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Abstract 

Publications that report genotype-drug inte-

raction findings, as well as manually curated 

databases such as DrugBank and PharmGKB 

are essential to advancing pharmacogenomics, 

a relatively new area merging pharmacology 

and genomic research. Natural language 

processing (NLP) methods can be very useful 

for automatically extracting knowledge such 

as gene-drug interactions, offering researchers 

immediate access to published findings, and 

allowing curators a shortcut for their work.   

We present a corpus of gene-drug interac-

tions for evaluating and training systems to 

extract those interactions.  The corpus in-

cludes 551 sentences that have a mention of a 

drug and a gene from about 600 journals 

found to be relevant to pharmacogenomics 

through an analysis of gene-drug relationships 

in the PharmGKB knowledgebase.  

We evaluated basic approaches to auto-

matic extraction, including gene and drug co-

occurrence, co-occurrence plus interaction 

terms, and a linguistic pattern-based method.  

The linguistic pattern method had the highest 

precision (96.61%) but lowest recall (7.30%), 

for an f-score of 13.57%. Basic co-occurrence 

yields 68.99% precision, with the addition of 

an interaction term precision increases slightly 

(69.60%), though not as much as could be ex-

pected. Co-occurrence is a reasonable base-

line method, with pattern-based being a prom-

ising approach if enough patterns can be gen-

erated to address recall. The corpus is availa-

ble at http://diego.asu.edu/index.php/projects 

1 Introduction 

Pharmacogenomics is a relatively new area of 

biomedical research that merges pharmacology and 

molecular genomics, among other disciplines, and 

focuses on studying the effects of genetic variabili-

ty on drug toxicity and efficacy, on the discovery 

of novel genomic targets for drug development, 

and on the identification and functional characteri-

zation of polymorphisms relevant to drug action.  

Thus, publications that report genotype-drug find-

ings and manually curated databases that collect 

such findings, like PharmGKB and DrugBank 

(Hewett et al., 2002; Wishart, 2006) are of para-

mount importance to the field.  However, manual 

curation is expensive and time consuming, and 

cannot keep up with the ever increasing number of 

publications.  Natural language processing (NLP) 

methods can be very useful for automatically ex-

tracting such gene-drug interactions, offering re-

searchers immediate access to published findings, 

and allowing curators a shortcut for their work. 

 Consider for example a sentence contain-

ing an interaction NLP can help extract:  ―Only the 

epsilon4 allele of APOE was found to make a sig-

nificant (P = 0.002) but small contribution to war-

farin dose requirement.‖ (PMID: 16847429).  We 

can easily see that in the sentence, an APOE allele 

interacts with the drug warfarin in its dose re-

quirement.   Furthermore, at a higher level of ab-

straction, the sentence can help researchers infer 

that APOE affects the metabolic processes targeted 

by the drug warfarin. 

 NLP researchers attacking an interaction 

extraction project such as this one, will usually 

start by identifying the entities involved in the ex-

tractions and the terms that indicate such interac-

tions.  Assuming named entity recognition (NER) 

systems exist for the entities in question (or a dic-

tionary is available for direct match), the main 

concern becomes extracting true interactions.  A 

gold standard corpus would then need to be identi-

fied or created in order to evaluate and develop 

interaction extraction approaches, starting with the 
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simplest ones.  We aim to support advancement in 

the area of gene-drug interaction extraction 

through the construction of a corpus for that task 

that offers advantages not available in another sim-

ilar corpus.  Also for that support we report on a 

study of the capabilities of different methods for 

that form of extraction. 

To achieve our aim, we describe a new 

corpus of gene-drug interactions, and compare the 

performance of two basic approaches plus the re-

implementation of a more advanced pattern-based 

approach measured against this corpus.  We do not 

seek in this publication to advance the extraction 

methods themselves, but allow a side-to-side com-

parison of approaches on a single corpus. 

