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Abstract

We describe an open information extraction
system for biomedical text based on NELL
(the Never-Ending Language Learner) (Carl-
son et al., 2010), a system designed for ex-
traction from Web text. NELL uses a cou-
pled semi-supervised bootstrapping approach
to learn new facts from text, given an initial
ontology and a small number of “seeds” for
each ontology category. In contrast to previ-
ous applications of NELL, in our task the ini-
tial ontology and seeds are automatically de-
rived from existing resources. We show that
NELL’s bootstrapping algorithm is suscepti-
ble to ambiguous seeds, which are frequent in
the biomedical domain. Using NELL to ex-
tract facts from biomedical text quickly leads
to semantic drift. To address this problem, we
introduce a method for assessing seed qual-
ity, based on a larger corpus of data derived
from the Web. In our method, seed quality
is assessed at each iteration of the bootstrap-
ping process. Experimental results show sig-
nificant improvements over NELL’s original
bootstrapping algorithm on two types of tasks:
learning terms from biomedical categories,
and named-entity recognition for biomedical
entities using a learned lexicon.

1 Introduction

NELL (the Never-Ending Language Learner) is a
semi-supervised learning system, designed for ex-
traction of information from the Web. The system
uses a coupled semi-supervised bootstrapping app-
roach to learn new facts from text, given an initial
ontology and a small number of “seeds”, i.e., labeled

examples for each ontology category. The new facts
are stored in a growing structured knowledge base.

One of the concerns about gathering data from the
Web is that it comes from various un-authoritative
sources, and may not be reliable. This is especially
true when gathering scientific information. In con-
trast to Web data, scientific text is potentially more
reliable, as it is guided by the peer-review process.
Open access scientific archives make this informa-
tion available for all. In fact, the production rate of
publicly available scientific data far exceeds the abil-
ity of researchers to “manually” process it, and there
is a growing need for the automation of this process.

The biomedical field presents a great potential for
text mining applications. An integral part of life sci-
ence research involves production and publication of
large collections of data by curators, and as part of
collaborative community effort. Prominent exam-
ples include: publication of genomic sequence data,
e.g., by the Human Genome Project; online col-
lections of three-dimensional coordinates of protein
structures; and databases holding data on genes. An
important resource, initiated as a means of enforc-
ing data standardization, are ontologies describing
biological, chemical and medical terms. These are
heavily used by the research community. With this
wealth of available data the biomedical field holds
many information extraction opportunities.

We describe an open information extraction sys-
tem adapting NELL to the biomedical domain. We
present an implementation of our approach, named
BioNELL, which uses three main sources of infor-
mation: (1) a public corpus of biomedical scientific
text, (2) commonly used biomedical ontologies, and
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High PMI Seeds Random Seeds

SoxN achaete cycA cac section 33 28
Pax-6 Drosomycin Zfh-1 crybaby hv Bob
BX-C Ultrabithorax GATAe ael LRS dip
D-Fos sine oculis FMRFa chm sht 3520
Abd-A dCtBP Antp M-2 AGI tou
PKAc huckebein abd-A shanti disp zen
Hmgcr Goosecoid knirps Buffy Gap Scm
fkh decapentaplegic Sxl lac Mercurio REPO
abdA naked cuticle BR-C subcosta mef Ferritin
zfh-1 Kruppel hmgcr Slam dad dTCF
tkv gypsy insulator Dichaete Cbs Helicase mago
CrebA alpha-Adaptin Abd-B Sufu ora Pten
D-raf doublesex gusA pelo vu sb
MtnA FasII AbdA sombre domain II TrpRS
Dcr-2 GAGA factor dTCF TAS CCK ripcord
fushi
tarazu

kanamycin
resistance

Ecdysone
receptor

GABAA
receptor

diazepam
binding
inhibitor

yolk
protein

Tkv dCBP Debcl arm

Table 1: Two samples of fruit-fly genes, taken from the
complete fly gene dictionary. High PMI Seeds are the top
50 terms selected using PMI ranking, and Random Seeds
are a random draw of 50 terms from the dictionary. These
are used as seeds for the Fly Gene category (Section 4.2).
Notice that the random set contains many terms that are
often not used as genes including arm, 28, and dad. Us-
ing these as seeds can lead to semantic drift. In contrast,
high PMI seeds exhibit much less ambiguity.

