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Abstract

Active learning can lower the cost of anno-

tation for some natural language processing

tasks by using a classifier to select informa-

tive instances to send to human annotators. It

has worked well in cases where the training in-

stances are selected one at a time and require

minimal context for annotation. However,

coreference annotations often require some

context and the traditional active learning ap-

proach may not be feasible. In this work we

explore various active learning methods for

coreference resolution that fit more realisti-

cally into coreference annotation workflows.

1 Introduction

Coreference resolution is the task of deciding which

entity mentions in a text refer to the same entity.

Solving this problem is an important part of the

larger task of natural language understanding in gen-

eral. The clinical domain offers specific tasks where

it is easy to see that correctly resolving coreference

is important. For example, one important task in the

clinical domain is template filling for the Clinical El-

ements Model (CEM).1 This task involves extracting

various pieces of information about an entity and fit-

ting the information into a standard data structure

that can be reasoned about. An example CEM tem-

plate is that for Disease with attributes for Body Lo-

cation, Associated Sign or Symptom, Subject, Nega-

tion, Uncertainty, and Severity. Since a given entity

may have many different attributes and relations, it

1http://intermountainhealthcare.org/cem

may be mentioned multiple times in a text. Coref-

erence resolution is important for this task because

it must be known that all the attributes and relations

apply to the same entity so that a single CEM tem-

plate is filled in for an entity, rather than creating a

new template for each mention of the entity.

2 Background

2.1 Coreference Resolution

Space does not permit a thorough review of coref-

erence resolution, but recent publications covered

the history and current state of the art for both the

general domain and the clinical domain (Ng, 2010;

Pradhan et al., 2011; Zheng et al., 2011).

The system used here (Zheng et al., 2012) is

an end-to-end coreference resolution system, mean-

ing that the algorithm receives no gold standard in-

formation about mentions, named entity types, or

any linguistic information. The coreference res-

olution system is a module of the clinical Tex-

tual Analysis and Knowledge Extraction System

(cTAKES) (Savova et al., 2010) that is trained on

clinical data. It takes advantage of named entity

recognition (NER) and categorization to detect en-

tity mentions, and uses several cTAKES modules

as feature generators, including the NER module,

a constituency parser module, and a part of speech

tagging module.

The system architecture is based on the pairwise

discriminative classification approach to the coref-

erence resolution problem. In that paradigm, pairs

of mentions are classified as coreferent or not, and

then some reconciliation must be done on all of the
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links so that there are no conflicts in the clusters.

The system uses support vector machines (SVMs)

as the pairwise classifiers, and conflicts are avoided

by only allowing an anaphor to link with one an-

tecedent, specifically that antecedent the classifier

links with the highest probability.

There are separate pairwise classifiers for named

entity and pronominal anaphor types. In the domain

of clinical narratives, person mentions and personal

pronouns in particular are not especially challeng-

ing – the vast majority of person mentions are the

patient. In addition, pronoun mentions, while im-

portant, are relatively rare. Thus we are primarily

interested in named entity coreference classification,

and we use that classifier as the basis of the work de-

scribed here.

The feature set of this system is similar to that

used by Ng and Cardie (2002). That system in-

cludes features based on surface form of the men-

tions, shallow syntactic information, and lexical se-

mantics from WordNet. The system used here has

a similar feature set but uses Unified Medical Lan-

guage System (UMLS)2 semantic features as it is

intended for clinical text, and also incorporates sev-

eral syntactic features extracted from constituency

parses extracted from cTAKES.

To generate training data for active learning simu-

lations, mention detection is run first (cTAKES con-

tains a rule-based NER system) to find named en-

tities and a constituency parser situates entities in

a syntax tree). For each entity found, the system

works backwards through all other mentions within

a ten sentence window. For each candidate anaphor-

antecedent pair, a feature vector is extracted using

the features briefly described above.