 The sentences in the corpus (a total of 551) 

were randomly selected from sentences that in-

clude both a gene and a drug mention from the ab-

stracts published on a selection of journals that 

have articles relevant to pharmacogenomics. In 

general, annotations include interactions evident 

from the sentence, if any, also noting when men-

tioned genes or drugs are not involved in interac-

tions.  All sentences were annotated by the main 

author, with a second and third annotator verifying 

26% of the corpus.  The corpus is publicly availa-

ble online along with other supplementary mate-

rials including the annotation guide
1
.  

 The extraction methods evaluated include 

co-occurrence of a gene and a drug, co-occurrence 

of a gene and a drug plus a recognized interaction 

term, and one that uses specific linguistic patterns 

for classification based on (Coulet, Shah, Garten, 

Musen, & Altman, 2010).  The linguistic pattern 

method had the highest precision (96.61%) but 

lowest recall (7.30%), for an f-score of 13.57%. 

Basic co-occurrence yields 68.99% precision, with 

the addition of an interaction term increasing pre-

cision slightly (69.60%), though not as much as 

could be expected.  Analysis of our results show 

that performance could be immediately improved 

by improving the fundamental entity-recognition 

of drugs and genes.  

2 Related Work 

A good portion of the work presented here follows 

prior approaches to high quality protein-protein 

interaction (PPI) corpora development and extrac-

                                                           
1 http://diego.asu.edu/index.php/projects 

tion.  Given that our corpus contains genes and 

proteins as entities, procedures used to create PPI 

corpora were a useful resource.  A variety of anno-

tation decisions made were informed by the work 

of Pyysalo et. al. on their BioInfer corpus (Pyysalo 

et al., 2007).  A detailed annotation guide used in 

their work was referenced in annotation rules in 

this work.  Other corpora, such as the ones used in 

Biocreative challenges, have also made valuable 

contributions to PPI extraction progress (Haken-

berg et al., 2010; Krallinger, Leitner, Rodriguez-

Penagos, & Valencia, 2008). 

 Unlike for PPI interaction extraction, there 

are very limited currently available corpora that 

can be used for automatic gene-drug interaction 

extraction system development and evaluation.  

One corpus that contains those interactions is a 300 

sentence corpus by Ahlers et al. (Ahlers, Fiszman, 

Demner-Fushman, Lang, & Rindflesch, 2007).  

The Ahlers et. al. corpus include the biological 

interaction categories of inhibit, and stimulate in 

addition to interaction annotations for genes and 

drugs.  Our corpus does not contain those addition-

al categories directly, but the interaction words that 

are annotated in our corpus can indicate such cate-

gories as well as others.  All in all, our focus was 

on creating a corpus that could be used for evalua-

tion of basic as well as complex approaches, and 

allow machine-learning based systems to be 

trained on it. 

Current systems for extracting gene-drug 

interactions are based on entity co-occurrence and 

some include matching of relationship terms.  

Those systems commonly use statistical formulas 

for ranking the relevance of results.  Polysearch, 

Pharmspresso, and others are examples of such 

systems (Cheng et al., 2008; Garten & Altman, 

2009).  Some systems integrate linguistic patterns 

into their methods, such as those by Coulet et. al. 

and Tari et. al. (Luis Tari, Jörg Hakenberg, Gracie-

la Gonzalez, & Baral, 2009).  The system by Cou-

let et al. explores the value of dependency graph 

information for relationship extraction.  Another 

result of Coulet et. al.'s work was the Phare ontol-

ogy that includes concepts relevant to those rela-

tionships, which we utilize in this work. The value 

of such collections of interaction-indicating terms 

has been highlighted before in the biomedical rela-

tionship extraction context (Bui, Nualláin, Bouch-

er, & Sloot, 2010; Chowdhary, Zhang, & Liu, 

2009). 
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3 Materials and Methods  

3.1  Corpus design. 

The purpose for the creation of the new corpus was 

to create a resource that NLP developers can use to 

train and test gene-drug interaction extraction sys-

tems.  The corpus was based on articles from jour-

nals that are known to contain pharmacogenomic 

relationships.  Genes and drugs were automatically 

tagged and then 551 sentences that contain both a 

gene and drug were randomly selected for annota-

tion.  The corpus and sentence selection process is 

described in the following subsections.  