(3) a corpus of Web documents.
NELL’s ontology, including categories and seeds,

has been manually designed during the system de-
velopment. Ontology design involves assembling a
set of interesting categories, organized in a meaning-
ful hierarchical structure, and providing represen-
tative seeds for each category. Redesigning a new
ontology for a technical domain is difficult without
non-trivial knowledge of the domain. We describe a
process of merging source ontologies into one struc-
ture of categories with seed examples.

However, as we will show, using NELL’s boot-
strapping algorithm to extract facts from a biomed-
ical corpus is susceptible to noisy and ambiguous
terms. Such ambiguities are common in biomedi-
cal terminology (see examples in Table 1), and some
ambiguous terms are heavily used in the literature.
For example, in the sentence “We have cloned an
induced white mutation and characterized the in-
sertion sequence responsible for the mutant pheno-
type”, white is an ambiguous term referring to the
name of a gene. In NELL, ambiguity is limited us-

ing coupled semi-supervised learning (Carlson et al.,
2009): if two categories in the ontology are declared
mutually exclusive, instances of one category are
used as negative examples for the other, and the two
categories cannot share any instances. To resolve
the ambiguity of white with mutual exclusion, we
would have to include a Color category in the ontol-
ogy, and declare it mutually exclusive with the Gene
category. Then, instances of Color will not be able
to refer to genes in the KB. It is hard to estimate what
additional categories should be added, and building
a “complete” ontology tree is practically infeasible.

NELL also includes a polysemy resolution com-
ponent that acknowledges that one term, for exam-
ple white, may refer to two distinct concepts, say
a color and a gene, that map to different ontology
categories, such as Color and Fly Gene (Krishna-
murthy and Mitchell, 2011). By including a Color
category, this component can identify that white is
both a color and a gene. The polysemy resolver per-
forms word sense induction and synonym resolution
based on relations defined between categories in the
ontology, and labeled synonym examples. However,
at present, BioNELL’s ontology does not contain re-
lation definitions (it is based only on categories),
so we cannot include this component in our exper-
iments. Additionally, it is unclear how to avoid the
use of polysemous terms as category seeds, and no
method has been suggested for selecting seeds that
are representative of a single specific category.

To address the problem of ambiguity, we intro-
duce a method for assessing the desirability of noun
phrases to be used as seeds for a specific target cat-
egory. We propose ranking seeds using a Point-
wise Mutual Information (PMI) -based collocation
measure for a seed and a category name. Colloca-
tion is measured based on a large corpus of domain-
independent data derived from the Web, accounting
for uses of the seed in many different contexts.

NELL’s bootstrapping algorithm uses the mor-
phological and semantic features of seeds to pro-
pose new facts, which are added to the KB and used
as seeds in the next bootstrapping iteration to learn
more facts. This means that ambiguous terms may
be added at any learning iteration. Since white really
is a name of a gene, it is sometimes used in the same
semantic context as other genes, and may be added
to the KB despite not being used as an initial seed.
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To resolve this problem, we propose measuring seed
quality in a Rank-and-Learn bootstrapping method-
ology: after every iteration, we rank all the instances
that have been added to the KB by their quality
as potential category seeds. Only high-ranking in-
stances are used as seeds in the next iteration. Low-
ranking instances are stored in the KB and “remem-
bered” as true facts, but are not used for learning
new information. This is in contrast to NELL’s ap-
proach (and most other bootstrapping systems), in
which there is no distinction between acquired facts,
and facts that are used for learning.

2 Related Work

Biomedical Information Extraction systems have
traditionally targeted recognition of few distinct bi-
ological entities, focusing mainly on genes (e.g.,
(Chang et al., 2004)). Few systems have been devel-
oped for fact-extraction of many biomedical predi-
cates, and these are relatively small scale (Wattaru-
jeekrit et al., 2004), or they account for limited sub-
domains (Dolbey et al., 2006). We suggest a more
general approach, using bootstrapping to extend ex-
isting biomedical ontologies, including a wide range
of sub-domains and many categories. The current
implementation of BioNELL includes an ontology
with over 100 categories. To the best of our knowl-
edge, such large-scale biomedical bootstrapping has
not been done before.