2.2 Active Learning

Active Learning (AL) is a popular approach to se-

lecting unlabeled data for annotation (Settles, 2010)

that can potentially lead to drastic reductions in the

amount of annotation that is necessary for train-

ing an accurate statistical classifier. Unlike passive

learning, where the data is sampled for annotation

randomly, AL delegates data selection to the clas-

sifier. AL is an iterative process that operates by

first training a classifier on a small sample of the

2http://www.nlm.nih.gov/research/umls/

data known as the seed examples. The classifier

is subsequently applied to a pool of unlabeled data

with the purpose of selecting additional examples

the classifier views as informative. The selected data

is annotated and the cycle is repeated, allowing the

learner to quickly refine the decision boundary be-

tween classes. One common approach to assessing

the informativeness is uncertainty sampling (Lewis

and Gale, 1994; Schein and Ungar, 2007), in which

the learner requests a label for the instance it is most

uncertain how to label. In this work, we base our

instance selection on the distance to the SVM de-

cision boundary (Tong and Koller, 2002), assuming

that informative instances tend to concentrate near

the boundary.

Most AL work focuses on instance selection

where the unit of selection is one instance repre-

sented as a feature vector. In this paper we also

attempt document selection, where the unit of se-

lection is a document, typically containing multi-

ple coreference pairs each represented as a feature

vector. The most obvious way to extend a sin-

gle instance informativeness metric to the document

scenario is to aggregate the informativeness scores.

Several uncertainty metrics have been proposed that

follow that route to adapt single instance selection

to multiple instance scenarios (Settles et al., 2008;

Tomanek et al., 2009). We borrow some of these

metrics and propose several new ones.

To the best of our knowledge only one work

exists that explores AL for coreference resolution.

Gasperin (2009) experiments with an instance based

approach in which batches of anaphoric pairs are se-

lected on each iteration of AL. In these experiments,

AL did not outperform the passive learning baseline,

probably due to selecting batches of large size.

3 Active Learning Configurations

3.1 Instance Selection

The first active learning model we considered selects

individual training instances – putatively coreferent

mention pairs. This method is quite easy to simu-

late, and follows naturally from most of the theo-

retical active learning literature, but it has the draw-

back of being seemingly unrealistic as an annotation

paradigm. That is, since coreference can span across

an entire document, it is probably not practical to
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have a human expert annotate only a single instance

at a time when a given instance may require many

sentences of reading in order to contextualize the in-

stance and properly label it. Moreover, even if such

an annotation scheme proved viable, it may result

in an annotated corpus that is only valuable for one

type of coreference system architecture.

Nonetheless, active learning for coreference at the

instance level is still useful. First, since this method

most closely follows the successful active learning

literature by using the smallest discrete problems, it

can serve as a proof of concept for active learning

in the coreference task – if it does not work well at

this level, it probably will not work at the document

level. Previous results (Gasperin, 2009) have shown

that certain multiple instance methods do not work

for coreference resolution, so testing on smaller se-

lection sizes first can ensure that active learning is

even viable at that scale. In addition, though in-

stance selection may not be feasible for real world

annotations, individual instances and metrics for se-

lecting them are usually used as building blocks for

more complex methods. In order for this to be pos-

sible it must be shown that the instances themselves

have some value.

3.2 Document Selection

Active learning with document selection is a much

more realistic representation of conventional anno-

tation methods. Conventionally, a set of documents

is selected, and each document is annotated exhaus-

tively for coreference (Pradhan et al., 2011; Savova

et al., 2011). Document selection fits into this work-

flow very naturally, by selecting the next document

to annotate exhaustively based on some metric of

which document has the best instances. In theory,

this method can save annotation time by only anno-

tating the most valuable documents.

Document selection is somewhat similar to the

concept of batch-mode active learning, wherein

multiple instances are selected at once, though

batch-mode learning is usually intended to solve a

different problem, that of an asymmetry between

classifier training speed and annotation speed (Set-

tles, 2010). A more important difference is that doc-

ument selection requires that all of the instances in

the batch must come from the same document. Thus,

one might expect a priori that document selection

for active learning will not perform as well as in-

stance selection. However, it is possible that even

smaller gains will be valuable for improving annota-

tion time, and the more robust nature of a corpus an-

notated in such a way will make the long term bene-

fits worthwhile.