 

Journal Selection.  A list of journals relevant to 

pharmacogenomics was generated by extracting 

the journal names from articles that have been cu-

rated in PharmGKB as containing evidence of 

gene-drug relationships. This list was generated 

from their downloadable ―relationships‖ file, 

which contains the abstract IDs of articles with 

manually curated gene-drug relationships.  591 

journal names were obtained this way.  The goal of 

using only those journals is to make the corpus 

representative of typical sentences containing a 

gene and drug from literature known to report 

pharmacogenomic findings. 
 

Sentence processing. All abstracts in PubMed from 

the relevant journal names were downloaded. A 

sentence splitter program from OpenNLP was used 

to extract sentences from the abstracts (―The 

OpenNLP Homepage,‖ n.d.).  A total of 

22,601,402 sentences were processed.  

 

Identification of entites.  Previous work in pharma-

cogenomics relationship extraction has shown ef-

fective results by classifying relationships after 

identifying sentences with entities of interest 

through dictionary matching techniques (Garten & 

Altman, 2009; Rebholz-Schuhmann et al., 2007).  

Our work takes a similar approach, but utilizes a 

machine-learning based method, BANNER, for 

gene recognition, as it was shown to have better 

performance than a dictionary-based method 

(Leaman & Gonzalez, 2008). Drugs were recog-

nized through the use of dictionary matching.  The 

dictionaries used for drugs were based on drug 

names available at DrugBank.  Exact full token 

matching of drug terms was used to identify them 

in sentences. Although incorrectly tagged (false 

entity) genes and drugs were corrected by annota-

tors, they did not add entities missed by NER rec-

ognition. A second round of annotation will correct 

this when we shift focus to NER. 

 Terms indicative of an interaction for add-

ing to basic co-occurrence relationship extraction 

were extracted from the Phare ontology.  The 

terms acquired were from rdfs labeled text in the 

―object properties‖ in the ontology.  Object proper-

ties are elements of the ontology that describe rela-

tionships between classes such as gene and drugs, 

yielding 168 unique terms after stemming. 

 

Sentence selection.  The initial annotation effort 

that is the focus of this paper was aimed at com-

pleting around 500 sentences as a proof of concept, 

with a total of 1,500 to be completed in the second 

phase of this project.  Random selection of sen-

tences that include a gene and a drug, in contrast to 

balanced positive and negative selection, was used 

to make the corpus reflect typical sentences poten-

tially containing an interaction that can be easily 

extracted from the source articles after simple 

(drug and gene) concept tagging, which is the most 

basic approach to interaction extraction.  The ran-

domized ratio of positive and negative interactions 

in the corpus is useful for training classification 

systems that operate on similarly pre-processed 

sentences to account for that naturally occurring 

ratio. 

 

3.2  Annotation. 

An annotation tool named STAV was used to 

create annotations (―stav,‖ n.d.).  Customization of 

the tool was performed to match the types of anno-

tations needed for the corpus.  The identified enti-

ties were formatted for use with the tool.  Annota-

tions created with the tool were stored in the Bi-

oNLP shared task file format. That format is com-

patible with a variety of existing systems for rela-

tionship extraction.  

 

Annotation guidelines. Based on a review of litera-

ture on related annotation guidelines for relation-

ships such as PPIs, an initial annotation guideline 

was created based on a small sample of sentences.  

The guide was iteratively refined through annota-

tion of additional sentences, until considered suffi-

ciently stable for release to additional annotators.   