Bootstrap Learning and Semantic Drift. Carl-
son et al. (2010) use coupled semi-supervised boot-
strap learning in NELL to learn a large set of cate-
gory classifiers with high precision. One drawback
of using iterative bootstrapping is the sensitivity of
this method to the set of initial seeds (Pantel et al.,
2009). An ambiguous set of seeds can lead to se-
mantic drift, i.e., accumulation of erroneous terms
and contexts when learning a semantic class. Strict
bootstrapping environments reduce this problem by
adding boundaries or limiting the learning process,
including learning mutual terms and contexts (Riloff
and Jones, 1999) and using mutual exclusion and
negative class examples (Curran et al., 2007).

McIntosh and Curran (2009) propose a metric
for measuring the semantic drift introduced by a
learned term, favoring terms different than the recent
m learned terms and similar to the first n, (shown

for n=20 and n=100), following the assumption that
semantic drift develops in late bootstrapping itera-
tions. As we will show, for biomedical categories,
semantic drift in NELL occurs within a handful of
iterations (< 5), however according to the authors,
using low values for n produces inadequate results.
In fact, selecting effective n and m parameters may
not only be a function of the data being used, but
also of the specific category, and it is unclear how to
automatically tune them.

Seed Set Refinement. Vyas et al. (2009) suggest
a method for reducing ambiguity in seeds provided
by human experts, by selecting the tightest seed
clusters based on context similarity. The method is
described for an order of 10 seeds, however, in an
ontology containing hundreds of seeds per class, it is
unclear how to estimate the correct number of clus-
ters to choose from. Another approach, suggested
by Kozareva et al. (2010), is using only constrained
contexts where both seed and class are present in a
sentence. Extending this idea, we consider a more
general collocation metric, looking at entire docu-
ments including both the seed and its category.

3 Implementation

3.1 NELL’s Bootstrapping System

We have implemented BioNELL based on the sys-
tem design of NELL. NELL’s bootstrapping algo-
rithm is initiated with an input ontology structure of
categories and seeds. Three sub-components oper-
ate to introduce new facts based on the semantic and
morphological attributes of known facts. At every
iteration, each component proposes candidate facts,
specifying the supporting evidence for each candi-
date, and the candidates with the most strongly sup-
ported evidence are added to the KB. The process
and sub-components are described in detail by Carl-
son et al. (2010) and Wang and Cohen (2009).

3.2 Text Corpora

PubMed Corpus: We used a corpus of 200K full-
text biomedical articles taken from the PubMed
Central Open Access Subset (extracted in October
2010)1, which were processed using the OpenNLP
package2. This is the main BioNELL corpus and it

1http://www.ncbi.nlm.nih.gov/pmc/
2http://opennlp.sourceforge.net
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is used to extract category instances in all the exper-
iments presented in this paper.

Web Corpus: BioNELL’s seed-quality colloca-
tion measure (Section 3.4) is based on a domain-
independent Web corpus, the English portion of the
ClueWeb09 data set (Callan and Hoy, 2009), which
includes 500 million web documents.

3.3 Ontology
BioNELL’s ontology is composed of six base on-
tologies, covering a wide range of biomedical sub-
domains: the Gene Ontology (GO) (Ashburner et
al., 2000), describing gene attributes; the NCBI Tax-
onomy for model organisms (Sayers et al., 2009);
Chemical Entities of Biological Interest (ChEBI)
(Degtyarenko et al., 2008), a dictionary focused on
small chemical compounds; the Sequence Ontol-
ogy (Eilbeck et al., 2005), describing biological se-
quences; the Cell Type Ontology (Bard et al., 2005);
and the Human Disease Ontology (Osborne et al.,
2009). Each ontology provides a hierarchy of terms
but does not distinguish concepts from instances.

We used an automatic process for merging base
ontologies into one ontology tree. First, we group
the ontologies under one hierarchical structure, pro-
ducing a tree of over 1 million entities, including
856K terms and 154K synonyms. We then separate
these into potential categories and potential seeds.
Categories are nodes that are unambiguous (have a
single parent in the ontology tree), with at least 100
descendants. These descendants are the category’s
Potential seeds. This results in 4188 category nodes.
In the experiments of this paper we selected only
the top (most general) 20 categories in the tree of
each base ontology. We are left with 109 final cate-
gories, as some base ontologies had less than 20 cat-
egories under these restrictions. Leaf categories are
given seeds from their descendants in the full tree of
all terms and synonyms, giving a total of around 1
million potential seeds. Seed set refinement is de-
scribed below. The seeds of leaf categories are later
extended by the bootstrapping process.

