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Abstract 

The package insert (aka drug product label) is 
the only publicly-available source of infor-
mation on drug-drug interactions (DDIs) for 
some drugs, especially newer ones. Thus, an 
automated method for identifying DDIs in 
drug package inserts would be a potentially 
important complement to methods for identi-
fying DDIs from other sources such as the 
scientific literature. To develop such an algo-
rithm, we created a corpus of Federal Drug 
Administration approved drug package insert 
statements that have been manually annotated 
for pharmacokinetic DDIs by a pharmacist 
and a drug information expert. We then evalu-
ated three different machine learning algo-
rithms for their ability to 1) identify 
pharmacokinetic DDIs in the package insert 
corpus and 2) classify pharmacokinetic DDI 
statements by their modality (i.e., whether 
they report a DDI or no interaction between 
drug pairs). Experiments found that a support 
vector machine algorithm performed best on 
both tasks with an F-measure of 0.859 for 
pharmacokinetic DDI identification and 0.949 
for modality assignment. We also found that 
the use of syntactic information is very helpful 
for addressing the problem of sentences con-
taining both interacting and non-interacting 
pairs of drugs. 

1 Introduction 

Package inserts (PIs, aka drug product label) are 
the primary source of information for newly ap-
proved drugs and a potentially authoritative source 
of drug information from a medical-legal stand-

point (Marroum & Gobburu 2002). Among the 
information provided by PIs are drug-drug interac-
tions (DDIs): known and predicted drug combina-
tions that could lead to a clinically meaningful 
alteration in the effect of one of the drugs. The 
United States Federal Drug Administration (FDA) 
mandates that PIs for FDA-approved drugs include 
both observed and predicted clinically significant 
DDIs, as well as the results of pharmacokinetic 
studies that establish the absence of effect (FDA. 
2010). Moreover, the PI is the only publically-
available source of information on DDIs for some 
drugs, especially newer ones (Dal-Ré et al. 2010). 
Hence, an automated method for identifying DDIs 
from drug PIs would be an important complement 
to methods for identifying DDIs from other 
sources such as the scientific literature. In this pa-
per we describe the creation of a new corpus of 
FDA-approved drug package insert statements that 
have been manually annotated for pharmacokinetic 
DDIs. We then discuss how three different ma-
chine learning algorithms were evaluated for their 
ability to 1) identify pharmacokinetic DDIs in drug 
package inserts and 2) classify pharmacokinetic 
DDI statements by their modality (i.e., whether 
they report a DDI or that a drug pair does not in-
teract).  

2 Materials and Methods 

2.1 The DDI Corpus and Schema 

A corpus of annotated statements derived from 
FDA-approved drug PIs was created for use as 
training and test data while developing automated 
DDI extraction algorithms. The statements were 
derived from PIs using a strategy that ensured there 
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would be a representative sample of statements 
that 1) unambiguously identified interacting drug 
pairs, 2) unambiguously identified non-interacting 
drug pairs, and 3) included no mention of interact-
ing drug pairs. Previous experience by our research 
group suggested that the manner in which DDI 
statements are described in PIs has changed over 
time in response to changing FDA regulations. 
Most notably, an FDA guidance document issued 
in 1999 was (to our knowledge) the first to explic-
itly suggest the inclusion of brief descriptions of 
pharmacokinetic DDI studies within specific sec-
tions of drug PIs (FDA. 1999). To account for this, 
investigators selected 64 PIs using a strategy that 
ensured the corpus would have a balanced sample 
of statements from drugs marketed before and after 
2000. For the purpose of this study we designated 
all PIs for drugs marketed prior to 2000 as “older” 
and those for drugs marketed in or after 2000 as 
“newer.” PIs were downloaded from the DailyMed 
website,1 and the entire “Drug Interactions” and 
“Clinical Pharmacology” sections were selected as 
text sources from “newer” PIs. For “older” PIs, 
which often lacked these two sections, investiga-
tors chose a section containing an apparent interac-
tion statement and one randomly-selected section. 

