
Proceedings of the Workshop on Evaluation Metrics and System Comparison for Automatic Summarization, pages 10–18,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

Using the Omega Index for Evaluating Abstractive Community Detection

Gabriel Murray
Computer Information Systems
University of the Fraser Valley
gabriel.murray@ufv.ca

Giuseppe Carenini
Computer Science

University of British Columbia
carenini@cs.ubc.ca

Raymond Ng
Computer Science

University of British Columbia
rng@cs.ubc.ca

Abstract

Numerous NLP tasks rely on clustering or
community detection algorithms. For many
of these tasks, the solutions are disjoint, and
the relevant evaluation metrics assume non-
overlapping clusters. In contrast, the relatively
recent task of abstractive community detection
(ACD) results in overlapping clusters of sen-
tences. ACD is a sub-task of an abstractive
summarization system and represents a two-
step process. In the first step, we classify sen-
tence pairs according to whether the sentences
should be realized by a common abstractive
sentence. This results in an undirected graph
with sentences as nodes and predicted abstrac-
tive links as edges. The second step is to
identify communities within the graph, where
each community corresponds to an abstrac-
tive sentence to be generated. In this paper,
we describe how the Omega Index, a met-
ric for comparing non-disjoint clustering so-
lutions, can be used as a summarization eval-
uation metric for this task. We use the Omega
Index to compare and contrast several commu-
nity detection algorithms.

1 Introduction

Automatic summarization has long been proposed
as a helpful tool for managing the massive amounts
of language data in our modern lives (Luhn, 1958;
Edmundson, 1969; Teufel and Moens, 1997; Car-
bonell and Goldstein, 1998; Radev et al., 2001).
Most summarization systems are extractive, mean-
ing that a subset of sentences from an input docu-
ment forms a summary of the whole. Particular sig-
nificance may be attached to the chosen sentences,
e.g. that they are relevant to a provided query, gen-
erally important for understanding the overall doc-
ument, or represent a particular phenomenon such

as action items from a meeting. In any case, ex-
traction consists of binary classification of candidate
sentences, plus post-processing steps such as sen-
tence ranking and compression. In contrast, recent
work attempts to replicate the abstractive nature of
human-authored summaries, wherein new sentences
are generated that describe the input document from
a higher-level perspective. While some abstractive
summary sentences are very similar to individual
sentences from the document, others are created
by synthesizing multiple document sentences into
a novel abstract sentence. In this paper, we ad-
dress a component of this latter task, namely iden-
tifying which sentences from the source documents
should be combined in generated abstract sentences.
We call this task abstractive community detection
(ACD), and apply the task to a publicly available
meeting dataset.

Herein we focus on describing how the Omega
Index (Collins and Dent, 1988), a metric for com-
paring non-disjoint clustering solutions, can be used
as a summarization evaluation metric for the ACD
task. Metrics such as the Rand Index (Rand, 1971)
are insufficient since they are intended only for dis-
joint clusters.

ACD itself is carried out in two steps. First, we
classify sentence pairs according to whether they
should be realized by a common abstractive sen-
tence. For this step, we use supervised machine
learning that exploits human-annotated links be-
tween abstracts and extracts for a given document.
This results in an undirected graph with nodes repre-
senting sentences and edges representing predicted
abstractive links. Second, we identify communi-
ties within the graph, where each community cor-
responds to an abstractive sentence to be generated.
We experiment with several divisive community de-

10



tection algorithms, and highlight the importance of
selecting an algorithm that allows overlapping com-
munities, owing to the fact that a document sentence
can be expressed by, and linked to, more than one
abstract summary sentence in the gold-standard.

The structure of the paper is as follow. In Sec-
tion 2, we compare and contrast ACD with other
relevant tasks such as extractive summarization and
topic clustering. In Sections 3-4, we describe the
two ACD steps before we can fully discuss evalua-
tion methods. Section 5 describes the experimental
setup and corpora used, including a description of
the abstractive and extractive summary annotations
and the links between them. In Section 6, we give a
detailed description of the Omega Index and explain
how it differs from the more common Rand Index.
In Sections 7-8 we present results and draw conclu-
sions.