3.4 BioNELL’s Bootstrapping System
3.4.1 PMI Collocation with the Category Name

We define a seed quality metric based on a large
corpus of Web data. Let s and c be a seed and a tar-
get category, respectively. For example, we can take

s = “white”, the name of a gene of the fruit-fly, and c
= “fly gene”. Now, let D be a document corpus (Sec-
tion 3.2 describes the Web corpus used for ranking),
and let Dc be a subset of the documents contain-
ing a mention of the category name. We measure
the collocation of the seed and the category by the
number of times s appears in Dc, |Occur(s, Dc)|.
The overall occurrence of s in the corpus is given
by |Occur(s, D)|. Following the formulation of
Church and Hanks (1990), we compute the PMI-
rank of s and c as

PMI(s, c) =
|Occur(s, Dc)|
|Occur(s, D)|

(1)

Since this measure is used to compare seeds of the
same category, we omit the log from the original for-
mulation. In our example, as white is a highly am-
biguous gene name, we find that it appears in many
documents that do not discuss the fruit fly, resulting
in a PMI rank close to 0.

The proposed ranking is sensitive to the descrip-
tive name given to categories. For a more robust
ranking, we use a combination of rankings of the
seed with several of its ancestors in the ontology hi-
erarchy. In (Movshovitz-Attias and Cohen, 2012)
we describe this hierarchical ranking in more detail
and additionally explore the use of the binomial log-
likelihood ratio test (BLRT) as an alternative collo-
cation measure for ranking.

We further note that some specialized biomedical
terms follow strict nomenclature rules making them
easily identifiable as category specific. These terms
may not be frequent in general Web context, lead-
ing to a low PMI rank under the proposed method.
Given such a set of high confidence seeds from a
reliable source, one can enforce their inclusion in
the learning process, and specialized seeds can addi-
tionally be identified by high-confidence patterns, if
such exist. However, the scope of this work involves
selecting seeds from an ambiguous source, biomed-
ical ontologies, thus we do not include an analysis
for these specialized cases.

3.4.2 Rank-and-Learn Bootstrapping
We incorporate PMI ranking into BioNELL using

a Rank-and-Learn bootstrapping methodology. Af-
ter every iteration, we rank all the instances that have
been added to the KB. Only high-ranking instances
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Learning System Bootstrapping
Algorithm

Initial
Seeds

Corpus

BioNELL Rank-and-Learn
with PMI

PMI
top 50

PubMed

NELL NELL’s
algorithm

Random
50

PubMed

BioNELL+Random Rank-and-Learn
with PMI

Random
50

PubMed

Table 2: Learning systems used in our evaluation, all us-
ing the PubMed biomedical corpus and the biomedical
ontology described in Sections 3.2 and 3.3.

are added to the collection of seeds that are used in
the next learning iteration. Instances with low PMI
rank are stored in the KB and are not used for learn-
ing new information. We consider a high-ranking
instance to be one with PMI rank higher than 0.25.

4 Experimental Evaluation

4.1 Experimental Settings

4.1.1 Configurations of the Algorithm
In our experiments, we ran BioNELL and NELL

with the following system configurations, all using
the biomedical corpus and the ontology described in
Sections 3.2 and 3.3, and all running 50 iterations,
in order to evaluate the long term effects of ranking.
Section 4.2 includes a discussion on the learning rate
of the tested systems which motivates the reason for
evaluating performance at the 50th iteration.

To expand a category we used the following sys-
tems, also summarized in Table 2: (1) the BioNELL
system, using Rank-and-Learn bootstrapping (Sec-
tion 3.4.2) initialized with the top 50 seeds using
PMI ranking, (2) the NELL system, using NELL’s
original bootstrapping algorithm (Section 3.1) ini-
tialized with 50 random seeds from the category’s
potential seeds (NELL does not provide a seed se-
lection method), and (3) in order to distinguish
the contribution of Rank-and-Learn bootstrapping
over ranking the initial seeds, we tested a third
system, BioNELL+Random, using Rank-and-Learn
bootstrapping initialized with 50 random seeds.