In this work, we propose several metrics for se-

lecting documents to annotate, all of which are

based on instance level uncertainty. In the fol-

lowing descriptions, D is the set of documents, d

is a single document, d̂ is the selected document,

Instances(d) is a function which returns the set of

pair instances in document d, i is an instance, dist(i)
is a function which returns the distance of instance i

from the classification boundary, and I is the indica-

tor function, which takes the value 1 if its argument

is true and 0 otherwise. Note that high uncertainty

occurs when Abs(dist(i)) approaches 0.

• Best instance – This method uses the un-

certainty sampling criteria on instances, and

selects the document containing the in-

stance the classifier is least certain about.

d̂ = argmin
d∈D

[mini∈Instances(d)Abs(dist(i))]

• Highest average uncertainty – This method

computes the average uncertainty of all

instances in a document, and selects the

document with the highest average uncertainty.

d̂ = argmin
d∈D

1
|Instances(d)|

∑
i∈Instances(d)Abs(dist(i))

• Least bad example – This method uses

uncertainty sampling criteria to find the

document whose most certain example is

least certain, in other words the document

whose most useless example is least useless.

d̂ = argmin
d∈D

maxi∈Instances(d)Abs(dist(i))

• Narrow band – This method creates an un-

certainty band around the discriminating

boundary and selects the document with

the most examples inside that narrow band.

d̂ = argmax
d∈D

∑
i∈Instances(d) I(Abs(dist(i) < 0.2))

• Smallest spread – This method computes the

distance between the least certain and most

certain instances and selects the document

minimizing that distance.
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d̂ = argmin
d∈D

[maxi∈Instances(d)(Abs(dist(i)))−

mini∈Instances(d)(Abs(dist(i)))]

• Most positives – This method totals the

number of positive predicted instances

in each document and selects the doc-

ument with the most positive instances.

d̂ = argmax
d∈D

∑
i∈Instances(d) I(dist(i) > 0)

• Positive ratio – This method calculates

the percentage of positive predicted in-

stances in each document and selects the

document with the highest percentage.

d̂ = argmax
d∈D

∑
i∈Instances(d) I(dist(i)>0)

|Instances(d)|

Many of these are straightforward adaptations of

the instance uncertainty criteria, but others deserve

a bit more explanation. The most positives and pos-

itive ratio metrics are based on the observation that

the corpus is somewhat imbalanced – for every posi-

tive instance there are roughly 20 negative instances.

These metrics try to account for the possibility that

instance selection focuses on positive instances. The

average uncertainty is an obvious attempt to turn in-

stance metrics into document metrics, but narrow

band and smallest spread metrics attempt to do the

same thing while accounting for skew in the distri-

bution of “good” and “bad” instances.

3.3 Document-Inertial Instance Selection

One of the biggest impracticalities of instance se-

lection is that labeling any given instance may re-

quire reading a fair amount of the document, since

the antecedent and anaphor can be quite far apart.

Thus, any time savings accumulated by only anno-

tating an instance is reduced since the reading time

per instance is probably increased.

It is also possible that document selection goes

too far in the other direction, and requires too

many useless instances to be annotated to achieve

gains. Therefore, we propose a hybrid method of

document-inertial instance selection which attempts

to combine aspects of instance selection and docu-

ment selection.

This method uses instance selection criteria to se-

lect new instances, but will look inside the current

document for a new instance within an uncertainty

threshold rather than selecting the most uncertain in-

stance in the entire training set. Sticking with the

same document for several instances in a row can

potentially solve the real world annotation problem

that marking up each instance requires some knowl-

edge of the document context. Instead, the context

learned by selecting one instance can be retained if

useful for annotating the next selected instance from

the same document.