2 Related Work

The ACD task differs from more common extrac-
tive summarization (Mani, 2001a; Jurafsky and Mar-
tin, 2008). Whereas extraction involves simply clas-
sifying sentences as important or not, ACD is a
sub-task of abstractive summarization wherein doc-
ument sentences are grouped according to whether
they can be jointly realized by a common abstrac-
tive sentence. The first step of ACD, where we pre-
dict links between sentence pairs, can be seen to en-
compass extraction since the link is via an as-yet-
ungenerated abstract sentence, i.e. each linked sen-
tence is considered summary-worthy. However, the
second step moves away from extraction by cluster-
ing the linked sentences from the document in order
to generate abstract summary sentences.

ACD also differs from topic clustering (Malioutov
and Barzilay, 2006; Joty et al., 2010), though there
are superficial similarities. A first observation is that
topic links and abstract links are genuinely differ-
ent phenomena, though sometimes related. A sin-
gle abstract sentence can reference more than one
topic, e.g. They talked about the interface design
and the budget report, and a single topic can be
referenced in numerous abstract sentences. From a
practical standpoint, in our work on ACD we can-
not use many of the methods and evaluation metrics
designed for topic clustering, due to the fact that a

document sentence can belong to more than one ab-
stract sentence. This leads to overlapping commu-
nities, whereas most work on topic clustering has
focused primarily on disjoint communities where a
sentence belongs to a single topic. In Section 4, we
discuss community detection algorithms and evalu-
ation metrics that allow overlapping communities.

Work on detecting adjacency pairs (Shriberg et
al., 2004; Galley et al., 2004) also involves classify-
ing sentence pairs as being somehow related. For ex-
ample, if sentence B directly follows sentence A, we
might determine that they have a relationship such
as question-answer or request-accept. In contrast,
with ACD there is no requirement that sentence pairs
be adjacent or even in proximity to one another, nor
must they be in a rhetorical relation.

Work on sentence fusion (Barzilay and McKe-
own, 2005) identifies sentences containing similar
or repeated information and combines them into
new sentences. In contrast, in our task sentences
need not contain repeated information in order to be
linked. For example, two sentences could be linked
to a common abstract sentence due to a more com-
plex rhetorical relationship such as proposal-reject
or question-answer.

ACD is a more general problem that may incor-
porate elements of topic clustering, adjacency pair
detection and other sentence clustering or pairing
tasks. Here we try to directly learn the abstrac-
tive sentence links using lower-level features such as
shared n-grams and cosine similarity, as described in
Section 3, but in future work we will model higher-
level features of topics and rhetorical structure.

3 Step 1: Building a Sentence Pair Graph

In order to describe the use of the Omega Index for
the ACD task, we must first introduce the ACD task
in some detail. The first step in ACD is to determine
which sentence pairs are linked. If two sentences are
linked, it means they can be at least partly realized
in the abstract summary by a common sentence. A
document sentence may “belong” to more than one
abstract sentence. We take a supervised classifica-
tion approach to this problem, training on a dataset
containing explicit links between extract sentences
and abstract sentences. The corpus and relevant an-
notation are described in detail in Section 5. For

11



Figure 1: Linked Sentences

our gold-standard data, a sentence pair is considered
linked if both sentences are linked to a common ab-
stract sentence and not-linked otherwise.

Figure 1 shows an example snippet of linked sen-
tences from our corpus. The first and second sen-
tences are linked via one abstract sentence while the
first and third sentences are linked via a different ab-
stract sentence. While it is not shown in this exam-
ple, note that two sentences can also be linked via
more than one abstract sentence.

We take a supervised machine learning approach
toward predicting whether a sentence pair is linked.
For each pair, we extract features that can be classed
as follows:

• Structural: The intervening number of sen-
tences, the document position as indicated by
the midpoint of the two sentences, the com-
bined length and the difference in length be-
tween the two sentences, and whether the two
sentences share the same speaker.
• Linguistic: The number of shared bigrams,

shared part-of-speech tags, the sum and aver-
age of tf.idf weights, and the cosine similarity
of the sentence vectors.

We run the trained classifier over sentence pairs,
predicting abstractive links between sentences in the
document. This results in an unweighted, undirected
graph where nodes represent sentences and edges

Figure 2: Graph with Sentence Nodes

represent an abstractive link. Continuing with the
conversation snippet from Figure 1, we would end
up with a graph like Figure 2. This very simple
example of a graph shows that there are abstractive
links predicted between sentences s1 and s2 and be-
tween sentences s1 and s3. There is no direct link
predicted between sentences s2 and s3. However,
it is possible for two sentences with no predicted
link between them to wind up in the same abstractive
community after running a community detection al-
gorithm on the graph. We discuss this community
detection step in the following section.