DDIs are typically classified as occurring by 
either pharmacodynamic or pharmacokinetic 
mechanisms. A pharmacodynamic DDI involves 
the additive or synergistic amplification of a drug’s 
effect. In a pharmacokinetic (PK) DDI, one drug, 
called a precipitant, affects (inhibits or induces) 
the absorption, distribution, metabolism, or excre-
tion of another drug, called the object. To simplify 
our task, we decided to focus specifically on PK 
DDIs. Prior to annotating the PI statements, a 
schema was created for the entities that the investi-
gators considered important components of a PK 
DDI.  The schema modeled drugs as having two 
characteristics, type and role. The type of drug 
could be active ingredient (e.g., simvastatin), 
drug product (e.g., Zocor), or metabolite 
(e.g., beta-OH-simvastatin). Drugs annotated as 
metabolite also referred to the active ingre-
dient parent compound. The role of a drug could 
be either an object or a precipitant. Two oth-
er properties were provided to model each PK 
DDI: 1) whether the statement from which the DDI 
was identified suggested an observed effect or a 
                                                           
1 http://dailymed.nlm.nih.gov/   

lack of an observed effect between two coadminis-
tered drugs (i.e., positive vs negative modali-
ty statements), and 2) whether the statement 
included quantitative or qualitative data in describ-
ing an interaction or non-interaction between a 
drug pair (i.e., quantitative vs qualitative 
statements). Finally, the segment of text in which 
the interaction claim was made was annotated as 
an interaction phrase. With the corpus and 
schema in place, drugs and PK DDIs present in the 
PI statements were then annotated by two inde-
pendent reviewers using Knowtator, an annotation 
tool integrated with the Protégé ontology editor 
(Ogren 2006).   

One annotator was a pharmacist and DDI 
expert, and the other a librarian specializing in 
drug information retrieval. To help the annotators, 
co-investigator RB ran the NCBO Annotator (Jon-
quet, Shah & Musen 2009) over the corpus using 
the RxNorm drug terminology (Nelson et al. 2011) 
to pre-annotate as many active ingredients and 
drug products as possible. The annotators reviewed 
these “pre-annotations” while identifying entities 
that missed during the pre-annotation process. Co-
investigator HH used Knowtator to calculate inter-
annotator agreement statistics from the annotators’ 
initial annotation sets. RB then worked with the 
two annotators to achieve consensus on the final 
corpus of annotated DDI statements. 

2.2 Setting up the DDI statement extraction 
experiment 

Once the set of DDI annotations was compiled, we 
devised two machine learning tasks.  The first task 
was to determine whether two drugs mentioned in 
a statement taken from a PI are noted as either in-
teracting or not interacting with each other by 
pharmacokinetic mechanisms (i.e., does the state-
ment report a PK DDI with the drug pair of either 
a positive or negative modality?). The second task 
was to determine the modality of a given PK DDI. 
The first task did not include determining the roles 
of the drugs if an interaction is found, i.e., which 
member of the pair of drug mentions is the precipi-
tant and which one is the object. To enable the ex-
ploration of the performance of multiple machine 
learning methods, we divided two-thirds of the 
annotated PI statements into a development set and 
one-third into a blind test set. PI statements anno-
tated as reporting DDIs were stratified within the 
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two sets using a random selection method that en-
sured a representative balance of sentence distance 
between drug mentions, DDI modality, DDI type, 
and drug PI age designation (see above).  State-
ments not containing an interaction were stratified 
by sentence distance between drug mentions, and 
PI age designation. Stratification was done on the 
level of statements. Thus, statements taken from 
the same package insert may have been distributed 
over the development and test set. 

We observed that 99% of corpus statements 
annotated as a PK DDI mentioned an interacting 
drug pair within a three sentence region. Thus, we 
created a baseline dataset by iterating through PI 
statements in the development set and identifying 
all drug pair mentions that occurred within a three-
sentence span. Throughout the remainder of this 
paper we refer to the statements identified by this 
process as instances.  

Instances containing drug pairs that were 
manually annotated as participating in an interac-
tion (either with positive or negative modality) 
were labeled as positive instances for the extraction 
task; all other pairs were labeled as negative in-
stances. Prior to generating features for machine 
learning, each instance was pre-processed. Num-
bers (e.g. “1”, “34”, “5.2”, etc.) were replaced by 
the string “num” to make them more meaningful to 
a learning algorithm across instances. This allowed 
the algorithm to associate numerical references 
with each other using a general pattern, instead of 
learning phrases with specific numbers (e.g. the 
phrase “num mg” may be significant, whereas “10 
mg” may be less significant).  Similarly, to abstract 
away from specific names, the names of drug 
products, active ingredients, and metabolites in 
each statement were replaced by the string 
“drugname”. This forces the learning algorithm to 
generalize over the participants of interactions, 
preventing it from identifying interactions based on 
the identity of the participants. 