This also preserves one of the biggest advantages

of instance selection, that of re-training the model

after every selected instance. In batch-mode selec-

tion and document selection, many instances are se-

lected according to criteria based on the same model

starting point. As a result, the selected instances

may be redundant and document scores based on

accumulated instance scores may not reflect reality.

Re-training the model between selected instances

prevents redundant instances from being selected.

4 Evaluation

Evaluations of the active learning models described

above took place in a simulation context. In active

learning simulations, a labeled data set is used, and

the unlabeled pool is simulated by ignoring or “cov-

ering” the labels for part of the data until the selec-

tion algorithm selects a new instance for annotation.

After selection the next data point is simply put into

the training data and its label is uncovered.

The data set used was the Ontology Development

and Information Extraction (ODIE) corpus (Savova

et al., 2011) used in the 2011 i2b2/VA Challenge on

coreference resolution.3 We used a set of 64 docu-

ments from the training set of the Mayo Clinic notes

for our simulations.

Instances were created by using the training

pipeline from the coreference system described in

Section 2.1. As previously mentioned, this work

uses the named entity anaphor classifier as it con-

tains the most data points. This training set resulted

in 6820 instances, with 311 positive instances and

6509 negative instances. Baseline ten-fold cross val-

idation performance on this data set using an SVM

with RBF kernel is an F-score of 0.48.

Simulations are performed using ten fold cross-

validation. First, each data point is assigned to one

3https://www.i2b2.org/NLP/Coreference/
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of ten folds (this is done randomly to avoid any auto-

correlation issues). Then, for each iteration, one fold

is made the seed data, another fold is the validation

data, and the remainder are the unlabeled pool. Ini-

tially the labeled training data contains only the seed

data set. The model is trained on the labeled train-

ing data, tested on the validation set, then used to

select the next data point from the pool data set. The

selected data point is then removed from the pool

and added to the training data with its gold stan-

dard label(s), and the process repeats until the pool

of unlabeled data is empty. Performance is averaged

across folds to minimize the effects of randomness

in seed and validation set selection. Typically, active

learning is compared to a baseline of passive learn-

ing where the next data point to be labeled is selected

from the unlabeled pool data set randomly.

4.1 Instance Selection Experiments

Instance selection simulations follow the general

template above, with each instance (representing

a putative antecedent-anaphor pair) randomly as-

signed to a fold. After scoring on the validation set,

uncertainty sampling is used to select a single in-

stance from the unlabeled pool, and that instance is

added to the training set.

Figure 1 shows the results of active learning using

uncertainty selection on instances versus using pas-

sive learning (random selection). This makes it clear

that if the classifier is allowed to choose the data, top

performance can be achieved much faster than if the

data is presented in random order. Specifically, the

performance for uncertainty selection levels off at

around 500 instances into the active learning, out of

a pool set of around 5500 instances. In contrast, the

passive learning baseline takes basically the entire

dataset to reach the same performance.

This is essentially a proof of concept that there is

such a thing as a “better” or “worse” instance when

it comes to training a classifier for coreference. We

take this as a validation for attempting a document

selection experiment, with many metrics using in-

stance uncertainty as a building block.

4.2 Document Selection Experiments

Document selection follows similarly to the instance

selection above. The main difference is that instead

of assigning pair vectors to folds, we assign docu-
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Figure 1: Instance selection simulation results. The x-

axis is number of instances and the y-axis is ten-fold av-

eraged f-score of the pairwise named entity classifier.

ments to folds. To make a selection, each instance is

labeled according to the model, document level met-

rics described in Section 3.2 are computed per docu-

ment, and the document is selected which optimizes

the metric being evaluated. All of that document’s

instances and labels are added to the training data,

and the process repeats as before.

The results of these experiments are divided into

two plots for visual clarity. Figure 2 shows the

results of these experiments, roughly divided into

those that work as well as a random baseline (left)

and those that seem to work worse than a random

baseline (right). The best performing metrics (on

the left side of the figure) are Positive Ratio, Least

Worst,Highest Average, and Narrow Band, although

none of these performs noticeably better than ran-

dom. The remaining metrics (on the right) seem

to do worse than random, taking more instances to

reach the peak performance near the end.

