den layers. RNNLM has a weight matrix containing
(N + H)×H parameters between the input and the
hidden layers. Second, RNNLM uses the full vo-
cabulary (20K words) at the output layer, whereas,
DNN LM uses a shortlist containing 10K words. Be-
cause of the number of output targets in RNNLM, it
results in more parameters even with the same num-
ber of hidden units with DNN LM. Note that the ad-
ditional hidden layers in DNN LM will introduce ex-
tra parameters. However, these parameters will have

24



a little effect compared to10, 000 × H additional
parameters introduced in RNNLM due to the use of
the full vocabulary at the output layer.

We only compared DNN and RNN language
models in terms of perplexity since we can not di-
rectly use RNNLM in our lattice rescoring frame-
work. We trained two models using the RNNLM
toolkit1, one with 200 hidden units and one with
500 hidden units. In order to speed up training,
we used 150 classes at the output layer as described
in (Mikolov et al., 2011b). These models have 8M
and 21M parameters respectively. RNNLM with
200 hidden units has the same number of parameters
with our best DNN LM model, 3-layer DNN LM
with 500 hidden units and 120 dimensional features.
The results are given in Table 1. This model results
in a lower perplexity than DNN LMs. RNNLM with
500 hidden units results in the best perplexity in Ta-
ble 1 but it has much more parameters than DNN
LMs. Note that, RNNLM uses the full history and
DNN LM uses only the 3-word context as the his-
tory. Therefore, increasing then-gram context can
help to improve the performance for DNN LMs.

We also tested the performance of NNLM
and DNN LM with 500 hidden units and 120-
dimensional features after linearly interpolating with
the 4-gram baseline language model. The interpola-
tion weights were chosen to minimize the perplexity
on the held-out set. The results are given Table 3.
After linear interpolation with the 4-gram baseline
language model, both the perplexity and WER im-
prove for NNLM and DNN LM. However, the gain
with 3-layer DNN LM on top of NNLM diminishes.

Table 3: Test set perplexity and WER with the interpo-
lated models.

Models PerplexityWER(%)

4-gram LM 114.4 22.3

4-gram + DNN LM:
(h=500,d=120)
with 1 layer (NNLM) 93.1 20.6
with 3 layers 92.6 20.5

One problem with deep neural networks, espe-
cially those with more than 2 or 3 hidden lay-
ers, is that training can easily get stuck in local

1http://www.fit.vutbr.cz/∼imikolov/rnnlm/

minima, resulting in poor solutions. Therefore,
it may be important to apply pre-training (Hinton
et al., 2006) instead of randomly initializing the
weights. In this paper we investigate discrimina-
tive pre-training for DNN LMs. Past work in acous-
tic modeling has shown that performing discrimina-
tive pre-training followed by fine-tuning allows for
fewer iterations of fine-tuning and better model per-
formance than generative pre-training followed by
fine-tuning (Seide et al., 2011).

In discriminative pre-training, a NNLM (one pro-
jection layer, one hidden layer and one output layer)
is trained using the cross-entropy criterion. Af-
ter one pass through the training data, the output
layer weights are discarded and replaced by another
randomly initialized hidden layer and output layer.
The initially trained projection and hidden layers
are held constant, and discriminative pre-training
is performed on the new hidden and output layers.
This discriminative training is performed greedy and
layer-wise like generative pre-training.

After pre-training the weights for each layer, we
explored two different training (fine-tuning) scenar-
ios. In the first one, we initialized all the lay-
ers, including the output layer, with the pre-trained
weights. In the second one, we initialized all the
layers, except the output layer, with the pre-trained
weights. The output layer weights are initialized
randomly. After initializing the weights for each
layer, we applied our standard training recipe.

Figure 3 and Figure 4 show the held-out WER as
a function of the number of hidden layers for the
case of no pre-training and the two discriminative
pre-training scenarios described above using models
with 60- and 120-dimensional features. In the fig-
ures, pre-training 1 refers to the first scenario and
pre-training 2 refers to the second scenario. As seen
in the figure, pre-training did not give consistent
gains for models with different number of hidden
layers. We need to investigate discriminative pre-
training and other pre-training strategies further for
DNN LMs.

5 Related Work

NNLM was first introduced in (Bengio et al., 2003)
to deal with the challenges ofn-gram language mod-
els by learning the distributed representations of

25



1 2 3 4
19

19.5

20

20.7

Number of hidden layers

H
el

d−
ou

t s
et

 W
E

R
(%

)

 

 

4−gram LM
DNN LM: h=500, d=60
DNN LM: h=500, d=60 (with disc. pre−training 1)
DNN LM: h=500, d=60 (with disc. pre−training 2)

Figure 3: Effect of discriminative pre-training for DNN
LM: h=500,d=60.