4 Step 2: Discovering Abstractive
Sentence Communities

In the first step of ACD, we predicted whether pairs
of sentences can be at least partly realized by a com-
mon abstractive sentence. We then want to identify
communities or clusters within the graph. Each of
these communities will correspond to an abstractive

12



Figure 3: Overlapping Communities in Graph

sentence that we will generate. Continuing with our
simple example, Figure 3 shows two communities
that have been identified in the graph. Note that
the communities are overlapping, as each contains
sentence s1; we would generate one abstractive sen-
tence describing sentences s1 and s2 and another de-
scribing sentences s1 and s3. We will return to this
critical issue of overlapping communities shortly.

The task of identifying communities in networks
or graphs has received considerable attention (Porter
et al., 2009). The Girvan-Newman algorithm (Gir-
van and Newman, 2002) is a popular community de-
tection method based on a measure of betweenness.
The betweenness score for an edge is the number of
shortest paths between pairs of nodes in the graph
that run along that edge. An edge with a high be-
tweenness score is likely to be between two commu-
nities and is therefore a good candidate for removal,
as the goal is to break the initial graph into distinct
communities. The Girvan-Newman algorithm pro-
ceeds as follows:

1. Calculate the betweenness of each edge in the
graph.

2. Remove the edge with the highest betweenness.
3. For any edge affected by Step 2, recalculate be-

tweenness.
4. Repeat steps 2 and 3 until no edges remain

In this way we proceed from the full graph with all
edges intact to the point where no edges remain and
each node is in its own community. The intermediate
steps can be visualized by the resulting dendrogram,
such as seen in Figure 4 1.

The top row, the “leaves” of the dendrogram, rep-
resents the individual nodes in the graph. The rest

1Image Source: Wikimedia Commons (Mhbrugman)

Figure 4: Community Dendrogram

of the dendrogram shows how these nodes are sit-
uated in nested communities, e.g. b and c form a
community bc that combines with def to form bcdef.
In our case, where nodes are sentences, the dendro-
gram shows us how sentences combine into nested
communities. This can be useful for generating ab-
stracts of different granularities, e.g. we could de-
scribe bcdef in one sentence or generate two sen-
tences to separately describe bc and def.

The drawback of Girvan-Newman for our pur-
poses is that it does not allow overlapping commu-
nities, and we know that our human-annotated data
contain overlaps. Note from Figure 4 that all com-
munities decompose into disjoint nested communi-
ties, such as bcdef being comprised of bc and def,
not bc and bdef or some other overlapping case.
We therefore hypothesize that Girvan-Newman in its
traditional form is not sufficient for our current re-
search. For the same reason, recent graph-based ap-
proaches to topic clustering (Malioutov and Barzi-
lay, 2006; Joty et al., 2010) are not directly applica-
ble here.

It is only in recent years that much attention has
been paid to the problem of overlapping (or non-
disjoint) communities. Here we consider two recent
modifications to the Girvan-Newman algorithm that
allow for overlaps. The CONGA algorithm (Gre-
gory, 2007) extends Girvan-Newman so that instead
of removing an edge on each iteration, we either
remove an edge or copy a node. When a node is
copied, an overlap is created. Nodes are associated
with a betweenness score (called the split between-
ness) derived from the edge betweenness scores, and
at each step we either remove the edge with the high-
est betweenness score or copy the node with the

13



Figure 5: CONGA algorithm

highest split betweenness, if it is greater. The edge
and node betweenness scores are then recalculated.
In such a manner we can detect overlapping com-
munities. Figure 5 shows the CONGA copying and
splitting operations applied to our simple example,
so that sentence s1 now exists in two communities.

The CONGO algorithm (Gregory, 2008) is an ap-
proximation of CONGA that is more efficient for
large graphs. Girvan-Newman (and hence CONGA)
are not feasible algorithms for very large graphs, due
to the number of repeated betweenness calculations.
CONGO addresses this problem by using local be-
tweenness scores. Instead of calculating between-
ness using the shortest paths of every pair of nodes
in the graph, only nodes within a given horizon h of
an edge are considered. When h =∞ then CONGO
and CONGA are identical. Gregory (Gregory, 2008)
found good results using h = 2 or h = 3 on a va-
riety of datasets including blog networks; here we
experiment h = 2.