4.1.2 Evaluation Methodology
Using BioNELL we can learn lexicons, collec-

tions of category terms accumulated after running
the system. One evaluation approach is to select

a set of learned instances and assess their correct-
ness (Carlson et al., 2010). This is relatively easy
for data extracted for general categories like City or
Sports Team. For example, it is easy to evaluate the
statement “London is a City”. This task becomes
more difficult when assessing domain-specific facts
such as “Beryllium is an S-block molecular entity”
(in fact, it is). We cannot, for example, use the help
of Mechanical Turk for this task. A possible alter-
native evaluation approach is asking an expert. On
top of being a costly and slow approach, the range
of topics covered by BioNELL is large and a single
expert is not likely be able to assess all of them.

We evaluated lexicons learned by BioNELL by
comparing them to available resources. Lexicons of
gene names for certain species are available, and the
Freebase database (Google, 2011), an open repos-
itory holding data for millions of entities, includes
some biomedical concepts. For most biomedical
categories, however, complete lexicons are scarce.

4.1.3 Data Sets
We compared learned lexicons to category dictio-

naries, lists of concept terms taken from the follow-
ing sources, which we consider as a Gold Standard.

We used three lexicons of biomedical categories
taken from Freebase: Disease (9420 terms), Chemi-
cal Compound (9225 terms), and Drug (3896 terms).

To evaluate gene names we used data from the
BioCreative Challenge (Hirschman et al., 2005),
an evaluation competition focused on annotations
of genes and gene products. The data includes
a dictionary of genes of the fruit-fly, Drosophila
Melanogaster, which specifies a set of gene iden-
tifiers and possible alternative forms of the gene
name, for a total of 7151 terms, which we consider
to be the complete fly gene dictionary.

We used additional BioCreative data for a named-
entity recognition task. This includes 108 scientific
abstracts, manually annotated by BioCreative with
gene IDs of fly genes discussed in the text. The ab-
stracts contain either the gene ID or any gene name.

4.2 Extending Lexicons of Biomedical
Categories

4.2.1 Recovering a Closed Category Lexicon
We used BioNELL to learn the lexicon of a

closed category, representing genes of the fruit-fly,
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Figure 1: Performance per learning iteration for gene lexicons learned using BioNELL and NELL.

Learning System Precision Correct Total

BioNELL .83 109 132
NELL .29 186 651
BioNELL+Random .73 248 338

NELL by size 132 .72 93 130

Table 3: Precision, total number of instances (Total),
and correct instances (Correct) of gene lexicons learned
with BioNELL and NELL. BioNELL significantly im-
proves the precision of the learned lexicon compared with
NELL. When examining only the first 132 learned items,
BioNELL has both higher precision and more correct in-
stances than NELL (last row, NELL by size 132).

D. Melanogaster, a model organism used to study
genetics and developmental biology. Two samples
of genes from the full fly gene dictionary are shown
in Table 1: High PMI Seeds are the top 50 dictio-
nary terms selected using PMI ranking, and Random
Seeds are a random draw of 50 terms. Notice that the
random set contains many seeds that are not distinct
gene names including arm, 28, and dad. In con-
trast, high PMI seeds exhibit much less ambiguity.
We learned gene lexicons using the test systems de-
scribed in Section 4.1.1 with the high-PMI and ran-
dom seed sets shown in Table 1. We measured the
precision, total number of instances, and correct in-
stances of the learned lexicons against the full dic-
tionary of genes. Table 3 summarizes the results.

BioNELL, initialized with PMI-ranked seeds, sig-
nificantly improved the precision of the learned
lexicon over NELL (29% for NELL to 83% for
BioNELL). In fact, the two learning systems us-
ing Rank-and-Learn bootstrapping resulted in higher
precision lexicons (83%, 73%), suggesting that con-

strained bootstrapping using iterative seed ranking
successfully eliminates noisy and ambiguous seeds.

BioNELL’s bootstrapping methodology is highly
restrictive and it affects the size of the learned lexi-
con as well as its precision. Notice, however, that
while NELL’s final lexicon is 5 times larger than
BioNELL’s, the number of correctly learned items in
it are less than twice that of BioNELL. Additionally,
BioNELL+Random has learned a smaller dictionary
than NELL (338 and 651 terms, respectively) with a
greater number of correct instances (248 and 186).