The guideline was refined to achieve a bal-

ance of complexity and clarity to assist annotators.  
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Only a few (5-10) example sentences per annotator 

have been discussed in person.  The explicit writ-

ten instructions in the guide were relied on more 

than in-person example sentence discussions to 

train annotators to handle the complicated content 

of the corpus and avoid over-influencing the anno-

tators, as noted that is possible with the overuse of 

those examples (Hovy & Lavid, 2008). 

 The first annotator, a student with a Bache-

lor of Science (BS) in Biology, was the main anno-

tator and author of the guidelines. The second and 

third annotators are PhD students in Biomedical 

Informatics, the second with a BS in Biology and 

10 years nursing experience, and the other with a 

Bachelor of Technology in Bioinformatics.  Week-

ly annotation meetings were done on individual 

bases.  A short checklist of things to look for in 

annotations was distributed in addition to the 

guidelines. 

 

Annotations.  The following describes major anno-

tation categories and subcategories in the corpus:  

 

 Interaction  Genes and drugs are annotated 

simply as ―having an interaction‖ broadly un-

derstood as having an ―action, effect, or influ-

ence‖ on each other.  All gene-drug interac-

tions annotated must have at least one interac-

tion term that helps explain the interaction.  

Additional properties that were annotated and 

a brief explanation of their purpose include: 

o Direct/Indirect:  Describes the complexi-

ty in the interaction statements. An ―indi-

rect‖ interaction is one where the presence 

of an intermediary entity is needed for se-

mantic understanding of the interaction. 

o Explicit/Inferred:  Records if an infe-

rence had to be made on whether the inte-

raction was present because an interaction 

was not explicitly stated. 

 Non-interaction 
o Shared Entity:  An entity connected to 

both a gene and a drug that don't interact 

with each other.  In contrast to an interme-

diary entity. 

 Interaction Term  Terms that are descriptive 

of the interaction (as defined earlier).  These 

terms are helpful for capturing more specifical-

ly the type of interaction present.  

 Intermediary Entity  These are non-gene, 

non-drug entities that are closely connected to 

the interaction.  They are entities that are 

needed for understanding of the full semantic 

meaning of gene-drug interactions.  These enti-

ties are not annotated themselves but they are 

used to determine the indirectness property. 

 

Examples of these categories can be seen in the 

sentence: ―Using standard steady-state kinetic 

analysis, it was demonstrated that paclitaxel was a 

possible uncompetitive inhibitor to NAT activity in 

cytosols based on the decrease in apparent values 

of K(m) and V(max).‖ (PMID: 11955677).  This 

sentence includes an interaction between the drug 

paclitaxel and gene NAT.  An interaction term that 

helps establish that the interaction is present is ―in-

hibitor‖.  ―Cytosols‖ is where the NAT inhibition 

activity can occur and represents an intermediary 

entity that is needed in the semantic meaning of the 

interaction. 

 The broad definition of interaction was 

used to make progress toward annotations includ-

ing, and in turn being representative of, the most 

general form of gene-drug interaction that is de-

scribed in the source abstracts.  We chose to first 

concentrate on getting good inter-annotator agree-

ment using the general definition before consider-

ing additionally annotating specific biological inte-

raction types.  Annotated interactions are required 

to have at least one annotated interaction term (al-

though terms do not have to be from the predefined 

list) to ensure that specific and identifiable lan-

guage is present that justifies the annotation.   

 The subcategories included were added to 

record the linguistic complexity in which the inte-

ractions and non-interactions are described.  Re-

cording that complexity can help system develop-

ers handle its presence when trying to automatical-

ly recognize interaction statements.  Additionally, 

the annotation properties of speculation, negation, 

and nesting were allowed but not separately anno-

tated in interaction annotations.  