For the community detection step of our system,
we run both CONGA and CONGO on our graphs
and compare our results with the Girvan-Newman
algorithm. For all community detection methods,
as well as human annotations, any sentences that
are not linked to at least one other sentence in Step
1 are assigned to their own singleton communities.
Also, the algorithms we are evaluating are hierarchi-
cal (see Figure 4), and we evaluate at n = 18 clus-
ters, since that is the average number of sentences
per abstractive meeting summary in the training set.

5 Experimental Setup

In this section we describe the dataset used, includ-
ing relevant annotations, as well as the statistical
classifiers used for Step 1.

5.1 AMI Corpus
For these experiments we use the AMI meeting cor-
pus (Carletta, 2006), specifically, the subset of sce-
nario meetings where participants play roles within
a fictional company. For each meeting, an annotator
first authors an abstractive summary. Multiple an-
notators then create extractive summaries by linking
sentences from the meeting transcript to sentences
within the abstract. This generates a many-to-many
mapping between transcript sentences and abstract
sentences, so that a given transcript sentence can
relate to more than one abstract sentence and vice-
verse. A sample of this extractive-abstractive linking
was shown in Figure 1.

It is known that inter-annotator agreement can be
quite low for the summarization task (Mani et al.,
1999; Mani, 2001b), and this is the case with the
AMI extractive summarization codings. The aver-
age κ score is 0.45.

In these experiments, we use only human-
authored transcripts and plan to use speech recog-
nition transcripts in the future. Note that our overall
approach is not specific to conversations or to speech
data. Step 2 is completely general, while Step 1 uses
a single same-speaker feature that is specific to con-
versations. That feature can be dropped to make our
approach completely general (or, equivalently, that
binary feature can be thought of as always 1 when
applied to monologic text).

5.2 Classifiers
For Step 1, predicting abstractive links between sen-
tences, we train a logistic regression classifier us-
ing the liblinear toolkit2. The training set consists
of 98 meetings and there are nearly one million sen-
tence pair instances since we consider every pairing
of sentences within a meeting. The test set consists
of 20 meetings on which we perform our evaluation.

6 Evaluation Metrics

In this section, we present our evaluation metrics for
the two steps of the task.

6.1 Step 1 Evaluation: PRF and AUROC
For evaluating Step 1, predicting abstractive sen-
tence links, we present both precision/recall/f-score

2http://www.csie.ntu.edu.tw/ cjlin/liblinear/

14



as well as the area under the receiver operator char-
acteristic curve (AUROC). While the former scores
evaluate the classifier at a particular posterior proba-
bility threshold, the AUROC evaluates the classifier
more generally by comparing the true-positive and
false-positive rates at varying probability thresholds.

6.2 Step 2 Evaluation: The Omega Index

For evaluating Step 2, ACD, we employ a metric
called the Omega Index which is designed for com-
paring disjoint clustering solutions. To describe and
motivate our use of this metric, it is necessary to de-
scribe previous metrics upon which the Omega In-
dex improves. The Rand Index (Rand, 1971) is a
way of comparing disjoint clustering solutions that
is based on pairs of the objects being clustered. Two
solutions are said to agree on a pair of objects if they
each put both objects into the same cluster or each
into different clusters. The Rand Index can then be
formalized as

(a+ d)/N

where N is the number of pairs of objects, a is
the number of times the solutions agree on putting
a pair in the same cluster and d is the number of
times the solutions agree on putting a pair in differ-
ent clusters. That is, the Rand Index is the number of
pairs that are agreed on by the two solutions divided
by the total number of pairs. The Rand Index is in-
sufficient for overlapping solutions because pairs of
objects can exist together in more than one commu-
nity. In those cases, two solutions might agree on
the occurrence of a pair of objects in one commu-
nity but disagree on the occurrence of that pair in
another community. The Rand Index cannot capture
that distinction.

An improvement to the Rand Index is the Ad-
justed Rand Index (Hubert and Arabie, 1985) which
adjusts the level of agreement according to the ex-
pected amount of agreement based on chance. How-
ever, the Adjusted Rand Index also cannot account
for disjoint solutions.