In the baseline dataset, each instance’s pre-
processed sentence text was translated to bigrams 
using TagHelper, a text analysis program written 
on top of the Weka machine learning software 
(Hall et al. 2009; Rosé et al. 2008).  Bigrams are a 
comprehensive set of consecutive word pairs that 
appear in a sentence.  Words in bigrams were 
stemmed by TagHelper to facilitate learning more 
general concepts conveyed by phrases. For exam-
ple, the commonly occurring phrases “increases 

auc” and “increased auc” are stemmed to “increase 
auc” and then merged to the bigram. The baseline 
set of instances was loaded into Weka and three 
models were built using three different machine 
learning algorithms.  The three algorithms were a 
rule learner (“JRip”), a decision tree (“J48”), and 
an SVM algorithm (“SMO”).  Algorithm parame-
ters were left at Weka defaults and 10-fold cross-
validation was used to develop each model. 

Exploration of Weka predictions from the 
baseline dataset showed that a major source of con-
fusion for the machine learning algorithms was an 
inability to distinguish between pairs of drugs that 
do and do not interact within the same sentence. A 
frequent source of this kind of occurrence in the 
package insert text was coordinate structures such 
as “Drug A interacts with Drugs B and C”, where 
“B and C” is a coordinate structure.  For such sen-
tences, the baseline dataset contains the interacting 
pairs (A,B) and (A,C), along with the non-
interacting pair (B,C).  However, because all three 
pairs are represented by the same set of bigrams, it 
is obvious that information from bigrams alone is 
insufficient to distinguish which pairs interact and 
which simply co-occur within the sentence.  

Another problem was that of multiple men-
tions of the same drug within an instance’s sen-
tence span, as, for example, in the sentence “Co-
administration of A and B leads to increased AUC 
levels for B.” Because the annotators had identified 
only one drug mention per annotated interaction, 
the algorithms incorrectly considered other men-
tions of the same drug as part of a non-interacting 
pair. Two solutions were implemented to help alle-
viate these problems.  First, the dataset was con-
densed to a set of instances with unique drug pairs 
and sentence spans.  If any of the baseline instanc-
es contributing to the condensed instance contained 
interactions, the condensed instance was said to 
contain an interaction. In this way, multiple drug 
mentions within a sentence span containing an in-
teraction would translate to a single instance repre-
senting an interaction between the two drugs. 

Second, two natural language dependency 
parsers were used to extract extra features from the 
sentence text for each instance: the Stanford NLP 
Parser (Klein & Manning 2003) and ClearParser 
(Choi 2011).  Following approaches to relation 
extraction proposed in other domains e.g., (Bunes-
cu & Mooney 2005), the dependency structure 
produced by each parser was searched for the 
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shortest path between the pair of drug mentions of 
the instance.  The words on this path were 
stemmed using the Stanford NLP Tools stemmer 
(Stanford NLP 2011), and added to the dataset as 
the instance’s “syntactic path”. 

Once a statement is classified as describing a 
PK DDI between two drugs, it is important to 
know if there is an observed effect or a lack of ef-
fect between two coadministered drugs (i.e., posi-
tive vs negative modality statements). To present 
the learning algorithms with the most relevant 
training data, modality prediction was treated as a 
separate task from interaction prediction.  Devel-
opment and test sets were created in the same 
manner as for interaction prediction, however in-
stances that did not represent interactions were ex-
cluded. Only bigram features were used for 
modality prediction.  Model training and testing 
proceeded in the same manner as for interaction 
prediction. 