1 2 3 4
19

19.5

20

20.7

Number of hidden layers

H
el

d−
ou

t s
et

 W
E

R
(%

)

 

 

4−gram LM
DNN LM: h=500, d=120
DNN LM: h=500, d=120 (with disc. pre−training 1)
DNN LM: h=500, d=120 (with disc. pre−training 2)

Figure 4: Effect of discriminative pre-training for DNN
LM: h=500,d=120.

words together with the probability function of word
sequences. This NNLM approach is extended to
large vocabulary speech recognition in (Schwenk
and Gauvain, 2005; Schwenk, 2007) with some
speed-up techniques for training and rescoring.
Since the input structure of NNLM allows for using
larger contexts with a little complexity, NNLM was
also investigated in syntactic-based language mod-
eling to efficiently use long distance syntactic infor-
mation (Emami, 2006; Kuo et al., 2009). Significant
perplexity and WER improvements over smoothed
n-gram language models were reported with these
efforts.

Performance improvement of NNLMs comes at
the cost of model complexity. Determining the
output layer of NNLMs poses a challenge mainly
attributed to the computational complexity. Us-
ing a shortlist containing the most frequent several
thousands of words at the output layer was pro-
posed (Schwenk, 2007), however, the number of
hidden units is still a restriction. Hierarchical de-
composition of conditional probabilities has been
proposed to speed-up NNLM training. This decom-
position is performed by partitioning output vocab-
ulary words into classes or by structuring the output
layer to multiple levels (Morin and Bengio, 2005;
Mnih and Hinton, 2008; Son Le et al., 2011). These
approaches provided significant speed-ups in train-
ing and make the training of NNLM with full vo-
cabularies computationally feasible.

In the NNLM architecture proposed in (Bengio
et al., 2003), a feed-forward neural network with a
single hidden layer was used to calculate the lan-
guage model probabilities. Recently, a recurrent

neural network architecture was proposed for lan-
guage modelling (Mikolov et al., 2010). In con-
trast to the fixed content in feed-forward NNLM, re-
current connections allow the model to use arbitrar-
ily long histories. Using classes at the output layer
was also investigated for RNNLM to speed-up the
training (Mikolov et al., 2011b). It has been shown
that significant gains can be obtained on top of a
very good state-of-the-art system after scaling up
RNNLMs in terms of data and model sizes (Mikolov
et al., 2011a).

There has been increasing interest in using neu-
ral networks also for acoustic modeling. Hidden
Markov Models (HMMs), with state output distri-
butions given by Gaussian Mixture Models (GMMs)
have been the most popular methodology for acous-
tic modeling in speech recognition for the past 30
years. Recently, deep neural networks (DNNs) (Hin-
ton et al., 2006) have been explored as an alternative
to GMMs to model state output distributions. DNNs
were first explored on a small vocabulary phonetic
recognition task, showing a5% relative improve-
ment over a state-of-the-art GMM/HMM baseline
system (Dahl et al., 2010). Recently, DNNs have
been extended to large vocabulary tasks, showing a
10% relative improvement over a GMM/HMM sys-
tem on an English Broadcast News task (Sainath et
al., 2012), and a 25% relative improvement on a con-
versational telephony task (Seide et al., 2011).

As summarized, recent NNLM research has fo-
cused on making NNLMs more efficient. Inspired
by the success of acoustic modeling with DNNs,
we applied deep neural network architectures to lan-
guage modeling. To our knowledge, DNNs have

26



not been investigated before for language modeling.
RNNLMs are the closest to our work since recurrent
connections can be considered as a deep architecture
where weights are shared across hidden layers.

6 Conclusion and Future Work

In this paper we investigated training language mod-
els with deep neural networks. We followed the
feed-forward neural network architecture and made
the network deeper with the addition of several lay-
ers of nonlinearities. Our preliminary experiments
on WSJ data showed that deeper networks can also
be useful for language modeling. We also com-
pared shallow networks with deep networks with the
same number of parameters. The best WER was
obtained with DNN LM, showing that deep archi-
tectures help in language modeling. One impor-
tant observation in our experiments is that perplex-
ity and WER improvements are more pronounced
with the increased projection layer dimension in
NNLM than the increased number of hidden layers
in DNN LM. Therefore, it is important to investigate
deep architectures with larger projection layer di-
mensions to see if deep architectures are still useful.
We also investigated discriminative pre-training for
DNN LMs, however, we do not see consistent gains.
Different pre-training strategies, including genera-
tive methods, need to be investigated for language
modeling.

Since language modeling with DNNs has not been
investigated before, there is no recipe for building
DNN LMs. Future work will focus on elaborating
training strategies for DNN LMs, including investi-
gating deep architectures with different number of
hidden units and pre-training strategies specific for
language modeling. Our results are preliminary but
they are encouraging for using DNNs in language
modeling.

Since RNNLM is the most similar in architecture
to our DNN LMs, it is important to compare these
two models also in terms of WER. For a fair com-
parison, the models should have similar n-gram con-
texts, suggesting a longer context for DNN LMs.
The increased depth of the neural network typi-
cally allows learning more patterns from the input
data. Therefore, deeper networks can allow for bet-
ter modeling of longer contexts.