The Omega Index (Collins and Dent, 1988) builds
on both the Rand Index and Adjusted Rand Index
by accounting for disjoint solutions and correcting
for chance agreement. The Omega Index considers
the number of clusters in which a pair of objects is

together. The observed agreement between solutions
is calculated by

Obs(s1, s2) =

min(J,K)∑
j=0

Aj/N

where J and K represent the maximum number of
clusters in which any pair of objects appears together
in solutions 1 and 2, respectively, Aj is the number
of the pairs agreed by both solutions to be assigned
to number of clusters j, and N is again the number
of pairs of objects. That is, the observed agreement
is the proportion of pairs classified the same way by
the two solutions. The expected agreement is given
by:

Exp(s1, s2) =

min(J,K)∑
j=0

Nj1Nj2/N
2

where Nj1 is the total number of pairs assigned
to number of clusters j in solution 1, and Nj2 is the
total number of pairs assigned to number of clusters
j in solution 2. The Omega Index is then calculated
as

Omega(s1, s2) =
Obs(s1, s2)− Exp(s1, s2)

1− Exp(s1, s2)

The numerator is the observed agreement adjusted
by expected agreement, while the denominator is
maximum possible agreement adjusted by expected
agreement. The highest possible score of 1 indicates
that two solutions perfectly agree on how each pair
of objects is clustered. With the Omega Index, we
can now evaluate the overlapping solutions discov-
ered by our community detection algorithms.3

7 Results

In this section we present the results for both steps
of ACD. Because the Omega Index is not used for
evaluating Step 1, we keep that discussion brief.

7.1 Step 1 Results: Predicting Abstractive
Sentence Links

For the task of predicting abstractive links within
sentence pairs, the resulting graphs have an aver-
age of 133 nodes and 1730 edges, though this varies

3Software for calculating the Omega Index will be released
upon publication of this paper.

15



System Prec. Rec. F-Score AUROC
Lower-Bound 0.18 1 0.30 0.50
Message Links 0.30 0.03 0.05 -
Abstractive Links 0.62 0.54 0.54 0.89

Table 1: P/R/F and AUROCs for Link Prediction

widely depending on meeting length (from 37 nodes
and 61 edges for one short meeting to 224 edges and
5946 edges for a very long meeting). In compar-
ison, the gold-standard graphs have an average of
113 nodes and 1360 edges. The gold-standards sim-
ilarly show huge variation in graph size depending
on meeting length.

Table 1 reports both the precision/recall/f-scores
as well as the AUROC metrics. We compare our
supervised classifier (labeled “Abstractive Links”)
with a lower-bound where all instances are predicted
as positive, leading to perfect recall and low preci-
sion. Our system scores moderately well on both
precision and recall, with an average f-score of 0.54.
The AUROC for the abstractive link classifier is
0.89.

It is difficult to compare with previous work since,
to our knowledge, nobody has previously modeled
these extractive-abstractive mappings between doc-
ument sentences and associated abstracts. We can
compare with the results of Murray et al. (2010),
however, who linked sentences by aggregating them
into messages. In that work, each message is com-
prised of sentences that share a dialogue act type
(e.g. an action item) and mention at least one com-
mon entity (e.g. remote control). Similar to our
work, sentences can belong to more than one mes-
sage. We assess how well their message-based ap-
proach captures these abstractive links, reporting
their precision/recall/f-scores for this task in Table 1,
with their system labeled “Message Links”. While
their precision is above the lower-bound, the recall
and f-score are extremely low. This demonstrates
that their notion of message links does not capture
the phenomenon of abstractive sentence linking.

7.2 Step 2 Results: Discovering Abstractive
Communities

For the task of discovering abstractive communi-
ties in our sentence graphs, Table 2 reports the

Omega Index for the CONGA, CONGO and Girvan-
Newman algorithms. We also report the average
Omega Index for the human annotators themselves,
derived by comparing each pair of annotator solu-
tions for each meeting.