 Each annotator reported annotation time 

estimates.  Total time spent on annotations includ-

ing meetings but not other work (e.g. guideline 

development) was approximately 80 hours for the 

primary annotator and 20 hours combined for other 

annotators.  Hard sentences to annotate required 

research into source articles and entities described.   
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Evaluation of the Corpus. Around 26% of the cor-

pus was annotated by a second and third annotator.  

A program was created for IAA scoring, account-

ing for nested entities and equivalent entities in-

cluding abbreviations.  Manual review was used to 

verify the program’s scores.   Example sentences 

from the corpus discussed with annotators were not 

used for IAA scoring. 

 

3.3  Relationship Extraction methods. 

Three basic methods for extracting interactions 

were implemented for evaluation. The basic me-

thod, co-occurrence, is inherent to the corpus as all 

sentences are selected based on both entities being 

present in them. Thus, in co-occurrence, any men-

tion of a gene and a drug together in a sentence 

represents an interaction between those entities. 

Co-occurrence plus interaction terms, the 

second method tried, identifies that interactions are 

present only when sentences contain an interaction 

word from a predefined list.  The list of interaction 

terms obtained from the Phare ontology was fil-

tered by removing common stop words. Also, a 

filter was applied to only use terms greater than 

two letters in size.  Those filters were used to avoid 

unneeded matches from common words. 

 The linguistic pattern based extraction me-

thod developed for this evaluation was based on 

the work by Coulet et. al.  Specific linguistic pat-

terns described in that work were used to classify 

the presence of interactions between genes and 

drugs.  A program named Graph Spider was used 

to match the specified patterns within sentences 

(Shepherd & Clegg, 2008).  The Stanford Parser 

was used to generate dependency graphs for use 

with the pattern recognition in Graph Spider.   

 The dependency rules designed by Coulet. 

et. al. were entered into Graph Spider using the 

metapattern language (MPL) designed by the 

Graph Spider authors.  MPL is a pattern formalism 

that can be used to match dependency subgraph 

patterns in dependency parsed text.  After depen-

dency graphs were generated for processing in 

Graph Spider, text representing genes and drugs in 

the graphs were converted to general tags for those 

entity types.  Those conversions were made to al-

low the patterns in MPL to be generalizable.  

 Java programs were created to reformat 

and score the subgraph pattern match results made 

by Graph Spider.  Scoring used text character posi-

tions (spans) of entities included in annotations.  

True positives were recorded when pairs of entity 

spans in Graph Spider subgraph results matched 

annotated pairs of entity spans labeled as having 

interactions.  False positives and false negatives 

were similarly assessed using entity spans.  A ma-

nual evaluation of pattern matched output com-

pared to annotations was performed to ensure ac-

curacy. 

 A condition applied in the pattern based 

system was that the patterns can match up to four 

modifier words for each individual gene and drug 

in interaction pattern matches.  Those words are 

additional words that modify the meaning of the 

gene or drug in the interaction.  The limit was in-

cluded for practical reasons, as hand coding of pat-

terns in MPL is complex.  The rules described by 

Coulet et. al. did not specify any limit on modifier 

words but the difference in results by including a 

realistic limit is predicted to be negligible. 

4 Results  

A total of 551 sentences are annotated, with 781 

interactions present in them. There are 351 in-

stances of non-interactive entities in the same set.   

The average length of sentences is 28.1 words.  

Table 1 describes further properties of the corpus.   

 

Annotation Analysis. The inter-annotator agree-

ment scores are reported as accuracy and Cohen’s 

kappa.  Kappa was chosen due to its widespread 

use and therefore comparability with other work in 

corpus creation.  Accuracy is found by the number 

of instances agreed on divided by the total in-

stances annotated.  A total of 144 sentences were 

used for the scoring.  Annotators 1 and 2, 1 and 3, 

and 2 and 3 were compared using 92, 52, and 61 

sentences respectively.  IAA results with the main 

categories of interaction vs. non-interaction are 

shown in Table 2. 
 