3 Results 

A total of 208 multi-sentence sections were ex-
tracted from 64 PIs. Prior to consensus, inter-
annotator agreement between the two annotators 
on PK DDI, active ingredient, drug product, me-
tabolite mentions and was found to be 60%, 
96.3%, 99.5%, and 60.8% respectively. The major-
ity of disagreements about DDIs were due to a ten-
dency of one annotator to incorrectly annotate 
some pharmacodynamic DDIs as PK DDIs. Also, 
one annotator incorrectly assumed that all metabo-
lites had been pre-annotated and so did not actively 
attempt to annotate metabolite entities. These and 
other minor issues were corrected and full consen-
sus was reached by both annotators. The final drug 
package insert PK DDI corpus contains 592 PK 
DDIs, 3,351 active ingredient mentions, 234 drug 
product mentions, and 201 metabolite mentions.2 

Tables 1 and 2 provide more details on the mo-
dality and drug types present in the 592 consensus 
PK DDI statements. Table 1 shows that 388 state-

                                                           
2 http://purl.org/NET/nlprepository/PI-PK-DDI-Corpus  

ments indicated that a PK DDI would occur be-
tween a drug pair, while 204 statements indicated 
that an interaction would not occur. The table also 
shows that 204 statements reported quantitative 
measures while 388 did not. Table 2 shows that the 
majority (86%) of PK DDI statements reported 
interactions by stating the two active ingredients 
involved in the DDI, with a much smaller propor-
tion using a drug product in the description. Also, 
35 DDI statements reported an effect on a drug 
metabolite. 

A total of 11,048 PI instances were generated 
for the baseline dataset. This was reduced to 5,015 
instances after condensing the instances down to 
unique drug pairs and sentence spans. In the final 
dataset, about a third of instances were drug pairs 
within the same sentence (1,583). The rest were 
split between drug pairs in adjacent sentences 
(1,717), and drug pairs with two sentences of sepa-
ration (1,715).  The dataset included 542 interac-
tions of which 493 included the drug pair within a 
single sentence.  355 interactions were positive 
modality and 187 negative; 360 were qualitative, 
182 quantitative. 1,636 instances were categorized 
as “new” based on drug release data while 3,379 
were classified as “old”. 

Results for interaction and modality prediction 
are shown in Table 3. For both the interaction and 
modality prediction tasks, the SVM algorithm 
(SMO) outperformed the rule learner (Jrip) and 
decision tree (J48). On the test set which was not 
used in training, the SVM classifier identified PK 
DDIs with an F-measure of 0.859 vs 0.762 for the 
rule learner and 0.802 for the decision tree algo-
rithm. All algorithms performed quite well on the 
modality classification task but the SVM algorithm 
performed best with an F-measure of 0.949 vs 
0.929 (rule learner) and 0.917 (decision tree). 

4 Discussion 

The automatic identification of DDIs in unstruc-
tured text is a topic that is gaining much interest. 
This work makes an important contribution to the 
field by being the first to demonstrate that machine 
learning can be applied quite effectively to the task 
of extracting PK DDIs from FDA-approved PIs.  

Interaction Type   
Modality Qualitative Quantitative Total 
Negative 202 2 204 
Positive 186 202 388 
Total 388 204 592 

Table 1. PK DDI statement modality shown by in-
teraction type. 
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Object Type   
Precipitant Type Active ingredient Drug product Metabolite Total 
Active ingredient 506 14 34 554 
Drug product 37 - 1 38 
Total 543 14 35 592 

Table 2. A summary of consensus annotated PK DDIs by precipitant and object type. 

As our work focuses on extracting PK DDIs, it is 
most similar to that of Karnik et al. (Karnik et al. 
2011) who explored the performance of an “all 
paths” graph kernel (Airola et al. 2008) on a corpo-
ra of PK DDIs derived from 219 MEDLINE ab-
stracts. The best performing algorithm in their 
experiments had an F-measure of 0.658 which is 
considerably less than the F-measure of 0.859 that 
our SVM achieved. However, the two results are 
not directly comparable because of unknown dif-
ferences between the corpora. For example, it may 
be that PIs use more standard language patterns to 
report PK DDIs than what is found in MEDLINE 
abstracts. In future work we will explore how well 
the SVM algorithm performs over MEDLINE ab-
stracts and contrast any differences between the 
two DDI sources that might affect NLP. 