It is not surprising that the Omega Index is low for
the inter-annotator comparison; we reported previ-
ously that the κ score for the extractive summaries of
this corpus is 0.45. That κ score indicates that there
is high disagreement about which sentences are most
important in a meeting. We should not be surprised
then that there is further disagreement about how the
sentences are linked to one another. What is surpris-
ing is that the automatic community detection al-
gorithms achieve higher Omega Index scores than
do the annotators. Note that the higher scores of
the community detection algorithms relative to hu-
man agreement is not simply an artefact of identify-
ing clustering solutions that have more overlap than
human solutions, since even the disjoint Girvan-
Newman solutions are higher than inter-annotator
levels. One possible explanation is that the annota-
tors are engaged in a fairly local task when they cre-
ate extractive summaries; for each abstractive sen-
tence, they are looking for a set of sentences from
the document that relate to that abstract sentence,
and because of high redundancy in the document the
different annotators choose subsets of sentences that
have little overlap but are still similar (Supporting
this, we have found that we can train on annotator
A’s extractive codings and test on annotator B’s and
get good classification results even if A and B have a
low κ score.). In contrast, the community detection
algorithms are taking a more comprehensive, global
approach by considering all predicted links between
sentences (Step 1) and identifying the overlapping
communities among them (Step 2).

When looking for differences between automatic
and human community detection, we observed that
the algorithms assigned more overlap to sentences

16



System Omega
Girvan-Newman 0.254
CONGA 0.263
CONGO 0.241
Human 0.209

Table 2: Omega Index for Community Detection

than did the human annotators. For example, the
CONGA algorithm assigned each sentence to an av-
erage of 1.1 communities while the human annota-
tors assigned each to an average of 1.04 communi-
ties. Note that every sentence belongs to at least one
community since unlinked sentences belong to their
own singleton communities, and most sentences are
unlinked, explaining why both scores are close to 1.

Comparing the algorithms themselves, we find
that CONGA is better than both Girvan-Newman
(marginally significant, p = 0.07) and CONGO
(p = 0.015) according to paired t-test. We be-
lieve that the superiority of CONGA over Girvan-
Newman points to the importance of allowing over-
lapping communities. And while CONGO is an ef-
ficient approximation of CONGA that can be useful
for very large graphs where CONGA and Girvan-
Newman cannot be applied, in these experiments the
local betweenness used by CONGO leads to lower
overall scores. Furthermore, our networks are small
enough that both CONGA and Girvan-Newman are
able to finish quickly and there is therefore no need
to rely on CONGO.

Our Step 2 results are dependent on the qual-
ity of the Step 1 results. We therefore test how
good our community detection results would be if
we had gold-standard graphs rather than the imper-
fect output from Step 1. We report two sets of re-
sults. In the first case, we take an annotator’s gold-
standard sentence graph showing links between sen-
tences and proceed to run our algorithms over that
graph, comparing our community detection results
with the communities detected by all annotators. In
the second case, we again take an annotator’s gold-
standard graph and apply our algorithms, but then
only compare our community detection results with
the communities detected by the annotator who sup-
plied the gold-standard graph. Table 3 shows both
sets of results. We can see that the latter set contains

System Omega Omega
All Annots. 1 Annot.

Girvan-Newman 0.445 0.878
CONGA 0.454 0.896
CONGO 0.453 0.894

Table 3: Omega Index, Gold-Standard Graphs

much higher scores, again reflecting that annotators
disagree with each other on this task.

Given gold-standard sentence graphs, CONGA
and CONGO perform very similarly; the differences
are negligible. Both are substantially better than the
Girvan-Newman algorithm (all p < 0.01). This tells
us that it is necessary to employ community detec-
tion algorithms that allow overlapping communities.
These results also tell us that the CONGO algorithm
is more sensitive to errors in the Step 1 output since
it performed well using the gold-standard but worse
than Girvan-Newman when using the automatically
derived graphs.

8 Conclusion

After giving an overview of the ACD task and our
approach to it, we described how the Omega Index
can be used as a summarization evaluation metric for
this task, and explained why other community de-
tection metrics are insufficient. The Omega Index is
suitable because it can account for overlapping clus-
tering solutions, and corrects for chance agreement.

The main surprising result was that all of the com-
munity detection algorithms have higher Omega In-
dex scores than the human-human Omega scores
representing annotator agreement. We have offered
one possibe explanation; namely, that while the hu-
man annotators have numerous similar candidate
sentences from the document that each could be
linked to a given abstract sentence, they may be sat-
isfied to only link (and thus extract) a small repre-
sentative handful, whereas the community detection
algorithms work to find all extractive-abstractive
links. We plan to further research this issue, and po-
tentially derive other evaluation metrics that better
account for this phenomenon.