The performance of document selection suggests

that it may not be a viable means of active learn-

ing. This may be due to a model of data distribution

in which useful instances are distributed very uni-

formly throughout the corpus. In this case, an aver-

age document will only have 8–10 useful instances

and many times as many that are not useful.

This was investigated by follow-up experiments

on the instance selection which kept track of which
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Figure 2: Two sets of document selection experiments.

document each instance came from. The experi-

ments tracked the first 500 instances only, which is

roughly the number of instances shown in Figure 1

to reach peak performance. Figure 3 (left) shows

a histogram with document indices on the x-axis

and normalized instance counts on the y-axis. The

counts are normalized by total number of document

vectors. In other words, we wanted to show whether

there was a distinction between “good” documents

containing lots of good instances and “bad” docu-

ments with few good instances.

The figure shows a few spikes, but most docu-

ments have approximately 10% of their instances

sampled, and all but one document has at least one

instance selected. Further investigation shows that

the spikes in the figure are from shorter documents.

Since shorter documents have few instances overall

but always at least one positive instance, they will be

biased to have a higher ratio of positive to negative

instances. If positive instances are more uncertain

(which may be the case due to the class imbalance),

then shorter documents will have more selected in-

stances per unit length.

We performed another follow-up experiment

along these lines using the histogram as a measure

of document value. In this experiment, we took the

normalized histogram, selected documents from it in

order of normalized number of items selected, and

used that as a document selection technique. Ob-

viously this would be “cheating” if used as a metric

for document selection, but it can serve as a check on

the viability of document selection. If the results are

better than passive document selection, then there is

some hope that a document level metric based on the

uncertainty of its instances can be successful.

In fact, the right plot on Figure 3 shows that the

“cheating” method of document selection still does

not look any better than random document selection.

4.3 Document-Inertial Instance Selection

Experiments

The experiments for document-inertial instance se-

lection were patterned after the instance selection

paradigm. However, each instance was bundled with

metadata representing the document from which it

came. In the first selection, the algorithm selects the

most uncertain instance, and the document it comes

from is recorded. For subsequent selections, the

document which contained the previously selected

instance is given priority when looking for a new

instance. Specifically, each instance in that docu-

ment is classified, and the confidence is compared

against a threshold. If the document contains in-

stances meeting the threshold, the most uncertain in-

stance was selected. After each instance, the model

is retrained as in normal instance selection, and the

new model is used in the next iteration of the selec-

tion algorithm. For these experiments, the threshold

is set at 0.75, where the distance between the classi-

fication boundary and the margin is 1.0.

Figure 4 shows the performance of this algorithm

compared to passive and uncertainty sampling. Per-

78



0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Normalized document selection counts

Document index

%
 o

f 
v
e

c
to

rs
 s

e
le

c
te

d

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of instances

F
−

s
c
o

re

Document−level active learning

 

 

Passive

Cheating

Figure 3: Left: Percentage of instances selected from each document. Right: Performance of a document selection

algorithm that can ‘cheat’ and select the document with the highest proportion of good instances.
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Figure 4: Document-inertial instance selection results.

formance using this algorithm is clearly better than

passive learning and is similar to standard uncer-

tainty selection ignoring document constraints.

5 Discussion and Conclusion

The results of these experiments paint a complex

picture of the way active learning works for this do-

main and model combination. The first experiments

with uncertainty selection indicate that the number

of instances required to achieve classifier perfor-

mance can be compressed. Selecting and training

on all the good instances first leads to much faster

convergence to the asymptotic performance of the

classifier given the features and data set.

Attempting to extend this result to document se-

lection met with mediocre results. Even the best per-

forming of seven attempted algorithms seems to be

about the same as random document selection. One

can interpret these results in different ways.