The only other project we are aware of that fo-
cused explicitly on extracting PK DDIs from un-
structured text is that of Tari et al. (Tari et al. 
2010), who evaluated a rule-based algorithm for 
extracting PK DDIs from papers and abstracts in 
the scientific literature. In this study the authors 
distinguished between explicit DDIs (statements 
indicating a direct observation of a PK effect from 
a give drug combination) and implicit DDIs (DDIs 
that can be inferred based on claims about drug 
metabolic properties extracted from scientific 
texts). The algorithm was ran over ~17 million 
MEDLINE abstracts and the output DDIs were 
compared with a reference standard set of 494 
DDIs identified manually from 265 DrugBank 
drug pages. The algorithm’s recall of DrugBank 
interactions was only 12%. However, a manual 
inspection of the results found that 78% of the 
DDIs extracted by the algorithm were valid based 
on the source texts, even though they were not pre-
sent in their reference standard. These results are 
important because they suggest that the set of DDIs 
present in DrugBank are incomplete and highlight 
the need for corpora derived from other text 
sources such as the one we developed from drug 
PIs for this study. 

A larger body of research exists for the task of 
extracting DDIs of any type (i.e., PK or pharmaco-
dynamic DDIs). Ten research papers were present-
ed at the recent “Challenge Task on Drug-Drug 
Interaction Extraction” held at the 2011 SemEval 
Conference (Segura-Bedmar, Martinez & Sanchez-
Cisneros 2011).  All systems in this challenge were 
tested against the “DrugDDI corpus”; a set of 579 
documents from the DrugBank database with 
3,160 manually-annotated DDIs (Segura-Bedmar, 
Martinez & Pablo-Sanchez 2010). The best per-
forming system in this challenge utilized an en-
semble learning approach (Thomas et al. 2011) and 
produced an F-measure of 0.657. The  second best 
performing method utilized composite kernels, a 
method that combines feature-based and kernel-
based methods, and was found to perform with an 
F-measure of 0.64 (Chowdhurry et al. 2011). Airo-
la et al’s “all paths” graph kernel (mentioned 
above) performed much more poorly on the Drug-
DDI corpora than on the Karnik’s PK-DDI corpus 
(F-measure 0.16 vs 0.658). The authors note that 
there were significant differences between in the 
two corpora with regards to the length and com-
plexity of the sentences reporting DDIs . 

To the best of our knowledge, only one other 
NLP study that has focused specifically on drug 
interactions reported in drug product labeling (Ru-
brichi & Quaglini 2012). The investigators com-
pared the ability of an SVM classifier and a 
conditional random fields (CRF) classifier for as-
signing 13 semantic labels to Italian language text 
present in the interaction section of  “Summary of 
Product Characteristics” documents (the Italian 
equivalent of PIs). The investigators explored the 
influence of a range of features on classifier per-
formance, including orthographical, neighboring 
word, syntactic, parts of speech, and dictionary 
features. When all features were employed, the 
SVM had slightly better performance than the CRF 
classifier (micro-averaged F-measure: 91.41 vs 
91.13, macro-averaged F-measure: 84.99 vs 
80.83).  
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Jrip J48 SMO 

Model (dataset) Prec Recall F Prec Recall F Prec Recall F 

Baseline (development) 0.588 0.656 0.62 0.584 0.573 0.578 0.639 0.677 0.658 
Stanford Parser (develop-
ment) 0.762 0.68 0.719 0.809 0.804 0.807 0.851 0.815 0.833 

ClearParser (development) 0.787 0.793 0.79 0.822 0.791 0.806 0.828 0.887 0.856 

Stanford Parser (test) 0.778 0.665 0.717 0.828 0.832 0.83 0.843 0.838 0.84 

ClearParser (test) 0.764 0.76 0.762 0.85 0.76 0.802 0.836 0.883 0.859 

Modality (test) 0.963 0.897 0.929 0.887 0.948 0.917 0.941 0.957 0.949 
Table 3. Results for interaction prediction on the baseline, development, and blind test set. Also shown are re-
sults for modality prediction for the blind test set (results over the development set are similar but not shown). 

One key difference between the Rubrichi study 
and ours is that the task of tagging unstructured 
text with semantic elements that describe a DDI is 
not the same as classifying whether or not a state-
ment containing a drug pair is reporting a DDI be-
tween the drugs. The difference is especially 
apparent when considering coordinate structures 
such as “Drug A interacts with Drugs B and C”, 
Semantic tagging would be useful for identifying 
the drug entities but is not useful (on its own) for 
identifying which of the three drug pairs interact 
with each other.  