17



References
R. Barzilay and K. McKeown. 2005. Sentence fusion for

multidocument news summarization. Computational
Linguistics, 31(3):297–328.

J. Carbonell and J. Goldstein. 1998. The use of MMR,
diversity-based reranking for reordering documents
and producing summaries. In Proc. of ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval 1998, Melbourne, Australia, pages 335–
336.

J. Carletta. 2006. Unleashing the killer corpus: expe-
riences in creating the multi-everything ami meeting
corpus. In Proc. of LREC 2006, Genoa, Italy, pages
181–190.

L. Collins and C. Dent. 1988. Omega: A general formu-
lation of the rand index of cluster recovery suitable for
non-disjoint solutions. Multivariate Behavioral Re-
search, 23:231–242.

H. P. Edmundson. 1969. New methods in automatic ex-
tracting. J. ACM, 16(2):264–285.

M. Galley, K. McKeown, J. Hirschberg, and E. Shriberg.
2004. Identifying agreement and disagreement in con-
versational speech: Use of bayesian networks to model
pragmatic dependencies. In Proc. of ACL 2004.

M. Girvan and M.E.J. Newman. 2002. Community
structure in social and biological networks. Proc. of
the National Academy of Sciences, 99:7821–7826.

S. Gregory. 2007. An algorithm to find overlap-
ping community structure in networks. In Proc. of
ECML/PKDD 2007, Warsaw, Poland.

S. Gregory. 2008. A fast algorithm to find overlapping
communities in networks. In Proc. of ECML/PKDD
2008, Antwerp, Belgium.

L. Hubert and P. Arabie. 1985. Comparing partitions.
Journal of Classification, 2:193–218.

S. Joty, G. Carenini, G. Murray, and R. Ng. 2010. Ex-
ploiting conversation structure in unsupervised topic
segmentation for emails. In Proc. of EMNLP 2010,
Cambridge, MA, USA.

D. Jurafsky and J. H. Martin, 2008. Speech and Lan-
guage Processing. Prentice Hall.

H. P. Luhn. 1958. The automatic creation of litera-
ture abstracts. IBM Journal of Research Development,
2(2):159–165.

I. Malioutov and R. Barzilay. 2006. Minimum cut model
for spoken lecture segmentation. In Proc. of ACL
2006, Sydney, Australia.

I. Mani, D. House, G. Klein, L. Hirschman, T. Firmin,
and B. Sundheim. 1999. The TIPSTER SUMMAC
text summarization evaluation. In Proc. of EACL
1999, Bergen, Norway, pages 77–85.

I. Mani. 2001a. Automatic Summarization. John Ben-
jamin, Amsterdam, NL.

I. Mani. 2001b. Summarization evaluation: An
overview. In Proc. of the NTCIR Workshop 2 Meeting
on Evaluation of Chinese and Japanese Text Retrieval
and Text Summarization, Tokyo, Japan, pages 77–85.

G. Murray, G. Carenini, and R. Ng. 2010. Generating
and validating abstracts of meeting conversations: a
user study. In Proc. of INLG 2010, Dublin, Ireland.

M. Porter, J-P. Onnela, and P. Mucha. 2009. Communi-
ties in networks. Notices of the American Mathemati-
cal Society, 56:1082–1097.

D. Radev, S. Blair-Goldensohn, and Z. Zhang. 2001. Ex-
periments in single and multi-document summariza-
tion using MEAD. In Proc. of DUC 2001, New Or-
leans, LA, USA.

W.M. Rand. 1971. Objective criteria for the evaluation
of clustering methods. Journal of the American Statis-
tical Association, 66:846–850.

E. Shriberg, R. Dhillon, S. Bhagat, J. Ang, , and H. Car-
vey. 2004. The ICSI meeting recorder dialog act
(MRDA) corpus. In Proceedings of SIGdial Workshop
on Discourse and Dialogue, Cambridge, MA, USA,
pages 97–100.

S. Teufel and M. Moens. 1997. Sentence extraction as a
classification task. In Proc. of ACL 1997, Workshop on
Intelligent and Scalable Text Summarization, Madrid,
Spain, pages 58–65.

18