The goal of this study was to analyze the behav-
ior of DNN LMs. After finding the right training
recipe for DNN LMs in WSJ task, we are going to
compare DNN LMs with other language modeling
approaches in a state-of-the-art ASR system where
the language models are trained with larger amounts
of data. Training DNN LMs with larger amounts
of data can be computationally expensive, however,
classing the output layer as described in (Mikolov et
al., 2011b; Son Le et al., 2011) may help to speed
up training.

References

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model.Journal of Machine Learning Research,
3:1137–1155.

Yoshua Bengio. 2007. Learning Deep Architectures for
AI. Technical report, Universit e de Montreal.

S. F. Chen and J. Goodman. 1999. An empirical study of
smoothing techniques for language modeling.Com-
puter Speech and Language, 13(4).

Stanley F. Chen, Lidia Mangu, Bhuvana Ramabhadran,
Ruhi Sarikaya, and Abhinav Sethy. 2009. Scaling
shrinkage-based language models. InProc. ASRU
2009, pages 299–304, Merano, Italy, December.

Stanley F. Chen. 2008. Performance prediction for expo-
nential language models. Technical Report RC 24671,
IBM Research Division.

George E. Dahl, Marc’Aurelio Ranzato, Abdel rah-
man Mohamed, and Geoffrey E. Hinton. 2010.
Phone Recognition with the Mean-Covariance Re-
stricted Boltzmann Machine. InProc. NIPS.

Ahmad Emami. 2006. A neural syntactic language
model. Ph.D. thesis, Johns Hopkins University, Bal-
timore, MD, USA.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh.
2006. A Fast Learning Algorithm for Deep Belief
Nets.Neural Computation, 18:1527–1554.

H-K. J. Kuo, L. Mangu, A. Emami, I. Zitouni, and Y-
S. Lee. 2009. Syntactic features for Arabic speech
recognition. InProc. ASRU 2009, pages 327 – 332,
Merano, Italy.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cer-
nocky, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. InProc. INTER-
SPEECH 2010, pages 1045–1048.

Tomas Mikolov, Anoop Deoras, Daniel Povey, Lukas
Burget, and Jan Cernocky. 2011a. Strategies for train-
ing large scale neural network language models. In
Proc. ASRU 2011, pages 196–201.

27



Tomas Mikolov, Stefan Kombrink, Lukas Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2011b. Exten-
sions of recurrent neural network language model. In
Proc. ICASSP 2011, pages 5528–5531.

Andriy Mnih and Geoffrey Hinton. 2008. A scalable hi-
erarchical distributed language model. InProc. NIPS.

Abdel-rahman Mohamed, George E. Dahl, and Geoffrey
Hinton. 2009. Deep belief networks for phone recog-
nition. In Proc. NIPS Workshop on Deep Learning for
Speech Recognition and Related Applications.

Frederic Morin and Yoshua Bengio. 2005. Hierarchical
probabilistic neural network language model. InProc.
AISTATS05, pages 246–252.

Douglas B. Paul and Janet M. Baker. 1992. The de-
sign for the wall street journal-based csr corpus. In
Proc. DARPA Speech and Natural Language Work-
shop, page 357362.

Tara N. Sainath, Brian Kingsbury, and Bhuvana Ramab-
hadran. 2012. Improvements in Using Deep Belief
Networks for Large Vocabulary Continuous Speech
Recognition. Technical report, IBM, Speech and Lan-
guage Algorithms Group.

Ruhi Sarikaya, Mohamed Afify, and Brian Kingsbury.
2009. Tied-mixture language modeling in continuous
space. InHLT-NAACL, pages 459–467.

Holger Schwenk and Jean-Luc Gauvain. 2005. Training
neural network language models on very large corpora.
In Proc. HLT-EMNLP 2005, pages 201–208.

Holger Schwenk. 2007. Continuous space language
models.Comput. Speech Lang., 21(3):492–518, July.

Frank Seide, Gang Li, Xie Chen, and Dong Yu. 2011.
Feature Engineering in Context-Dependent Deep Neu-
ral Networks for Conversational Speech Transcription.
In Proc. ASRU.

Hagen Soltau, George. Saon, and Brian Kingsbury. 2010.
The IBM Attila speech recognition toolkit. InProc.
IEEE Workshop on Spoken Language Technology,
pages 97–102.

Hai Son Le, Ilya Oparin, Alexandre Allauzen, Jean-Luc
Gauvain, and Francois Yvon. 2011. Structured out-
put layer neural network language model. InPro-
ceedings of IEEE International Conference on Acous-
tic, Speech and Signal Processing, pages 5524–5527,
Prague, Czech Republic.

Andreas Stolcke. 1998. Entropy-based pruning of
backoff language models. InProceedings of DARPA
Broadcast News Transcription and Understanding
Workshop, pages 270 – 274, Lansdowne, VA, USA.

28