It is interesting to note that most recent work on 
DDI extraction had not made the distinction be-
tween PK and pharmacodynamic DDIs that is 
standard in the fields of pharmacology and phar-
macy. This distinction might be relevant to DDI 
extraction because the two types of interactions are 
discovered in distinct ways that might lead to sig-
nificant differences in how they are described in 
scientific documents. For example, there is a fairly 
standard set of in vitro experiments and clinical 
trials that have been a routine part of drug devel-
opment for more than a decade (FDA. 1999). The 
same is not true for pharmacodynamic DDIs, 
which are more challenging to study because they 
involve additive and synergistic effects that are not 
necessarily related to a drug’s dose or clearance. 
Since it is reasonable that the methods used to in-
vestigate a DDI strongly influences its description, 
we think future work should examine if PK and 
pharmacodynamic DDI descriptions are different 
enough to warrant distinct DDI extraction efforts. 

An error analysis of the final dataset suggested 
some reasons for cases where the machine learning 
algorithms misclassified instances. Instances that 
were not interactions, but were classified as such, 
contained a large number of sentences with de-

scriptions of studies or biochemical processes and 
measurements.  These types of statements may 
share a number of features with actual interactions 
(e.g. numerical data, changing levels of drug, etc.) 
without containing an interaction.  There also re-
main cases where several drug names occur and 
the classifiers were unable to differentiate between 
the interacting pair and non-interacting pairs. Un-
fortunately, no such clear pattern was apparent for 
instances that descrived interactions, but were clas-
sified as containing no interaction statement. A 
number of large sentences were observed in these 
instances, suggesting sentence complexity may 
play a role, increasing the difficulty of natural lan-
guage parsing. 

Analysis of the attribute weights assigned by 
the SVM  algorithm (SMO) after training for inter-
action prediction shows some commonality regard-
less of whether the data was processed by the 
Stanford Parser or the ClearParser. For example, 
19 out of the 20 most significant features identified 
by the algorithm from the dataset when processed 
by the Stanford Parser were words on the syntactic 
path; one less than when the dataset was processed 
by the ClearParser. Common significant features 
include words such as “coadminister”, “auc”, 
“pharmacokinetic”, and “absorption”.  The algo-
rithm placed greater importance on the words “in-
crease” and “decrease” when the dataset was 
processed by the Stanford Parser, while the words 
“reduce” and “enhance” received greater attribute 
weights when the data was processed by the 
ClearParser. A similar analysis of the SVM algo-
rithm developed for PK DDI modality prediction 
shows that bigrams with the words “no” or “not” 
are clearly the features of most importance to the 
model. 
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We also note that the algorithm’s performance 
on the test set of PI statements is very similar to 
the algorithm’s performance over the development 
set (see Table 3). We think that this finding is 
largely due to the careful stratification approach 
we used when creating the development and test 
sets. It might also be possible that the features in 
the unstructured PI text do not vary greatly be-
tween PIs regardless of their age. However, Table 
2 shows that our PK DDI corpora had considerable 
variation in terms of quantitative vs qualitative and 
positive vs negative DDI statements. Thus, we an-
ticipate that the SVM algorithm’s performance will 
be maintained when ran against a much larger PI 
corpus and future work will test how well the algo-
rithm generalizes to other sets of PIs.  

5 Conclusion 

We created a new, publically available, corpus of 
FDA-approved drug PI statements that have been 
manually annotated for PK DDIs by a pharmacist 
and a drug information expert. Also, we evaluated 
three different machine learning algorithms for 
their ability to 1) identify PK DDIs in drug PIs and 
2) classify PK DDI statements by their modality 
(i.e., whether they report a DDI or no interaction 
between drug pairs). Experiments found that an 
SVM algorithm performed best on both tasks with 
an F-measure of 0.859 for PK DDI identification 
and 0.949 for modality assignment. We found that 
the use of syntactic information is very helpful for 
addressing the problem of sentences containing 
both interacting and non-interacting pairs of drugs. 
The strong performance of our algorithm for PK 
DDIs suggests that approaching pharmacokinetic 
and pharmacodynamic interactions as different 
NLP tasks is a potentially promising approach for 
advancing automated DDI extraction. Given the 
marked difference in performance between our 
extraction methods and previous work, we are 
planning further experiments to establish whether 
this difference reflects the comparative simplicity 
of the extraction task represented by our corpus, 
some specific strength of the applied extraction 
methods, or some other factor. 
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