We examined the performance of NELL after the
7th iteration, when it has learned a lexicon of 130
items, similar in size to BioNELL’s final lexicon (Ta-
ble 3, last row). After learning 130 items, BioNELL
achieved both higher precision (83% versus 72%)
and higher recall (109 versus 93 correct lexicon
instances) than NELL, indicating that BioNELL’s
learning method is overall more accurate.

After running for 50 iterations, all systems re-
cover only a small portion of the complete gene dic-
tionary (109-248 instances out of 7151), suggesting
either that, (1) more learning iterations are required,
(2) the biomedical corpus we use is too small and
does not contain (frequent) mentions of some gene
names from the dictionary, or (3) some other limita-
tions exist that prevent the learning algorithm from
finding additional class examples.

Lexicons learned using BioNELL show persis-
tently high precision throughout the 50 iterations,
even when initiated with random seeds (Figure 1A).
By the final iteration, all systems stop accumulating
further significant amounts of correct gene instances
(Figure 1B). Systems that use PMI-based Rank-
and-Learn bootstrapping also stop learning incorrect
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Learning System Precision Correct Total

CC Drug Disease CC Drug Disease CC Drug Disease

BioNELL .66 .52 .43 63 508 276 96 972 624
NELL .15 .40 .37 74 522 288 449 1300 782

NELL by size .58 .47 .37 58 455 232 100 968 623

Table 4: Precision, total number of instances (Total), and correct instances (Correct) of learned lexicons of Chemical
Compound (CC), Drug, and Disease. BioNELL’s lexicons have higher precision on all categories compared with
NELL, while learning a similar number of correct instances. When restricting NELL to a total lexicon size similar to
BioNELL’s, BioNELL has both higher precision and more correct instances (last row, NELL by size).

instances (BioNELL and BioNELL+Random; Fig-
ure 1C). This is in contrast to NELL which continues
learning incorrect examples.

Interestingly, the highest number of correct gene
instances was learned using Rank-and-Learn boot-
strapping with random initial seeds (248 items;
BioNELL+Random). This may happen when the
random set includes genes that are infrequent in
the general Web corpus, despite being otherwise
category-specific in the biomedical context. As
such, these would result in low PMI rank (see note
in Section 3.4.1). However, random seed selection
does not offer any guarantees on the quality of the
seeds used, and therefore will result in unstable per-
formance. Note that BioNELL+Random was initi-
ated with the same random seeds as NELL, but due
to the more constrained Rank-and-Learn bootstrap-
ping it achieves both higher recall (248 versus 186
correct instances) and precision (73% versus 29%).

4.2.2 Extending Lexicons of Open Categories

We evaluated learned lexicons for three open cat-
egories, Chemical Compound (CC), Drug, and Dis-
ease, using dictionaries from Freebase. Since these
are open categories — new drugs are being devel-
oped every year, new diseases are discovered, and
varied chemical compounds can be created — the
Freebase dictionaries are not likely to contain com-
plete information on these categories. For our evalu-
ation, however, we considered them to be complete.

We used BioNELL and NELL to learn these cat-
egories, and for all of them BioNELL’s lexicons
achieved higher precision than NELL (Table 4). The
number of correct learned instances was similar in
both systems (63 and 74 for CC, 508 and 522 for
Drug, and 276 and 288 for Disease), however in

BioNELL, the additional bootstrapping restrictions
assist in rejecting incorrect instances, resulting in a
smaller, more accurate lexicon.

We examined NELL’s lexicons when they reached
a size similar to BioNELL’s final lexicons (at the 8th,
42nd and 39th iterations for CC, Drug, and Disease,
respectively). BioNELL’s lexicons have both higher
precision and higher recall (more correct learned in-
stances) than the comparable NELL lexicons (Ta-
ble 4, NELL by size, last row).

4.3 Named-Entity Recognition using a
Learned Lexicon

We examined the use of gene lexicons learned with
BioNELL and NELL for the task of recognizing
concepts in free text, using a simple strategy of
matching words in the text with terms from the lex-
icon. We use data from the BioCreative challenge
(Section 4.1.3), which includes text abstracts and the
IDs of genes that appear in each abstract. We show
that BioNELL’s lexicon achieves both higher preci-
sion and recall in this task than NELL’s.