 

Sentences Tokens (with 

punctuation) 

Words (tokens with 

no punctuation) 

551 18,585 15,464 

Table 1.  Statistics describing corpus properties. 

 1 & 2 1 & 3 2 & 3 

Accuracy 81.1% 74.2% 73.0% 

Kappa 45.7% 30.5% 11.4% 

Table 2.  Inter-annotator agreement results. 
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 IAA scores were found for all annotated 

subcategories.  Those subcategories are DirectEx-

plicit, IndirectExplicit, IndirectInferred for interac-

tions and SharedEntity for non-interactions.  Their 

ranges of scores with all annotator pair groups us-

ing accuracy scores are 72-79%, 40-69%, 62-82%, 

50-60% and kappa scores are 31-58%, 1-27%, -4-

31%, 0-4% respectively.  Those scores are created 

by selecting main category inter-annotator matches 

(e.g. interaction) and calculating the IAA between 

the annotated subcategories. 

In some sentences, annotators missed 

doing annotations for gene-drug instances that the 

other annotator added. IAA scores did not include 

annotations made by only one annotator.  Confir-

mation with annotators was made that annotations 

not made were not intended to represent non-

interactions.  The percentage of missed inter-

annotator instances was approximately 20%.  Fu-

ture work will be to improve the inter-annotator 

annotation process so that those instances are not 

missed for IAA scoring.  While some annotations 

were missed in IAA scoring, annotations by the 

primary annotator that are included in the corpus 

contain all instances (none missed) from the source 

text to our knowledge.
 

I

D 

Contents Agree

ment 

Sentence text 

A One direct expli-

cit interaction 

Y This suggests that galantamine (GAL), a cholinesterase inhibitor, could be 

effective when seeking to prolong abstinence in recently detoxified alcohol-

ics. (PMID: 16328375) 

B One indirect ex-

plicit and four 

shared entity 

non-interactions  

Y They are widely distributed and mediate all of the known biologic effects of 

angiotensin II (AngII) through a variety of signal transduction systems, in-

cluding activation of phospholipases C and A2, inhibition of adenylate cyc-

lase, opening of calcium channels, and activation of tyrosine kinases. (PM-

ID: 9892138) 

C One indirect ex-

plicit interaction 

N The results of studies of perfused rat hearts with completely inhibited crea-

tine kinase show significantly decreased work capacity and respectively, 

energy fluxes, in these hearts in spite of significant activation of adenylate 

kinase system (Dzeja et al. this volume). (PMID: 9746326) 

Table 3.  Example sentences from the corpus.

 

Table 4.  Extraction system performances.    

Note that sentences were selected based on co-

occurrence of a gene and a drug, thus recall is 

100% for that method, as it essentially defines 

the corpus. 

 

 

The scoring methods used were instance 

level scoring instead of sentence level scoring.  In 

the instance level scoring each gene-drug instance 

counted in performance scores.   

 A caveat about the pattern-based system 

scoring should be noted.  That caveat was that the 

Graph Spider software used was unable to process 

approximately 10% (around 50) of the sentences in 

the corpus due to errors.  The pattern-based system 

is likely to have scored slightly higher if it could 

have processed those sentences. 

5 Discussion 

5.1  Analyses of interaction extraction methods 

performance. 

Interaction  

Extractor Type 

Precision 

(TP/TP+FP) 

Recall 

(TP/TP+

FN) 

F1-Score 

(2*((P*R)/(

P+R))) 

Co-occurrence 68.99%  

(781/1132) 

100.00% 

(781/781) 

 

81.65% 

Co-occurrence 

plus int. terms 

69.60% 

(664/954) 

85.02% 

(664/781) 

76.54% 

Pattern-based 96.61% 

(57/59)  

7.30% 

(57/781) 

13.57% 
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The f-score of co-occurrence with and without in-

teraction terms showed better performance than the 

pattern-based interaction extractions, which was 

expected. Pattern based methods, particularly those 

where the patterns were manually created, are typi-

cally very high in precision and very low in recall, 

as they are highly dependant on the specific pat-

terns included for recognition. Although recall was 

low, users who want very high confidence interac-

tion predictions or interactions of a very specific 

type can benefit from the pattern-based system’s 

demonstrated high precision. Co-occurrence can 

suit users who want to focus on recall. 