The most pessimistic interpretation is that docu-

ment selection simply requires too many useless in-

stances to be annotated, good instances are spread

too evenly, and so document selection will never be

meaningfully faster than random selection. This in-

terpretation seems to be supported by experiments

showing that even if document selection uses a

“cheating” algorithm to select the documents with

the highest proportion of good instances it still does

not beat a passive baseline.

One can also interpret these results to inspire fur-

ther work, first by noting that all of the selection

techniques attempt to build on the instance selec-

tion metrics. While our document selection metrics

were more sophisticated than simply taking the n-

best instances, Settles (2010) notes that some suc-

cessful batch mode techniques explicitly account for

diversity in the selections, which we do not. In ad-

dition, one could argue that our experiments were

unduly constrained by the small number of docu-

ments available in the unlabeled pool, and that with

a larger unlabeled pool, one would eventually en-

counter documents with many good instances. This

may be true, but may be difficult in practice as clin-

ical notes often need to be manually de-identified
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before any research use, and so it is not simply a

matter of querying all records in an entire electronic

medical record system.

The document-inertial instance selection showed

that the increase in training speed can be main-

tained without switching documents for every in-

stance. This suggests that while good training in-

stances may be uniformly distributed, it is usually

possible to find multiple good enough instances in

the current document, and they can be found despite

not selecting instances in the exact best order that

plain instance selection would suggest.

Future work is mainly concerned with real world

applicability. Document level active learning can

probably be ruled out as being non-beneficial despite

being the easiest to work into annotation work flows.

Instance level selection is very efficient in achieving

classifier performance but the least practical.

Document-inertial seems to provide some com-

promise. It does not completely solve the prob-

lems of instance selection, however, as annotation

will still not be complete if done exactly as simu-

lated here. In addition, the assumption of savings

is based on a model that each instance takes a con-

stant amount of time to annotate. This assumption is

probably true for tasks like word sense disambigua-

tion, where an annotator can be presented one in-

stance at a time with little context. However, a better

model of annotation for tasks like coreference is that

there is a constant amount of time required for read-

ing and understanding the context of a document,

then a constant amount of time on top of that per

instance.While modeling annotation time may pro-

vide some insight, it will probably be most effective

to undertake empirical annotation experiments to in-

vestigate whether document-inertial instance selec-

tion actually provides a valuable time savings.

The final discussion point is that of producing

complete document annotations. For coreference

systems following the pairwise discriminative ap-

proach as in that described in Section 2.1, a corpus

annotated instance by instance is useful. However,

many recent approaches do some form of document-

level clustering or explicit coreference chain build-

ing, and are not natively able to handle incompletely

annotated documents.4

4Other recent unsupervised graphical model approaches us-

Future work will investigate this issue by quan-

tifying the value of complete gold standard annota-

tions versus the partial annotations that may be pro-

duced using document-inertial instance selection.

One way of doing this is in simulation, by training

a model on the 500 good instances that document-

inertial instance selection selects, and then classify-

ing the rest of the training instances using that model

to create a “diluted” gold standard. Then, a model

trained on the diluted gold standard will be used

to classify the validation set and performance com-

pared to the version trained on the full gold standard

corpus. Similar experiments can be performed using

other systems. The logic here is that if an instance

was not in the top 10% of difficult instances it can be

classified with high certainty. The fact that positive

instances are rare and tend to be most uncertain is a

point in favor of this approach – after all, high accu-

racy can be obtained by guessing in favor of negative

once the positive instances are labeled. On the other

hand, if document-inertial instance selection simply

amounts to labeling of positive instances, it may not

result in substantial time savings.

In conclusion, this work has shown that instance

selection works for coreference resolution, intro-

duced several metrics for document selection, and

proposed a hybrid selection approach that preserves

the benefits of instance selection while offering the

potential of being applicable to real annotation. This

work can benefit the natural language processing

community by providing practical methods for in-

creasing the speed of coreference annotation.
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ing Gibbs sampling (Haghighi and Klein, 2007) may be able to

incorporate partially annotated documents in semi-supervised

training.
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