We implemented an annotator for predicting what
genes are discussed in text, which uses a gene lexi-
con as input. Given sample text, if any of the terms
in the lexicon appear in the text, the corresponding
gene is predicted to be discussed in the text. Follow-
ing BioCreative’s annotation format, the annotator
emits as output the set of gene IDs of the genes pre-
dicted for the sample text.

We evaluated annotators that were given as in-
put: the complete fly-genes dictionary, a filtered
version of that dictionary, or lexicons learned us-
ing BioNELL and NELL. Using these annotators we
predicted gene mentions for all text abstracts in the
data. We report the average precision (over 108 text
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Lexicon Precision Correct Total

BioNELL .90 18 20
NELL .02 5 268
BioNELL+Random .03 3 82

Complete Dictionary .09 153 1616
Filtered Dictionary .18 138 675

Table 5: Precision, total number of predicted genes (To-
tal), and correct predictions (Correct), in a named-entity
recognition task using a complete lexicon, a filtered lex-
icon, and lexicons learned with BioNELL and NELL.
BioNELL’s lexicon achieves the highest precision, and
makes more correct predictions than NELL.

abstracts) and number of total and correct predic-
tions of gene mentions, compared with the labeled
annotations for each text (Table 5).

Many gene names are shared among multiple
variants. For example, the name Antennapedia may
refer to several gene variations, e.g., Dgua\Antp or
Dmed\Antp. Thus, in our precision measurements,
we consider a prediction of a gene ID as “true” if it
is labeled as such by BioCreative, or if it shares a
synonym name with another true labeled gene ID.

First, we used the complete fly gene dictionary
for the recognition task. Any dictionary gene that
is mentioned in the text was recovered, resulting
in high recall. However, the full dictionary con-
tains ambiguous gene names that contribute many
false predictions to the complete dictionary annota-
tor, leading to a low precision of 9%.

Some ambiguous terms can be detected using
simple rules, e.g., short abbreviations and numbers.
For example, section 9 is a gene named after the
functional unit to which it belongs, and abbreviated
by the symbol 9. Clearly, removing 9 from the full
lexicon should improve precision without great cost
to recall. We similarly filtered the full dictionary, re-
moving one- and two-letter abbreviations and terms
composed only of non-alphabetical characters, leav-
ing 6253 terms. Using the filtered dictionary, pre-
cision has doubled (18%) with minor compromise
to recall. Using complete or manually refined gene
dictionaries for named-entity recognition has been
shown before to produce similar high-recall and
low-precision results (Bunescu et al., 2005).

We evaluated annotators on gene lexicons learned
with BioNELL and NELL. BioNELL’s lexicon

achieved significantly higher precision (90%) than
other lexicons (2%-18%). It is evident that this lexi-
con contains few ambiguous terms as it leads to only
2 false predictions. Note also, that BioNELL’s lexi-
con has both higher precision and recall than NELL.

5 Conclusions

We have proposed a methodology for an open infor-
mation extraction system for biomedical scientific
text, using an automatically derived ontology of cat-
egories and seeds. Our implementation is based on
constrained bootstrapping in which seeds are ranked
at every iteration.

The benefits of iterative seed ranking have been
demonstrated, showing that our method leads to sig-
nificantly less ambiguous lexicons for all the eval-
uated biomedical concepts. BioNELL shows 51%
increase over NELL in the precision of a learned
lexicon of chemical compounds, and 45% increase
for a category of gene names. Importantly, when
BioNELL and NELL learn lexicons of similar size,
BioNELL’s lexicons have both higher precision and
recall. We have demonstrated the use of BioNELL’s
learned gene lexicon as a high precision annotator
in an entity recognition task (with 90% precision).
The results are promising, though it is currently dif-
ficult to provide a similar quantitative evaluation for
a wider range of concepts.

Many interesting improvements could be made
in the current system, mainly discovery of relations
between existing ontology categories. In addition,
we believe that Rank-and-Learn bootstrapping and
iterative seed ranking can be beneficial in general,
domain-independent settings, and we would like to
explore further use of this method.
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