Coulet et al. reported their system scored a 

precision of 70% for exact match and 87.7% for 

exact or incomplete match but true classification.  

Our results are similar to their 87.7% results in 

both percentage and scoring method.  The method 

that allows incompleteness accepts matches that 

accurately identify core pharmacogenomic rela-

tionships but don’t need to correctly match modifi-

er words.  Our scoring is similar in not needing to 

match modifier words.  The similarity in results 

indicates that we correctly implemented the system 

that Coulet et al. designed.  That indication does 

have the limitation that the 10% of sentences una-

ble to be processed may have affected the results. 

An example of a more complex interaction 

that was matched by co-occurrence with an inte-

raction term but not the pattern-based method was 

―Moreover, S-nitrosylation of thioredoxin was also 

significantly augmented after atorvastatin treat-

ment.‖ (PMID: 15289372).  In that sentence, an 

interaction occurred where thioredoxin's (gene) S-

nitrosylation was augmented by atorvastatin 

(drug).  Analysis of the dependency graphs used by 

the pattern-based system revealed some reasons 

why it was unable to identify the interaction.  

 The pattern-based system uses a rule that 

applies to that sentence: a potential pattern se-

quence match can be ―interrupted‖ by a dependen-

cy that does not fit accepted patterns.  In the non-

classified sentence, the entities ―was‖ and ―aug-

mented‖ were terms that caused the pattern match-

ing to be interrupted.  Both ―was‖ and ―aug-

mented‖ are not nouns or prepositions.  They both 

also are needed in the dependency subgraph that 

connects the gene and drug together.  Those parts 

of speech are not allowed to be chained together in 

the pattern-based system's patterns.  That deviation 

from the allowed patterns caused the system to 

miss that interaction. 

Adding patterns with more diversity in al-

lowed parts of speech in series of interaction terms 

that connect genes and drugs in interactions can 

improve recall performance.  A review of parts of 

speech (POS) in missed matches showed that some 

misses were due to no verb POS tags being present 

in interaction descriptions.  That can occur when 

verbs are in their nominalized form or other situa-

tions.  Mining the corpus for both part of speech 

and dependency graph patterns can identify pat-

terns that are able to correct those misses.  Also, 

the POS tagger included with the parser mis-

tagged a variety of words.  Using a higher perfor-

mance tagger or one trained on biomedical text 

may help with pattern matches.  

Ahlers et. al. also reported relationship ex-

traction performance from a new system with their 

gene-drug corpus.  That system achieved a preci-

sion of 73% and recall of 50% extracting an anno-

tation category including gene-drug relationships.  

The system is built upon an earlier system and an 

important part of its capabilities comes from spe-

cialized linguistic rules it uses.  The corpus in-

cluded in this work can be useful for further devel-

opment of systems that integrate such rules with 

other methods to improve extraction performances. 

Some characteristics were notable about 

the results of the methods using co-occurrence 

with and without interaction terms.  The perfor-

mances found of those methods may be specific to 

an increased amount of gene-drug interactions 

found in the journals used compared to other jour-

nals.  Also, the use of interaction terms from the 

Phare ontology was expected to increase precision 

because they were found from predicted pharma-

cogenomic relationships.  The co-occurrence with 

interaction terms method resulted in only approx-

imately equaling the precision of basic co-

occurrence.  One possible reason for that is the 

terms were originally found partly with disease 

relationships.  They therefore can be less relevant 

to gene-drug interactions.   

 

5.2  Analyses of annotations 

Table 2 includes that the general interaction anno-

tations had the kappa values 46%, 30%, 11% 

which are considered only moderate to low scores 

by common rating methods.  Some IAA scores, 

such as kappa, include a correction for chance 
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agreement probability.  An intentional design 

choice was made in the corpus to allow an unba-

lanced but natural ratio of interactions to non-

interactions.  That imbalance increased kappa’s 

correction.  Although our reasonably high IAA 

scores with accuracy helped increase the kappa 

score, they were not enough to offset the correction 

and bring kappa above the moderate score.   

 An article by Strijbos et. al. states that 

kappa can have a strict chance agreement correc-

tion in the case of few categories (Strijbos, Mar-

tens, Prins, & Jochems, 2006).  Given that general 

interaction scores were only based on the catego-

ries of present or absent, kappa may have been 

overly strict with the correction.  If that correction 

in our data is not strict, but justified, than that indi-

cates how further improving our annotation 

process can be valuable.  Further investigation will 

go into understanding what statistics may be useful 

for scoring given the corpus properties.  Explora-

tion will also continue with talking to annotator s 

about what may be causing disagreement.  That 

exploration will help reveal ways to improve IAA. 

 Subcategories showed mixed results in 

their IAA performances.  The subcategories with 

the highest IAA scores may indicate that those 

subcategories are more clearly defined than others 

in the annotation guide. 

 Reviewing some annotated sentences can 

help clarify how the IAA results occurred.  All an-

notators agreed the drug galantamine has a direct 

explicit interaction with cholinesterase in sentence 

A in Table 3.  Such an interaction description is 

simply described and an annotator has reported 

that type of interaction being the easiest to identify.   

 Agreement was found with all annotators 

for annotations in sentence B in Table 3.  It was 

readily understandable to annotators that calcium 

and other signal transduction systems do not have 

an interaction simply for all being a part of those 

types of systems. 

 An example of a sentence with annotator 

disagreement was sentence C in table 3. Although 

endogenously produced in this case, the nested 

entity creatine was considered a drug due to being 

relevant to creatine in its exogenous drug form. 

 The occurrence of multiple properties, 

such as inhibition and effects on hearts can make it 

difficult to follow the logic of the interaction be-

tween creatine and adenylate kinase (enzyme).  

The interaction annotation can be hard for annota-

tors to find due to that complexity and the subtle-

ness of the ―in spite of‖ phrase describing the ne-

gated effect between the drug and gene.  The inte-

raction is negated but that still is considered an 

interaction by the annotation rules used. 

   

5.3  Future Work 

As mentioned before, the corpus will grow from 

around 500 sentences that it has right now to 

around 1,500.  The larger the corpus expands to be, 

the more representative it will become of gene-

drug interactions.  Other future work includes work 

with more advanced interaction extraction systems. 

Along with this publication, a version of 

the corpus with high confidence in annotations will 

be released.  Given that this is an initial work, a 

relatively modest amount of annotation revisions 

may occur with a few periodic later version releas-

es of the corpus to improve its quality. 

 Unfortunately no tagger is perfect so as 

annotations proceed, drugs or genes that were 

missed by the tagger can be investigated to further 

understand why that occurred.  An example of a 

commonly missed drug was acetylcholine.  Ace-

tylcholine was picked up as a drug if it was spelled 

out, but not if it was abbreviated as ACh and it is 

commonly abbreviated.   

6 Conclusion 

The extraction results indicated that the systems 

tested can be utilized and built upon according to 

user preferences in precision, recall, or specific 

interaction terms.  The corpus presented here offers 

valuable utility to system developers working to-

ward achieving favorable balances of precision and 

recall in gene-drug interaction extractions.  The 

growth of that corpus will also increasingly benefit 

the developers working on those extractions.  That 

type of extraction is important to advancing work 

in pharmacogenomics by retrieving knowledge for 

individuals working in the field.  
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